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Abstract:  

Multiplex immunoassays are facilitating the parallel measurement of antibody responses 

against multiple antigenically-related pathogens, generating a wealth of high-dimensional data 

which depict complex antibody-antigen relationships. In this study we develop a generalizable 

analytical framework to maximise inferences from multi-pathogen serological studies. We fit 

the model to measurements of IgG antibody binding to 10 arboviral pathogens from a cross-

sectional study in northwest Bangladesh with 1,453 participants. We used our framework to 

jointly infer the prevalence of each pathogen by location and age, as well as the levels of 

between-pathogen antibody cross-reactivity. We find evidence of endemic transmission of 

Japanese encephalitis virus as well as recent outbreaks of dengue and chikungunya viruses 

in this district. Our estimates of antibody cross-reactivity were highly consistent with 

phylogenetic distances inferred from genetic data. Further, we demonstrated how our 

framework can be used to identify the presence of circulating cross-reactive pathogens that 

were not directly tested for, representing a potential opportunity for the detection of novel 

emerging pathogens. The presented analytical framework will be applicable to the growing 

number of multi-pathogen studies and will help support the integration of serological testing 

into disease surveillance platforms. 
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Introduction 

Traditional infectious disease surveillance methods rely on testing of symptomatic individuals. 

However, the number of confirmed cases is often a poor indicator of the true underlying burden 

of infection in a population due to varying rates of subclinical infections, non-specific 

symptoms, and heterogeneity in health seeking behaviour (1, 2). Population serological 

studies, which test for immune markers such as antibodies that are generated in response to 

an infection, can provide a direct measure of the underlying burden of infection in a population 

(3–6). These studies can help to fill the gaps left by traditional disease surveillance methods, 

allowing an increased understanding of population susceptibility, pathogen transmission 

dynamics and rates of pathogen severity (7–9).  

Recent advances in high-throughput immunoassay technologies have been facilitating the 

generation of large volumes of immunological data. In particular, multiplex immunoassays 

which use colour-coded beads to simultaneously measure multiple analytes from a single 

sample, offers an efficient approach to maximising the information gained from biological 

samples. In the context of population serological studies, this is leading to a shift in the design 

of such studies from focusing on a single antigen of interest to now being able to 

simultaneously test for the presence of antibodies against multiple antigens (10–18). Allowing 

efficient characterisation of population immune profiles against multiple pathogens or 

antigens, such approaches are paving the way for integrated serosurveillance efforts, 

providing important new insights for guiding optimal strategies for the control and prevention 

of infectious agents (19–21). 

Antibody cross-reactivity has long posed a challenge to the interpretation of serological data 

in regions where antigenically related pathogens co-circulate (22, 23). In these contexts it can 

be difficult to determine if antibodies measured against the pathogen of interest were caused 

by an infection with that specific pathogen or by a related pathogen with similar structural 

antigenic regions that the antibody can recognize and bind to. Measurements of antibody 

responses against multiple antigenically-related pathogens can generate a wealth of high-

dimensional data depicting complex antibody-antigen relationships, providing a pathway to 

characterising these cross-reactive dynamics. For instance, the level of correlation in antibody 

responses measured against different antigens at the population level can provide an 

indication of their antigenic similarity. Analytical methods that quantify and account for these 

cross-reactive relationships can maximise inferences from such high-dimensional datasets, 

allowing robust characterisation of population immune profiles and underlying infection 

burdens. In addition, cross-reactivity between pathogens provides the potential opportunity to 

detect novel emerging pathogens via indirect cross-reactive signals within a particular viral 

family that are otherwise not possible to directly test for. 

Arboviruses, including flaviviruses and alphaviruses, are key examples of diverse viral families 

that represent significant ongoing threats to human health. Members of these viral families 

continue to emerge into the human population, while those that are already established in 

human transmission cycles continue their geographic expansion, causing significant burdens 

to healthcare systems (24). Monitoring of the infection prevalence and understanding the 

antigenic landscape of such viral pathogens is of key importance to global health. In this study, 

we developed an analytical framework for the analysis of multi-pathogen serological studies 

to jointly infer the prevalence of infection for each pathogen and the levels of between-
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pathogen antibody cross-reactivity. We demonstrate the utility of this framework through 

application to a cross-sectional serological study of arboviruses in the Chapai Nawabganj 

district in northwest Bangladesh. While cases of Japanese encephalitis virus are regularly 

reported in this area and a chikungunya virus outbreak was documented in recent years, the 

underlying infection prevalence of these and other arboviruses in this district is not well 

understood (25, 26). 

 

Determining pathogen presence 

We analysed serological samples from 1,453 individuals participating in a cross-sectional 

study conducted in 2014 in Chapai Nawabganj district, located in northwest Bangladesh 

(Figure 1A). Individuals were enrolled from 39 communities across all 5 sub-districts with an 

age range of 2-90 years (SI Figure 1). Concentrations of binding IgG antibodies were 

measured against antigens of 10 pathogens using a Luminex platform: dengue virus serotypes 

1, 2, 3 and 4, (DENV1-4), Japanese Encephalitis (JEV), West Nile (WNV), Yellow fever (YFV), 

Zika (ZIKV), tick-borne encephalitis (TBEV) and chikungunya (CHIKV) viruses. The domain III 

of the envelope protein (EIII) was used as the target antigen for each flavivirus, while the E2 

protein was used for CHIKV. In addition, samples were tested using a commercial DENV 

enzyme linked immunosorbent assay (ELISA), that used the whole E protein. Values of 

median fluorescence intensity (MFI) against each antigen from the multiplex immunoassay 

were divided by individual-level responses to a background control (SNAP tag), to obtain a 

relative fluorescence intensity (RFI) measurement. Measured RFIs by antigen and upazila 

(sub-district) of residence are shown in Figure 1B, with respective population distributions of 

antibody concentrations. Simple Pearson correlation coefficients calculated for RFI titers 

against each antigen pair revealed high correlations in titers against JEV and WNV (r=0.85), 

between DENV1 and DENV3 (r=0.80) and between TBEV and YFV (r=0.74), shown in Figure 

1C and SI Figure 2. In contrast, we observe low correlation between RFIs measured against 

CHIKV and all flavivirus antigens, with correlation coefficients ranging from -0.20 to 0.11.  

 

We developed a semi-mechanistic multivariate mixture model to jointly infer pathogen-specific 

infection prevalence and levels of between-pathogen antibody cross-reactivity. In simulation 

studies we found good model performance on simulated data across a wide range of scenarios 

(SI). Applying our framework to the arbovirus serological data, we conducted a stepwise 

variable selection process to determine which pathogens were present, i.e. have transmitted 

within the study population, and best explain the population antibody titer distributions against 

all antigens. Fitting to antibody data from all 11 antigens (multiplex immunoassay and ELISA) 

in the same framework, we first assumed only a single pathogen to be present such that 

antibody titers against the remaining pathogens can only be explained by negative infection 

statuses with potential cross-reactivity from the present pathogen. As classic information 

criterion metrics such as AIC or DIC do not perform well in cases of mixture models of varying 

components, we instead use likelihood increment percentage (LIP) metrics to assess the 

relative improvements in model fit with increasing model components (SI methods and 

simulations) (27). Allowing each pathogen to be present in turn, we retained the present 

pathogen that resulted in the highest model log-likelihood before adding a second present 

pathogen. We repeated this process of adding present pathogens until the log-likelihood 

increment percentage per component (LIPpc) fell below 1%. We found highest support for the 
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presence of DENV1 in the study population, followed by CHIKV (LIPpc=9.2%) and JEV 

(LIPpc=5.0%), shown in Figure 2A. Inclusion of a fourth present pathogen resulted in LIPpc 

values below 1% and we therefore assumed all the remaining pathogens to be absent from 

the study population. The selected present pathogens from this variable selection process 

were consistent across the 3 model versions considered - a base model where a single value 

of prevalence is estimated by pathogen, a location-specific model where prevalence is 

estimated by sub-district, and a location and age-specific model where prevalence is 

estimated by sub-district and age group (SI Tables 4-6). We found the location and age-

specific model version performed best by log-likelihood (SI Tables 4-6) and we therefore focus 

on the results of this model in the remainder of the manuscript. In simulation studies we also 

found that model versions that allow pathogen-specific prevalence to vary within the 

population (e.g. by location and/or age) are better able to accurately estimate true parameter 

values compared to those estimating a single population prevalence per pathogen (SI section 

3). 

 

Inferred infection burden 

Our final model estimated an overall infection prevalence of 17.0% (95%CrI: 15.3-18.8%) for 

DENV1, 12.9% (95%CrI: 11.3-14.6%) for CHIKV and 25.1% (95%CrI: 22.9-27.5%) for JEV in 

the study population (Figure 2B). We found that pathogen-specific infection prevalence 

estimates did not significantly change as additional present pathogens were added (Figure 

2B). To understand how these estimates would compare to those derived from simpler 

analytical approaches that are traditionally used, we applied classic single-dimension (1D) 

mixture models and threshold approaches to antibody data independently for each pathogen. 

We found infection prevalence estimates for DENV1 and CHIKV to be consistent across 

models, while classic mixture model and threshold estimates of prevalence for DENV2, 

DENV4, TBEV, YFV and ZIKV are close to zero, roughly aligned with inferences from our 

model framework. However, classic mixture models estimated a prevalence of 10.6% 

(95%CrI: 8.9-12.4%) for DENV3 and 7.5% (95%CrI: 5.7-9.5%) for WNV, inconsistent with our 

model framework which found these antibody responses to be explained by cross-reactivity 

from DENV1 and JEV (Figure 2B). In a simulation study we further show how bias in 

prevalence estimates obtained by classic 1D mixture models increases as both cross-

reactivity from a related pathogen and prevalence of the related pathogen increase (SI section 

3).  

 

Our model framework estimated substantial spatial variability in infection burden across the 

district. The prevalence of DENV1 ranged from 5.9% (4.0-8.3%) in Gomastapur in the north 

of the district to 30.3% (95%CrI: 25.8-34.6%) in Shibganj in the south (Figure 2C). CHIKV 

prevalence was estimated to range from 4.4% (95%CrI: 2.1-7.8%) in Nachole to 28.4% 

(95%CrI: 24.3-32.7%) in Shibganj, consistent with where an outbreak had previously been 

detected (26). The prevalence of JEV infection ranged from 18.6% (95%CrI: 14.9-23.0%) in 

Shibganj to 33.7% (95%CrI: 27.4-40.4%) in Bholahat (Figure 2C). Age-specific prevalence of 

DENV1 and CHIKV appeared constant among those ≥5 years of age (Figure 2D). The lower 

prevalence estimated among 0-4 year olds for DENV1 and CHIKV suggests the occurrence 

of an epidemic for each of these viruses sometime within the 5 years prior to the serological 

study (2009-2014). In contrast, we observed a pattern of increasing JEV prevalence by age in 

this district, indicative of endemic transmission (Figure 2D). To characterise the transmission 

intensity of JEV we fit simple catalytic models to age-specific infection prevalence estimates 

assuming endemic transmission of JEV since its introduction to Bangladesh. Patterns in the 
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age-specific prevalence estimates suggest the most likely JEV introduction date between 

1965-1970 (Figure 2D and SI Figure 3), roughly aligned with the first human cases reported 

in Bangladesh in 1977 (28, 29). We estimated that 1.2% (95%CrI: 1.1-1.3%) of the susceptible 

population in this region have been infected each year since its introduction, corresponding to 

approximately 19,179 (95%CrI: 17,347-21,128) annual JEV infections in the Chapai district 

(Figure 2D). Estimates of transmission intensity of JEV varied from 0.8% (95%CrI: 0.6-1.1%) 

in Nawabganj Sadar to 1.7% (1.4-2.0%) in Gomastapur (SI Figure 4). 

 

 

Between-antigen antibody cross-reactivity 

From this best-performing model with three present pathogens we estimated the highest 

antibody cross-reactivity from JEV to WNV with a relative titer increase of 0.71 (95%CrI: 0.68-

0.74) against WNV among JEV positive individuals (Figure 3A). JEV infection was also 

estimated to induce a 0.16 (0.13-0.19) relative titer increase against YFV and a 0.13 (0.09-

0.16) relative titer increase against DENV1. Among DENV1 positive individuals we estimated 

a 0.54 (95%CrI: 0.52-0.55) relative titer increase against DENV3 as well as a 0.18 (0.16-0.20) 

and 0.19 (0.17-0.20) relative titer increase against DENV2 and DENV4, respectively (Figure 

3A). In contrast, we estimated minimal cross-reactivity from CHIKV infected individuals against 

the flavivirus antigens, with median estimates ranging from 0.00 to 0.03 (Figure 3A). To 

summarise the antigenic relationships inferred by the model we applied multidimensional 

scaling of the estimated antibody responses across infection statuses (Figure 3B). We 

observed close antigenic clustering of the DENV serotypes, particularly DENV2 and DENV4, 

though it is worth noting that the positions of these DENV antigens are informed only by the 

positive sera of a single DENV serotype (DENV1). We also inferred a close antigenic 

relationship between JEV and WNV, members of the same serocomplex (23), as well as 

between TBEV and YFV (Figure 3B). To understand how our inferred antigenic distances 

compared to phylogenetic distances within the Flaviviridae family, we constructed a maximum-

likelihood phylogeny of representative flavivirus E proteins. We found high correlation between 

our inferred antigenic distances and genetic distances with Pearson r=0.87 (Figure 3C). The 

shortest genetic and antigenic distances were estimated between JEV and WNV and between 

DENV1 and DENV3, while the greatest antigenic and genetic distances were inferred between 

DENV1 and TBEV and between DENV1 and YFV (Figure 3C). 

 

To understand the relationship between each multiplex antigen and the more sensitive DENV 

ELISA antigen we estimated where the antibody titer distributions of each infection status fall 

on the DENV ELISA assay. The full reconstructed distribution of DENV ELISA titers is shown 

in Figure 3D. Of the present pathogens included in our model, we estimated that DENV1 

positive individuals have the highest response on the DENV ELISA assay with mean titers of 

3.5 (95%CrI: 3.5-3.6), shown in Figure 3E. We also estimated a significant signal from JEV 

positive individuals to the DENV ELISA assay with mean titers of 1.8 (95%CrI: 1.7-1.9), while 

CHIKV positive individuals had mean DENV ELISA titers of -0.2 (95%CrI: -0.4-0.0) similar to 

that of individuals negative to all pathogens (mean DENV ELISA titer -0.3, 95%CrI: -0.4 - -0.2 

) (Figure 3E). Using the manufacturer recommended cutoff for defining DENV seropositivity 

results in a prevalence of 22.0% (95%CI: 19.9-24.3%), slightly higher than our estimates of 

DENV1 prevalence of 17.0% (95%CrI: 15.3-18.8%), inferred by the full model. Results from 

our model suggest the difference in estimates is attributed to JEV infected individuals that 

have high responses on the DENV ELISA assay (Figure 3E). We note that this cross-reactivity 

from endemic JEV leads to a trend of increasing DENV ELISA titers by age (SI Figure 5), 
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which could easily be misinterpreted as DENV endemicity when the DENV ELISA results are 

taken on their own.    

 

 

Detecting unobserved pathogens 

A key uncertainty that arises in multi-pathogen serological studies is the potential presence of 

cross-reactive antibodies induced from unmeasured or unknown pathogens. This raises the 

potential issue of misattributing antibody responses to related pathogens that have been 

tested for. In this section we use our analytical method to explore the scenarios in which the 

presence and prevalence of an unobserved pathogen can be inferred through cross-reactive 

antibody responses. We conduct simulations of a 3 pathogen system, where 2 pathogens are 

observed/tested for and 1 is not. We find that estimates of the prevalence of observed 

pathogens (O) and the unobserved pathogen (X) can both be accurately inferred at 

intermediate levels of cross reactivity from X to O, shown in Figure 4A, with low root mean 

square error (RMSE). At lower levels of cross-reactivity from X to O, the prevalence of 

observed pathogens O can be estimated with good accuracy due to limited interference from 

X. However, the prevalence of X cannot be well identified when both its true prevalence and 

its cross reactivity to observed pathogens are both low. At higher levels of cross reactivity from 

X to O, the prevalence of X cannot be accurately reconstructed, with the prevalence of O also 

becoming unidentifiable as the prevalence of X increases (Figure 4A). 

 

To assess the generalizability of these findings to real data we refit our final model to the 

arbovirus antigens, excluding one antigen and attempting to reconstruct the parameters for 

this unobserved pathogen. We show that our model was able to accurately reconstruct the 

prevalence of JEV as an unobserved pathogen when measurements from the JEV antigen 

are excluded from model fitting (Figure 4B). In addition, the model accurately reconstructed 

estimates of cross reactivity from the unobserved JEV antigen to each observed antigen, 

including its close antigenic relationship to WNV (SI Figure 6). We note that this model 

performed better by log-likelihood compared to when WNV is assumed to be the third present 

pathogen. In contrast to the case of JEV, we show that when the CHIKV antigen is excluded 

from fitting, the model was not able to accurately reconstruct the parameters of CHIKV. This 

is consistent with the simulation results that demonstrate the lack of cross reactivity between 

CHIKV and flavivirus antigens inhibits its identification while the intermediate level of cross 

reactivity from JEV to the DENV ELISA facilitates the accurate reconstruction of JEV 

parameters. 

 

 

 

 

Discussion 

The transmission of multiple antigenically related pathogens in a population has long posed a 

challenge to the interpretation of serological studies of flaviviruses and other antigenically-

variable pathogens. In contexts where >1 related, cross-reacting pathogens have been 

transmitted in a population, it can be difficult to understand if antibodies detected against a 

specific pathogen were induced through exposure to that or a related pathogen. In this study 

we applied an analytical framework to multi-pathogen serological data to disentangle the multi-

dimensional antigen-antibody relationships. We used this framework to infer estimates of 
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arboviral prevalence in northwest Bangladesh by location and age, accounting for varying 

levels of between-pathogen antibody cross-reactivity.   

A key question arising from multi-pathogen serological studies is determining which pathogens 

have truly transmitted in the study population. To date in Bangladesh, there has been no 

evidence of human transmission for YFV or TBEV, while human cases of DENV, CHIKV, JEV, 

and more recently ZIKV and WNV have all been reported in the country (25, 26, 28, 30–32). 

Among the pathogens included in the study we found evidence of past DENV, CHIKV and 

JEV transmission in the district of Chapai Nawabganj, while no strong evidence for the 

presence of the remaining pathogens was found. We show that simpler methods that do not 

account for antibody cross-reactivity would have inferred the presence of WNV, while in our 

model WNV antibodies are found to be explained by high cross-reactivity from JEV infections. 

This is consistent with local epidemiological data, with confirmed JEV hospitalised cases 

regularly reported in this district (25). In contrast, the first diagnosed human case of WNV in 

Bangladesh was reported in 2019 in Dhaka, 5 years after the completion of the serological 

study (32). We infer the highest prevalence of DENV and CHIKV in the more urbanised district 

of Shibganj, where a past epidemic of CHIKV had been reported and consistent with the Aedes 

vector’s ability to thrive in urban environments (26). For ZIKV, the first detected human case 

in Bangladesh was in August 2014 with serological evidence of ZIKV infections in Dhaka since 

2013 (30, 33). However, we found no evidence of ZIKV transmission in the district of Chapai 

Nawabganj as of 2014. 

We find our model estimates of infection prevalence to be consistent with or without including 

the DENV ELISA assay in model fitting (SI Figure 7). Estimates of JEV prevalence however, 

were slightly higher when the DENV ELISA assay was included in model fitting, consistent 

with the lower sensitivity reported for the multiplex JEV EDIII antigen used in this study (34) 

and the high sensitivity of a whole E protein DENV ELISA assays. Our analysis explored how 

this combination of sensitive and specific antigens can be leveraged as a means of detecting 

the presence and prevalence of unknown or unmeasured pathogens. We demonstrated how 

signals from related cross reacting pathogens can make the detection of unobserved 

pathogens possible under conditions of intermediate cross reactivity profiles. Future work to 

define robust criteria or strength of evidence for the detection of unobserved pathogens 

through serological surveillance will be important for public health applications. The major 

emerging pathogens of recent years have all belonged to families of known human pathogens, 

with coronaviruses, flaviviruses and influenza viruses being the predominant examples. Our 

findings highlight how novel emerging pathogens could be detected through routine 

serological testing for a range of pathogen families, adding support to the potential benefits of 

a global immunological observatory and routine serological surveillance (35, 36).  

There are a number of limitations that should be considered when interpreting the results of 

our analyses. Antibody kinetics are not accounted for in our model framework which relies on 

cross-sectional serological data representing a snapshot of population antibody titers at a 

single point in time. As the timing and sequence of infections cannot be accounted for, our 

model estimates will therefore reflect population averages across a range of time-since-

infection scenarios represented in the study population. If antibodies wane significantly 

following infection then the prevalence of infection may be underestimated. However, in the 

case of the arboviruses measured in this study, infection is thought to induce long-term 

homotypic IgG responses (37, 38). In addition, if an infection induces higher antibody 
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responses against a related pathogen than the infecting pathogen then the infection statuses 

may be misclassified. We assume that cross reactive antibodies from infecting pathogens to 

any non-infecting pathogen combine additively which may not hold for individuals infected with 

an increasing number of related pathogens. Our model represents an unsupervised approach 

to classifying population infection statuses which has the advantage of not relying on validated 

sample sets that can be time- and resource-intensive to obtain. While our extensive simulation 

study demonstrated the theoretical validity of our analytical framework (SI), future analysis 

from serological cohort studies where infections are confirmed by PCR or other methods will 

allow an improved understanding of model performance. 

Despite these limitations, a comparison of antigenic distances between assay antigens and 

monotypic sera inferred by our model were found to be highly consistent with genetic distances 

between antigens independently inferred from phylogenetic methods. In addition, our 

inferences of arbovirus infection burden are consistent with known epidemiological indicators 

of each present pathogen. Previous studies have analysed serological data considering two 

related pathogens using additional assumptions of pathogen transmission dynamics (39, 40). 

The analytical framework presented here is agnostic to any specific pathogen transmission 

dynamics allowing its scalability to many pathogens with potentially different transmission 

dynamics. This framework has shown to provide robust estimates of infection prevalence in 

systems of several related pathogens while simultaneously accounting for varying levels of 

between-pathogen cross-reactivity.  

In this study we demonstrate the utility of this novel analytical approach for making robust 

epidemiological inferences of public health relevance. This framework was able to disentangle 

high-dimensional antibody-antigen relationships of multiple related pathogens, providing new 

insights into the burden and transmission dynamics as well as the immune landscape of 

arboviral diseases.  
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Figure 1. Multi-pathogen serological study data. Panel A shows a map of Chapai 

Nawabganj district and its 5 sub-districts. The inset plot shows the location of Chapai 

Nawabganj district within Bangladesh, indicated in red. Panel B shows a heatmap of the log 

relative fluorescent intensity (RFI) IgG antibody titer values for multiplex antigens as well as 

log titers for the DENV ELISA assay. Column panels show the antibody binding concentrations 

by each of the 5 sub-districts. Grey bars on the right show the population distribution of log 

titer values for each antigen. Panel C shows a heatmap of Pearson r correlation coefficients 

of population log antibody titers for each multiplex antigen pair.  
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Figure 2 Infection prevalence estimates by space and age. Panel A shows the increase in 

log-likelihood estimates from the full model as additional pathogens are assumed to be 

present. Panel B shows a comparison of infection prevalence estimates across models. Points 

and lines show the median and 95% credible interval estimates of infection prevalence by 

pathogen. The grey points and lines show estimates from a simple mixture model (stars) and 

threshold method (triangles) fit independently to antibody data for each pathogen. Coloured 

points and lines show estimates from the full model framework, progressing from including 1 

present pathogen (blue) to 3 present pathogens (yellow). Panel C shows a map of median 

prevalence estimates by sub-district for each present pathogen from the final full model. Panel 

D shows the prevalence estimates by age for each present pathogen. Points and lines show 

the median and 95% credible interval estimates of prevalence from the final multivariate 

mixture model. The green lines and ribbons show the median and 95% credible interval 

estimates of population prevalence for DENV1 and CHIKV. The red line and shaded ribbon 

shows the median and 95% credible interval estimates from a catalytic model for JEV 

assuming endemic transmission since its estimated introduction time to the region. 
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Figure 3. Antigenic relationships. Panel A shows the model estimates of between-pathogen 

antibody cross-reactivity. Coloured bars show the median model estimates of relative titer 

increase from each infecting pathogen against each non-infecting pathogen. Black lines show 

the 95% credible interval estimates. Panel B shows a map of inferred antigenic distances 

between each sera (grey squares) and antigen (purple circles), obtained by multidimensional 

scaling of the cross-reactivity estimates to a 2-dimensional space. Panel C shows a 

comparison of the inferred antigenic distances and genetic distances inferred using 

phylogenetic methods (blue points), considering only flavivirus pathogen pairs (i.e. excluding 

CHIKV). The blue line and shaded ribbon show the mean and 95% confidence interval model 

fit of a linear regression with Pearson correlation coefficient R=0.87. Panel D shows the 

observed (grey bars) and reconstructed DENV ELISA population titer distribution, where the 

purple line and shaded ribbon show the model median and 95% credible interval estimates. 

Panel E shows the reconstructed DENV ELISA titer distributions by infection status where 

coloured lines and shaded ribbons indicate median and 95% credible interval estimates. The 

grey dashed line in panels D and E shows the manufacturer recommended threshold for 

defining DENV seropositivity.   
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Figure 4. Accounting for unobserved pathogens. Panel A shows a heatmap of the root 

mean square error (RMSE) of prevalence estimates obtained from simulated data for an 

observed pathogen, O, and an unobserved pathogen, X, with varying levels of cross reactivity 

from X to O and varying prevalence of the unobserved pathogen X. Panel B shows a 

comparison of model estimates of JEV prevalence when antibody titers against the JEV 

antigen are observed and included in the model (orange) and when they are 

excluded/unobserved but reconstructed as an unobserved pathogen X. Panel C shows a 

comparison of model estimates of CHIKV prevalence when CHIKV antibody titers are 

observed and included in the model (orange) and when they are unobserved/excluded but 

reconstructed as an unobserved pathogen. Points and lines indicate model median and 

95%CrI estimates.  
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1 Methodology

1.1 Serological study

We analyse data from a cross-sectional seroprevalence study conducted in 2014 in the
Chapai Nawabganj zila (district) of Bangladesh, located in the Rajshahi division. A
total of 1,453 individuals were included in the study from 39 communities across the
5 upazilas (sub-districts) of Chapai Nawabganj. Participant recruitment in each rural
community was initiated by identifying the household where the most recent wedding
took place and beginning recruitment in the house of their closest neighbour. In each
urban community, recruitment was initiated by finding the nearest community center
and identifying the closest neighbouring household for participant recruitment. All
residents of selected houses, regardless of age, were eligible for enrolment in the study.
After the first enrolled household, the following 5 closest neighbours were skipped and
the 6th closest household was approached for enrollment. This process was repeated
until individuals from at least 15 different households had been enrolled from that
community. Individuals that were unable to give consent due to disability or who had
an acute medical condition where blood collection is contraindicated were excluded
from study participation. A single 5ml venous blood sample was collected from each
enrolled participant. The age distribution of the study participants, compared to the
population age distribution for each of the 5 upazilas is shown in Figure 1. Data on
the population age distributions were obtained from the 2011 Bangladesh census [1].
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Figure 1 Age distribution of study participants. The grey bars in each panel
show the population age distribution for each upazila and the blue bars show the
population age distribution for the wider zila of Chapai Nawabganj (Chapai). Black
points and dashed lines indicate the proportion of study participants in each age
group by upazila and across the total study population representing Chapai.

1.2 Multiplex immunoassay

Serum samples were tested for the presence of IgG antibodies against 10 antigens
using an in-house microsphere-based multiplex immunoassay (MIA). Recombinant
EDIII antigens were used for all flavivirus pathogens (DENV1, DENV2, DENV3,
DENV4, JEV, WNV, TBEV, YFV, ZIKV) to improve assay sensitivity and speci-
ficity, as previously described [2], while a recombinant E2 glycoprotein was used for
CHIKV. Magnetic beads were coupled to each specific antigen and the assay was con-
ducted as previously described including individual-level background controls using a
recombinant human protein SNAP-tag (O6-methylguanine DNA methyltransferase)
[2]. Fluorescence intensity and bead colour coding were measured using a Luminex
200 system (Bio-Rad Laboratories). For each sample a relative fluorescence intensity
(RFI) value was calculated by dividing the median fluorescence intensity (MFI) by
the fluorescence intensity of the individual-level background control. All analyses of
MIA data were conducted using log RFI values. In addition to the 10 antigens mea-
sured with the MIA, a Panbio DENV ELISA assay that utilises the whole DENV E
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protein was also used to measure binding DENV IgG antibody concentrations.

1.3 Multivariate mixture model framework

We develop and apply a semi-mechanistic multivariate Gaussian mixture model to
jointly infer the prevalence of infection of multiple pathogens and the levels of between-
pathogen antibody cross-reactivity. We assume long-term persistence of IgG anti-
bodies following infection and therefore define positivity as the presence or absence
of serological evidence of a past infection. We consider a system of n = P pathogens,
where the true infection status of each individual is either negative, {0}, or positive,
{1}, for each pathogen. For a system of P pathogens with two possible outcomes
there are 2P possible infection status combinations. Table 1.3 shows the example of
all possible infection status combinations for a system of 2 and 3 pathogens, A, B
and C, with each row corresponding to a unique infection status combination. For
each possible infection status combination, c, we define a P−dimensional Gaussian
component, with vector of means, µc, and covariance matrix Σc. The proportion
of the study population with infection status combination c, θc, is defined as the
conditional probability of having infection status combination, c, given the pathogen-
specific population prevalence, πp. For example, for infection status combination
c = {0, 1, 0} where individuals have been infected by pathogen B only, the proportion
of the population with this infection status is calculated as θc = (1−πA)(πB)(1−πC).

A B
0 0
0 1
1 0
1 1

A B C
0 0 0
0 0 1
0 1 0
1 0 0
0 1 1
1 0 1
1 1 0
1 1 1

Table 1 Infection status combinations. All possible infection status combinations
for a 2-pathogen and 3-pathogen system, respectively. Each row represents a unique
infection status combination for pathogens A, B and C, where 0 represents a negative
infection status and 1 represents a positive infection status for each pathogen.

1.3.1 Two pathogen system

We first consider a system of 2 related pathogens, A and B. For each of the 4 possible
infection status combinations (Table 1.3), we define a bivariate Gaussian component
to characterize the antibody titers of this status. For individuals that are negative to
both A and B, {A0, B0}, the Gaussian component will be defined with means, µA0

and µB0 , standard deviations, σA0 and σB0 . We allow for correlation in these negative
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antibody titers, with correlation coefficient ρ0. The covariance matrix, Σ, for this
Gaussian component is then defined as shown in equation 1, where the covariance of
A and B, Cov(A0, B0) = ρ0σA0σB0 .

Σ{A0, B0} =

(
σ2
A0

ρ0σA0σB0

ρ0σA0σB0 σ2
B0

)
(1)

For individuals who have been infected with pathogen B only, {A0, B1}, we define
the mean rise in antibody titers against pathogen B as µBR

, such that the mean
antibody titers against pathogen B will be µB1 = µB0 +µBR

, with standard deviation
σB1 . We assume this bivariate Gaussian component to be a linear combination of
negative antibody titers against pathogen A and positive antibody titers against
pathogen B. In this way the mean antibody titers against pathogen A are calculated
as µA0 + ϕBAµB1 . Here, ϕBA is the relative increase in antibody titers raised against
pathogen A after infection with pathogen B, relative to the antibody titers binding
to pathogen B. The covariance in antibody titers for this Gaussian component is
calculated as shown in equations 2-3 using the bilinearity property of covariance. Here
we assume the covariance in these antibody titers in the absence of cross-reactivity
to be zero, Cov(A0, B1) = 0. Under this assumption, the standard deviation for

antibody titers against pathogen A can be calculated as
√

σ2
A0

+ (ϕBAσB1)
2. The

covariance matrix for this bivariate Gaussian component can subsequently be defined
as shown in equation 4.

Cov(A0 + ϕBAB1, B1) = Cov(A0, B1) + ϕBACov(B1, B1) (2)

Cov(A0 + ϕBAB1, B1) = ϕBAσ
2
B1

(3)

Σ{A0, B1} =

(
σ2
A0

+ (ϕBAσB1)
2 ϕBAσ

2
B1

ϕBAσ
2
B1

σ2
B1

)
(4)

For individuals infected with A only, {A1, B0}, the bivariate Gaussian component
is defined with the same approach as before. The Gaussian means are defined as
µA0 + µAR

and µB0 + ϕABµA1 , respectively for antibody titers against pathogens A

and B, and the standard deviations as σA1 and
√

σ2
B0

+ (ϕABσA1)
2. With the same

approach as above (equations 2 - 3), the covariance matrix of this Gaussian component
is defined as shown in equation 5. We assume that cross-reactive antibodies cannot
decrease antibody titers, i.e. ϕ ≥ 0. In addition, we allow for asymmetric cross-
reactive antibody responses such that ϕBA is independent of ϕAB.

Σ{A1, B0} =

(
σ2
A1

ϕABσ
2
A1

ϕABσ
2
A1

σ2
B0

+ (ϕABσA1)
2

)
(5)

Finally, for infection status combination {A1, B1} where individuals have been in-
fected with both pathogens A and B, we define the means of the Gaussian component
as µA1 = µA0+µAR

and µB1 = µB0+µBR
. Without knowing the sequence or timing of
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infections, we assume the means and standard deviations of positive antibody titers
to be constant across infection statuses. Therefore, the standard deviations of this
Gaussian component are simply defined as σA1 and σB1 with correlation coefficient,
ρ1. The covariance matrix for this Gaussian component is then defined as shown in
equation 6.

Σ{A1, B1} =

(
σ2
A1

ρ1σA1σB1

ρ1σA1σB1 σ2
B1

)
(6)

1.3.2 Beyond two pathogens

For systems with increasing numbers of pathogens, n = P , the number of possible
infection status combinations, and therefore the number of P−dimensional Gaussian
components required to describe the data, increases as 2P . To reduce the number of
new parameters required when scaling the system to higher dimensions, we assume
that correlation in antibody titers when individuals are negative to all pathogens, ρ0,
is constant across pathogen pairs. For instance, the covariance matrix for infection
status {A0, B0, C0}, in a 3 pathogen system will be defined as shown in equation 7.

Σ{A0, B0, C0} =

 σ2
A0

ρ0σA0σB0 ρ0σA0σC0

ρ0σA0σB0 σ2
B0

ρ0σB0σC0

ρ0σA0σC0 ρ0σB0σC0 σ2
C0

 (7)

For infection statuses where individuals have been infected with 1 pathogen,
the covariance in antibody titers against the infecting pathogen and non-infecting
pathogens is calculated with the same approach as before (equations 2 - 3). The co-
variance in antibody titers for pairs of non-infecting pathogens, now in the presence
of cross-reactive antibodies from a related pathogen, is calculated as shown in equa-
tions 8 - 10 taking the example of infection status {A0, B0, C1}, where individuals are
positive to pathogen C only. As before, we assume antibody titers against infecting
and non-infecting pathogens to be independent in the absence of cross-reactivity such
that Cov(A0, C1) = 0 and Cov(B0, C1) = 0. The covariance matrix for this infection
status is then defined as shown in equation 11.

Cov(A0, B0|C1) = Cov(A0 + ϕCAC1, B0 + ϕCBC1) (8)

Cov(A0, B0|C1) = Cov(A0, B0) + ϕCBCov(A0, C1)+

ϕCACov(C1, B0) + ϕCAϕCBCov(C1, C1)
(9)

Cov(A0, B0|C1) = ρ0σA0σB0 + ϕCAϕCBσ
2
C1

(10)

Σ{A0, B0, C1} =

 σ2
A0

+ (ϕCAσC1)
2 ρ0σA0σB0 + ϕCAϕCBσ

2
C1

ϕCAσ
2
C1

ρ0σA0σB0 + ϕCAϕCBσ
2
C1

σ2
B0

+ (ϕCBσC1)
2 ϕCBσ

2
C1

ϕCAσ
2
C1

ϕCBσ
2
C1

σ2
C1


(11)
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In the case of infection status combinations where individuals have been infected
with > 1 pathogens, we assume the means and standard deviations of cross-reactive
antibody titers against non-infecting pathogens to increase additively. For instance,
for an infection status {A0, B1, C1}, the mean of the Gaussian component character-
ising titers against pathogen A will be calculated as µA0 + ϕBAµB1 + ϕCAµC1 . Simi-
larly, the standard deviation for antibody titers against pathogen A is calculated as√

σ2
A0

+ (ϕBAσB1)
2 + (ϕCAσC1)

2. The covariance between negative and positive titers

is now calculated as shown in equation 12, additionally accounting for the correlation
in antibody titers for the positive pathogens, ρ1. We assume this correlation in an-
tibody titers between pairs of positive pathogens to be constant across all pathogen
pairs and infection status combinations. The covariance matrix for infection status
{A0, B1, C1} is shown in equation 13.

Cov(A0, B1|C1) = ϕBAσ
2
B1

+ ϕCAρ1σB1σC1 (12)

Σ{A0, B1, C1} =

σ2
A0

+ (ϕBAσB1)
2 + (ϕCAσC1)

2 ϕBAσ
2
B1

+ ϕCAρ1σB1σC1 ϕCAσ
2
C1

ϕBAσ
2
B1

+ ϕCAρ1σB1σC1 σ2
B1

ρ1σB1σC1

ϕCAσ
2
C1

ρ1σB1σC1 σ2
C1


(13)

More generally, in the case of covariance in antibody titers against pairs of non-
infecting pathogens, in the presence of > 1 infecting pathogen, the covariance is
calculated as shown in equation 14. In the case of covariance in antibody titers for
an infecting and non-infecting pathogen, in the presence of > 1 infecting pathogen,
the covariance is calculated as shown in equation 15.

Cov(A0, B0|C1, D1, ...K1) = ρ0σA0σB0+
K∑

n=C

ϕnAϕnBσ
2
n1
+

K−1∑
n=C

K∑
m=n+1

(ϕnAϕmB+ϕmAϕnB)ρ0σ
2
0

(14)

Cov(A0, B1|C1, D1, ...K1) = ϕBAσ
2
B1

+
K∑

n=C

ϕnAρ1σB1σn1 (15)

1.3.3 Present vs absent pathogens

To understand which pathogens are likely to have transmitted in the population we
conduct a step-wise variable selection process, comparing the performance of mod-
els that assume a pathogen to be present vs absent. In the case of pathogens that
are assumed to be absent from the study population, the model can be simplified
by reducing the number of possible infection status combinations and therefore the
number of Gaussian components needed to describe the data. For instance, con-
sidering a system of 3 pathogens, A, B and C, there are 8 possible infection status
combinations if all 3 pathogens have transmitted in the population. In contrast, if
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pathogen C can be assumed to be absent from the study population (i.e. has never
transmitted in the population) then the number of infection status combinations is
halved, as shown in Table 1.3.3. In this way the antibody titers against the absent
pathogen are still included in model fitting and are characterised only by the nega-
tive and negative with cross-reactivity Gaussian components/infection statuses. The
number of parameters is also reduced, with π and µ1 parameters no longer estimated
for each absent pathogen. Cross-reactivity parameters ϕ from the absent pathogens
to present pathogens will also not be estimated but cross-reactivity from the present
pathogens to the absent ones are estimated.

A B C
0 0 0
0 0 1
0 1 0
1 0 0
0 1 1
1 0 1
1 1 0
1 1 1

A B C
0 0 0
0 1 0
1 0 0
1 1 0

Table 2 Infection status combinations & absent pathogens. All possible in-
fection status combinations for a 3-pathogen system where all pathogens are present
and where only pathogens A and B are present, respectively.

1.3.4 Unobserved pathogens

We explore the ability of the model framework to accurately reconstruct the infection
prevalence of some unmeasured/unobserved pathogen, ”pathogen X”, that has not
been tested for by the serological assay. Additional Gaussian components are fit to
characterize the antibody titer distributions of pathogen X, with 2P+1 possible infec-
tion status combinations. Covariance matrices for each infection status combination
will be of size P ∗ P , where P is the number of observed pathogens/antigens. The
prevalence of the unmeasured pathogen is estimated as well and the cross-reactivity
from the unobserved to the measured pathogens. As the homologous binding to
pathogen X is unknown, we assume some fixed value of mean titers against pathogen
X, from which the relative titer increase against other pathogens can be inferred. We
assume the standard deviation of these positive titers against pathogen X to be equal
to the standard deviation of positive responses against the measured pathogens.

1.4 Model fitting

We applied the model framework to the arbovirus serological data from Chapai
Nawabganj. We considered the data as being representative of 10 pathogens that were
tested using the MIA (CHIKV, DENV1, DENV2, DENV3, DENV4, JEV, TBEV,
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WNV, YFV, ZIKV) and an additional antigen (DENV ELISA assay) giving a total
of 11 antigens. We assumed the standard deviation of negative antibody responses,
σ0, and positive antibody responses, σ1, are each constant across the multiplex im-
munoassay antigens. We also assumed that correlation in antibody responses against
pairs of infecting pathogens, ρ0, to be 0. We fit the multivariate mixture model frame-
work jointly to data from all 11 antigens and conducted a step-wise variable selection
process to identify which of the 10 pathogens are likely to be present in the study
population. We considered a ”base” model version that estimates a single infection
prevalence per pathogen, as well as location-specific and location- and age-specific
versions. In the location-specific versions, pathogen-specific prevalence is allowed to
vary by each of the 5 sub-districts of Chapai Nawabganj. For the location- and age-
specific version we further allowed pathogen prevalence to vary by age group. We
assumed all other parameters to be constant across the study population, allowing
only pathogen-specific infection prevalence to vary within the population. All code
used for model fitting is available at https://github.com/meganodris/MultiSero.

1.4.1 Variable selection process

We started by assuming only 1 of the 10 pathogens to be present in the study pop-
ulation, such that antibody titers for the remaining 9 pathogens are forced to be
explained by negative infection statuses and cross-reactive antibodies from the single
present pathogen. We fit this model assuming each of the 10 pathogens to be present
in turn and identified the model with the highest log-likelihood from this step. The
present pathogen from the best performing model was then retained in the next step
where a second present pathogen is added. We repeated this iterative process, at
each step identifying the additional present pathogen that improved the likelihood
the most. We continued the process until the likelihood increment percentage per
component (LIPpc) fell below a threshold of 1%. Due to the limitations of tradi-
tional information criterion approaches for the comparison of finite mixture models
of varying complexity, we focused on the likelihood increment percentage (LIP) met-
ric [4, 6]. We used the LIPpc to assess the improvement in model fit across models
with an increasing number of present pathogens and therefore increasing numbers of
Gaussian components used to explain the data. Here the increase in log-likelihood for
model j, relative to the log-likelihood of simpler model j−1 is considered, accounting
for the additional Gaussian components, g, fitted by model j, gj, shown in equation
16.

LIPpcj =
100(1− −2LogLikj

−2LogLikj−1
)

gj − gj−1

(16)

1.4.2 DENV ELISA

We included the DENV ELISA as an additional antigen/dimension in the full model
framework. Due to the inclusion of DENV antigens in the MIA, we did not con-
sider the DENV ELISA as an independent pathogen that can be present. We instead
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allowed the DENV ELISA antibody titers to be explained by the same Gaussian
components describing the MIA antibody responses. We assumed no covariance be-
tween antibody titers measured on the DENV ELISA and on the MIA. We estimated
the mean, µE, and standard deviation, σE, of DENV ELISA titers for infection sta-
tus combinations that are negative to all pathogens and those positive to a single
pathogen. For infection statuses that are positive to > 1 pathogen we assumed the
mean DENV ELISA titers to be equal to the maximum µE of the Gaussian compo-
nents describing the respective monotypic infection statuses. The standard deviation
of DENV ELISA titers for an infection status positive to > 1 pathogen is calculated
as the joint standard deviation of the respective monotypic infection statuses. For ex-
ample, the standard deviation of DENV ELISA titers for an infection status positive

to pathogens A and B, σEA1B1
, was calculated as

√
σ2
EA1

+ σ2
EB1

.

1.4.3 Reconstructing unobserved pathogens

To test the ability of our model to reconstruct the infection prevalence of an unob-
served pathogen, we exclude antibody titer data from a single pathogen from model
fitting. In particular, of the pathogens that were determined to be present in the
study population from the variable selection process, we excluded the multiplex anti-
gen of each in turn. We included the DENV ELISA assay in model fitting and inferred
infection prevalence of each observed and unobserved pathogen by sub-district. We
assumed a fixed value of 2 for mean positive titer responses against pathogen X, for
inference of the cross reactivity responses from pathogen X to observed pathogens.

1.4.4 Likelihood & Priors

We assumed that the antibody titers for each infection status combination follow a
multivariate Gaussian distribution, with the probability of observing antibody titers
x for individual i, given infection status combination c shown in equation 17. Here, x
is a n = P vector of antibody titer measurements to each pathogen. The full model
log-likelihood is calculated as the sum of the log probabilities across individuals, i,
and across all possible infection status combinations, c, weighted by the proportion
of the study population with infection status combination c, θc, shown in equation
18. The log likelihood of the location and age-specific model is calculated similarly
to before, shown in equation 19, but now with location- and age-specific θc,l,a derived
from the location- and age-specific prevalence estimates πp,l,a as previously described.

N (x|µc,Σc) =
1

2πP/2|Σc|1/2
exp(−1

2
(x− µc)

TΣ−1
c (x− µc)) (17)

LnL =
i∑

ln
c∑

θcN (xi|µc,Σc) (18)

LnL =
i∑

ln
c∑

θc,l,aN (xi|µc,Σc) (19)
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Parameter priors are shown in Table 3, which were assumed to be constant across
pathogens. We fit the model in a Bayesian framework with Hamiltonian Monte Carlo
No-U-Turn sampling using cmdStanR [9]. Each model was fit with 3 chains for 3,000
iterations in addition to 3,000 warm-up samples. Model convergence was assessed
by visual inspection of chain mixing and by R-hat convergence diagnostic across all
parameters.

Parameter Parameter description Limits Prior
π Prevalence [0, 1] Beta(1, 5)
µ0 Mean of negative titers [-1, Inf] Normal(0, 0.1)
µR Mean increase in positive titers [0, Inf] Normal(3, 0.1)
σ0 SD of negative titers [0, Inf] Normal(0.4, 0.05)
σ1 SD of positive titers [0, Inf] Normal(0.7, 0.05)
ϕ Cross reactivity [0, Inf] Exp(8)
ρ0 Correlation in negative titers [0, 1] Beta(2, 2)
µE Mean of ELISA titers [-1, Inf] Normal(2, 1)
σE SD of ELISA titers [0, Inf] Normal(0.5, 0.2)

Table 3 Multivariate mixture model parameter priors. Parameter priors and
limits used in model fitting.

1.5 1D mixture model & titer cutoffs

To compare the results of the multivariate Gaussian mixture model framework to
traditional approaches, we fit classic single dimension (1D) Gaussian mixture models
independently to the antibody titer data from each pathogen. Here, each model
fits a two-component Gaussian mixture distribution, with a negative and positive
component. The model likelihood is given in equation 20. The same parameter priors
for π, µ0, µ1, σ0 and σ1 were used, shown in Table 3, while ϕ and ρ parameters are
not estimated. Cutoffs to classify individuals as positive or negative to each pathogen
were calculated as the mean of means of the two Gaussian distributions.

LnL =
i∑

ln((1− π)N (xi|µ0, σ0) + πN (xi|µ1, σ1)) (20)

1.6 Catalytic model

For pathogens where age-specific prevalence estimates increased with age indicating
endemic transmission dynamics, we fit catalytic models to quantify the annual force
of infection (FOI). The FOI, λ is the rate at which susceptible individuals become
infected each year. We assumed that λ is constant over time and age, giving long-term
averages of past FOI. The expected proportion of the population positive by age, π̂a,
can then be calculated as shown in equation 21. The model was fit in a Bayesian
framework using cmdStanR assuming the proportion of positive individuals in each
age group to follow a binomial distribution with probability of success equal to π̂a.
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We used a uniform prior between 0 and 1 for λ and fit the model with 3 chains of
10,000 warmup iterations plus 10,000 sampling iterations each.

π̂a = 1− exp−λa (21)

1.7 Multidimensional scaling of antigen-sera relationships

To summarise the antibody cross-reactivity estimates we used multidimensional scal-
ing (MDS) to translate the model median estimates to a 2D map depicting relative
antibody-antigen relationships. We used only µ estimates from Gaussian compo-
nents characterizing individuals infected with a single pathogen only, therefore ex-
cluding µ estimates from infection statuses that were positive to multiple pathogens
or no pathogens. We used the Racmacs R package [8] for multidimensional scal-
ing of the model Gaussian µ estimates. Scaling the antibody-antigen data to 2
dimensions, we performed 10,000 optimization runs to find the best arrangement
of antigens and sera to represent their relative similarities. For each optimization
run, points were randomly distributed in 2D space and a limited-memory Broy-
den–Fletcher–Goldfarb–Shanno (L-BFGS) gradient-based optimization algorithm is
applied to find the optimal positions of the points. Antigen-sera distances were ex-
tracted from the model fit with the highest likelihood.

1.8 Maximum likelihood phylogeny

We reconstructed a distance-based maximum-likelihood phylogeny of the envelope
(E) proteins from each flavivirus considered in this study. We used E protein se-
quences from reference genomes in NCBI, with accession numbers as follows: WNV
(YP 001527880.1), DENV1 (NP 722460.2), DENV2 (NP 739583.2), DENV3
(YP 001531168.2), DENV4 (NP 740317.1), JEV (NP 775666.1), TBEV
(NP 775503.1), ZIKV (YP 009227198.1), YFV (NP 740305). As CHIKV is an al-
phavirus we did not consider it in this analysis. We aligned all protein sequences us-
ing MUSCLE [3] and reconstructed the phylogeny using IQ-tree [7], with an LG+G4
substitution model that was automatically selected.
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2 Supplementary Figures & Tables

Figure 2 Antibody titer distributions across antigen pairs. Grey bars show the
population distribution of measured antibody titers against each antigen, shown on
a log relative fluorescence intensity (RFI) scale for the multiplex assay antigens and
a log Panbio unit scale for the DENV ELISA assay. Black points in the scatter plots
show antibody titer values for each pair of antigens, where the x-axes correspond to
antibodies measured against the antigen at the top of each column panels and the
y-axes correspond to antibodies measured against the antigen at the right of each row
panel.
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N Present
Pathogens

N
Components

Present Pathogen LogLik LIP LIPpc

1 2

CHIKV -16,163.1 - -
DENV1 -14,943.2 - -
DENV2 -16.086.9 - -
DENV3 -15,319.9 - -
DENV4 -16,097.9 - -
JEV -16,741.4 - -
TBEV -16,256.8 - -
WNV -16,716.1 - -
YFV -16,217.7 - -
ZIKV -16,778.2 - -

2 4

CHIKV -12,281.0 17.8% 8.9%
DENV2 -14,853.0 0.6% 0.3%
DENV3 -14,491.1 3.0% 1.5%
DENV4 -14,215.5 4.9% 2.4%
JEV -13,726.0 8.1% 4.1%
TBEV -14,015.4 6.2% 3.1%
WNV -13,764.6 7.9% 3.9%
YFV -14,046.7 6.0% 3.0%
ZIKV -14,916.0 0.2% 0.1%

3 8

DENV2 -12,118.3 1.3% 0.3%
DENV3 -11,944.6 2.7% 0.7%
DENV4 -11,753.4 4.3% 1.1%
JEV -9,847.1 19.8% 5.0%
TBEV -11,474.8 6.6% 1.6%
WNV -10,170.7 17.2% 4.3%
YFV -11,324.8 7.8% 1.9%
ZIKV -12,268.5 0.1% 0.0%

4 16

DENV2 -9,545.2 3.1% 0.4%
DENV3 -9,210.1 6.5% 0.8%
DENV4 -9,450.7 4.0% 0.5%
TBEV -9,763.2 0.9% 0.1%
WNV -9,621.4 2.3% 0.3%
YFV -9,673.8 1.8% 0.2%
ZIKV -9,642.5 2.1% 0.3%

Table 4 Variable selection process model metrics for base model. Log-
likelihood, likelihood increment percentage (LIP) and LIP per component (LIPpc)
values from the base model.

N Present
Pathogens

N
Components

Present Pathogen Log-Likelihood LIP LIPpc

1 2

CHIKV -16,082.6 - -
DENV1 -14,877.4 - -
DENV2 -16,038.5 - -
DENV3 -15,253.8 - -
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DENV4 -16,034.2 - -
JEV -16,733.1 - -
TBEV -16,787.8 - -
WNV -16,705.8 - -
YFV -16,163.1 - -
ZIKV -16,722.5 - -

2 4

CHIKV -12,136.0 18.4% 9.2%
DENV2 -14,798.2 0.5% 0.3%
DENV3 -14,414.6 3.1% 1.6%
DENV4 -14,076.6 5.4% 2.7%
JEV -13,653.7 8.2% 4.1%
TBEV -13,883.3 6.7% 3.3%
WNV -13,694.7 7.9% 4.0%
YFV -13,905.3 6.5% 3.3%
ZIKV -14,846.6 0.2% 0.1%

3 8

DENV2 -11,968.0 1.4% 0.3%
DENV3 -11,793.9 2.8% 0.7%
DENV4 -12,023.7 0.9% 0.2%
JEV -9,690.3 20.2% 5.0%
TBEV -11,328.5 6.6% 1.7%
WNV -10,015.9 17.5% 4.4%
YFV -11,171.5 7.9% 2.0%
ZIKV -12,123.9 0.1% 0.0%

4 16

DENV2 -9,379.6 3.2% 0.4%
DENV3 -9,129.2 5.8% 0.7%
DENV4 -9,278.0 4.3% 0.5%
TBEV -9,605.1 0.9% 0.1%
WNV -9,461.0 2.4% 0.3%
YFV -9,517.2 1.8% 0.2%
ZIKV -9,477.3 2.2% 0.3%

Table 5 Variable selection process model metrics for location-specific
model. Log-likelihood, likelihood increment percentage (LIP) and LIP per com-
ponent (LIPpc) values from the location-specific model.

N Present
Pathogens

N
Components

Present Pathogen Log-Likelihood LIP LIPpc

1 2

CHIKV -16,088.5 - -
DENV1 -14,877.8 - -
DENV2 -16,037.6 - -
DENV3 -15,253.7 - -
DENV4 -16,036.2 - -
JEV -16,990.6 - -
TBEV -16,203.2 - -
WNV -16,678.5 - -
YFV -16,163.7 - -
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ZIKV -17,575.4 - -

2 4

CHIKV -12,138.7 18.4% 9.2%
DENV2 -14,804.9 0.5% 0.2%
DENV3 -14,422.4 3.1% 1.5%
DENV4 -14,077.9 5.4% 2.7%
JEV -13,589.8 8.7% 4.3%
TBEV -13,882.6 6.7% 3.3%
WNV -13,638.6 8.3% 4.2%
YFV -13,908.7 6.5% 3.3%
ZIKV -14,863.3 0.1% 0.1%

3 8

DENV2 -11,971.8 1.4% 0.3%
DENV3 -11,797.3 2.8% 0.7%
DENV4 -12,031.3 0.9% 0.2%
JEV -9,638.0 20.6% 5.2%
TBEV -11,314.5 6.8% 1.7%
WNV -9,960.2 17.9% 4.5%
YFV -11,149.8 8.1% 2.0%
ZIKV -12,108.7 0.2% 0.1%

4 16

DENV2 -9,330.2 3.2% 0.4%
DENV3 -9,079.4 5.8% 0.7%
DENV4 -9,229.0 4.2% 0.5%
TBEV -9,565.2 0.8% 0.1%
WNV -9,404.0 2.4% 0.3%
YFV -9,471.1 1.7% 0.2%
ZIKV -9,430.2 2.2% 0.3%

5 32

DENV2 -8,720.5 4.0% 0.2%
DENV4 -8,474.5 6.7% 0.4%
TBEV -8,653.4 4.7% 0.3%
WNV -8,730.9 3.8% 0.2%
YFV -8,880.1 2.2% 0.1%
ZIKV -8,773.1 3.4% 0.2%

6 64

DENV2 -8,130.7 4.1% 0.1%
TBEV -8,321.9 1.8% 0.1%
WNV -8,004.6 5.5% 0.2%
YFV -8,186.3 3.4% 0.1%
ZIKV -8,397.1 0.9% 0.0%

Table 6 Variable selection process model metrics for age- and location-
specific model. Log-likelihood, likelihood increment percentage (LIP) and LIP per
component (LIPpc) values from the age- and location-specific model.
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Figure 3 Catalytic model log-likelihood by assumed JEV introduction time.
Blue points and lines show the model median and 95%CrI log-likelihood estimates by
assumed introduction time of JEV.
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Figure 4 Infection prevalence estimates by pathogen, location and age. Panel
A shows estimates of infection prevalence by pathogen, upazila and age group, where
grey points and lines indicate median and 95%CrI estimates. Red lines and shaded
ribbons show the fit of catalytic models to the infection prevalence estimates, assum-
ing constant endemic JEV transmission since 1977 [5]. Panel B shows the estimates
of JEV force of infection (FOI) by upazila.
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Figure 5 RFI by pathogen, location and age. Grey points show the log relative
fluorescence intensity (RFI) values for each individual by age shown on the x-axis,
antigen (column panels), and sub-district (row panels). Red points and lines show
the population mean and 95% confidence interval estimates of log RFI by age group.
Individuals were grouped by 10-year age groups from 0-60 years and individuals aged
60+ were aggregated to a single age group. Red points and lines are plotted at the
respective age group mid-points.
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Figure 6 Reconstructed cross reactivity estimates when JEV is unobserved.
Cross reactivity estimates, defined as relative titer increases to the non-infecting
pathogen compared to the infecting pathogen, model estimates. Points and lines
indicate median and 95%CrI model estimates. Estimates colored in orange repre-
sent results where JEV titers are included in model fitting and JEV is assumed to be
present. Blue colored estimates represent results of a model where the JEV titers were
excluded from fitting but parameters for an unobserved ”pathogen X” were inferred.
Each panel represents the infecting pathogen.
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Figure 7 Infection prevalence estimates by assay data. Panel A shows the
prevalence of infection per pathogen estimated by the location and age model by assay
data for the district of Chapai Nawabganj. Panel B shows the prevalence of infection
estimates by pathogen and sub-district depending on which data was included in the
model. Points and lines show the median and 95%CrI model estimates.

3 Simulation testing

3.1 Methods

To assess the performance of the model and understand its applications we con-
duct simulation testing across a range of scenarios. Parameter values for simulation
were randomly drawn using Latin Hypercube sampling to ensure the approximately
even distribution of parameter combinations across simulations. Parameter values
for simulation were sampled from uniform distributions, with the ranges of values
considered shown in Table 7. The ranges of possible parameter values were selected
to approximately reflect antibody titer concentrations on a log relative fluorescence
intensity (RFI) scale, where median fluorescence intensity (MFI) values are divided
by individual-level background control values before taking the natural logarithm.
The model was fit using uninformative priors on the infection prevalence and cross-
reactivity parameters, while weakly informative priors were placed on the Gaussian
mean and standard deviation parameters (Table 7).

Parameter Parameter description Simulation Limits Prior

π Infection prevalence [0, 1] Beta(1, 1)

µ0 Mean of negative titers [-0.5, 0.5] Normal(0, 0.2)

µ1 Mean increase in positive titers [1, 3.5] Normal(2.5, 0.5)

σ0 SD of negative titers [0.25, 0.5] Normal(0.4, 0.1)

σ1 SD of positive titers [0.5, 0.75] Normal(0.6, 0.1)
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ϕ Cross-reactivity [0, 1] Beta(1, 1)

ρ Correlation coefficients [0, 1] Beta(1, 1)

Table 7 Parameter ranges and priors for simulation study. Ranges of possible
parameter values considered for simulation using Latin Hypercube sampling. Param-
eters relating to antibody titers are considered on a log scale of the relative fluorescent
intensity (RFI).

We first assess the performance of the model on a 2 pathogen system, simulat-
ing antibody titers against 2 related pathogens and assessing the models ability to
reconstruct parameter values from 50 simulated datasets. We further assess model
performance with an increasing number of pathogens, considering systems of 3, 5 and
7 related pathogens. For all simulations with ≤ 3 pathogens, we assume the Gaus-
sian standard deviation parameters, σ0 and σ1 to be independent for each pathogen.
For simulations with > 3 pathogens, however, we assume constant σ0 and σ1 across
pathogens which may be a reasonable assumption when antibodies against each anti-
gen are measured using the same assay. In each case we generate 50 simulated datasets
of 1,500 individuals and fit the model to each of the simulations. All models were
fit with 2 chains for 3,000 iterations in addition to 3,000 warm-up samples. Model
convergence was assessed by visual inspection of chain mixing and by R-hat conver-
gence diagnostic across all parameters. When comparing model performance we as-
sess differences in deviance information criterion (DIC), widely applicable information
criteria (WAIC) and leave-one-out expected log pointwise predictive density (ELPD
LOO) metrics. When comparing the performance of models with varying numbers
of Gaussian components we additionally use LIPpc and LIPpp metrics. Similar to
the LIPpc metric described in section 1.4.1, the likelihood increment percentage per
parameter (LIPpp) penalizes the likelihood increment by the additional number of
parameters used in the more complex model.

3.1.1 Heterogeneity in infection prevalence

In this section we consider a spatially-stratified 2 pathogen system with sampling
conducted in 3 locations with varying levels of pathogen-specific infection prevalence
across locations. We assume a total sample size of 1,500 individuals across the 3
locations, with 500 individuals from each. As before, Latin Hypercube sampling was
used to randomly draw parameter values for 50 simulations with the same possible
parameter ranges shown in Table 7. Only infection prevalence parameters were varied
by location and all other parameters were assumed to be constant across locations.
To each simulation we fit two model versions; a base model version where no loca-
tion information is used and a single value of pathogen-specific infection prevalence
is estimated for the entire population, and a second location-specific version where
pathogen-specific infection prevalence is allowed to vary across the three locations.
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3.1.2 1D mixtures

To understand the biases that can occur when antibody cross-reactivity is present
but not accounted for, we fit classic single-dimension mixture models independently
to antibody titer data for each pathogen using the 2 pathogen simulations. Here,
each model fits a two-component Gaussian mixture distribution, with a negative and
positive component as described above in section 1.5.

3.1.3 Absent pathogens

To understand the ability of the model to differentiate between pathogen presence
and absence in systems of related cross-reacting pathogens, we conduct further sim-
ulations. Using the same 2 and 3 pathogen simulations from the previous section,
we set the infection prevalence of one pathogen to zero and re-simulate the antibody
titer data. We then fit the same base model to these new simulations as well as an
”absent model” that assumes the absence of the truly absent pathogen.

3.2 Results

3.2.1 Model performance for two pathogen systems

We found high consistency between true and median estimates of infection preva-
lence with an adjusted R2 of 0.99, shown in Figure 8. True values of prevalence,
π, were within model 95%CrI estimates in 98% of simulations (49/50) and in 99%
of prevalence estimates (99/100) (Figure 8). For the cross-reactivity parameters, ϕ,
high consistency was observed between true and estimated parameter values with an
adjusted R2 of 0.83 (Figure 8). 94% of estimates (94/100) contained the true values
of ϕ within the 95%CrIs, while 90% (45/50) of simulations accurately estimated both
ϕ parameters. Only one simulation produced non-accurate estimates of ϕ for both
parameters, the same simulation that did not accurately estimate the prevalence
of pathogen A (Simulation 40). In this simulation, individuals infected with only
pathogen A had higher titers against pathogen B than individuals truly infected with
pathogen B, causing unidentifiability of the Gaussian components. We also note that
simulations with inaccurate estimates of ϕ and/or ρ tended to occur for simulations
with prevalence values close to 0% or 100%. In these simulations, 1 or more Gaussian
component could not be characterised due to a limited number of data points in that
component.
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Figure 8 Estimated vs true infection prevalence and cross-reactivity param-
eters in 2D simulations. Coloured points and lines show the median and 95%CrI
model estimates of infection prevalence, cross-reactivity and correlation parameters,
compared to the true values in 50 simulations. The black dashed line indicates where
estimated values would equal the true values. Blue points and lines highlight the
model estimates where the true value was contained within the 95%CrI and orange
highlight those that did not contain the true value within estimated 95%CrI. Panels
A->B and B->A represent the estimates of relative titer increase from A to B and B
to A, respectively. Panels r00 and r11 represent the correlation in the Gaussian distri-
bution for individuals negative to both pathogens, ρ00 and positive to both pathogens,
ρ11, respectively.

A high level of consistency between true and estimated correlation parameters,
ρ00 and ρ11, was also observed with adjusted R2 values of 0.88 and 0.84, respectively
(Figure 8). True parameter values were within the estimated 95%CrIs for 92% and
92% of estimates for ρ00 and ρ11. The means and standard deviations of the Gaussian
components were also well identified by the model, with adjusted R2 values of 0.96
and 0.97 between true and estimated values for µ0 and µ1, and of 0.84 and 0.78 for
σ0 and σ1 parameters respectively, shown in Figure 9. True parameter values were
contained within the 95%CrIs for 96% and 87% of estimates for µ0 and µ1 parameters
and in 94% and 96% of estimates for σ0 and σ1 parameters (Figure 9). Model fits to
the the simulated data are shown in Figure 10. We note that the model demonstrates
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high levels of performance even when large overlap of negative and positive titers
result in unimodal titer distributions (Figure 10).
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Figure 9 Estimated vs true Gaussian mean and standard deviation param-
eters in 2D simulations. Coloured points and lines show the median and 95%CrI
model estimates of the µ and σ parameters, compared to the true values in 50 sim-
ulations. Each column of panels corresponds to a different parameter and each row
represents estimates for pathogen A or pathogen B. The black dashed line indicates
where estimated values would equal the true values. Blue points and lines highlight
the model estimates where the true value was contained within the 95%CrI and orange
highlight those that did not contain the true value within estimated 95%CrI.
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Figure 10 Model fits to 2D simulations. Grey bars show the density distribu-
tion of simulated antibody titers for each of the 50 simulations, for pathogens A and
B. The lines and shaded ribbons show the median and 95%CrI model reconstructed
titer distributions. Blue and orange indicates the reconstructed distribution of neg-
ative and positive titers to each pathogen respectively, while green shows the overall
reconstructed titer distribution (combined across all components).

3.2.2 Model performance with increasing pathogen numbers

We fit the model to simulated data with an increasing number of pathogens, con-
sidering systems of 3, 5 and 7 related pathogens. For each of these considered sys-
tems we simulated 50 antibody titer datasets and fit the model to each. Due to
non-convergence of some models, 0, 1 and 8 model results were removed from the
following summary results from the 3D, 5D and 7D simulations respectively. High
consistency was observed between true and estimated prevalence with adjusted R2

values of 0.95, 1.00 and 1.00 for 3D, 5D and 7D simulations as shown in Figure 11,
panel (a). True infection prevalence values were contained within 95%CrIs in 93%
of estimates (140/150 estimates) for 3D simulations, 98% of estimates (240/245) for
5D simulations and 99% of estimates (293/294) for 7D simulations (Figure 11 panel
(a)). It is worth noting that the 3D simulations assumed independent σ0 and σ1

parameters per pathogen in line with the potential use of different assays for each
pathogen. In contrast, for 5D and 7D simulations and models we assumed constant
σ0 and constant σ1 across pathogens.

For cross-reactivity parameters, ϕ, the model showed good performance with ad-
justed R2 values between estimated and true parameter values of 0.94, 0.96 and 0.98
for 3D, 5D and 7D simulations respectively, shown in Figure 11 panel (b). True
values were contained within estimated 95%CrIs for 90% of estimates (270/300) in
3D simulations, 95% of estimates (928/980) in 5D simulations and 92% of estimates
(1631/1764) in 7D simulations (Figure 11 panel (b) and Figure 12). Adjusted R2

values between estimated and true values of ρ00 parameters were 0.95, 0.99 and 1.00
for 3D, 5D and 7D simulations respectively, with coverage of true values contained
within 95%CrIs in 88% (44/50), 92% (45/49) and 93% (39/42) of simulations, shown
in Figure 13 and Figure 12. For ρ11 parameter values, adjusted R2 values between
estimated and true were 0.88, 1.00 and 1.00 for 3D, 5D and 7D simulations with cov-
erage of true values for 86% (43/50), 94% (46/49) and 95% (40/42) of simulations,
shown in Figure 13 and Figure 12.

Estimates of µ0 contained true parameter values within CrIs for 93% (139/150),
95% (233/245) and 91% (268/294) estimates for 3D, 5D and 7D simulations, respec-
tively, shown in Figure 12 and Figure 13. For µ1 parameters, estimates contained
true values in 90% (135/150), 97% (238/245) and 90% (266/294) of estimates for
3D, 5D and 7D simulations (Figure 12). Estimates of σ0 contained true parameter
values within CrIs for 91% (136/150), 79% (194/245) and 100% (294/294) estimates
for 3D, 5D and 7D simulations. While for σ1, estimates contained true parameter
values within CrIs for 88% (132/150), 87% (214/245) and 98% (287/294) estimates
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for 3D, 5D and 7D simulations. Model fits to the 3 pathogen simulations are shown
in Figure 14.
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Figure 11 Estimated vs true infection prevalence and cross-reactivity pa-
rameters in 3D, 5D and 7D simulations. Coloured points and lines show the
median and 95%CrI model estimates of (a) prevalence, π, and (b) cross-reactivity,
ϕ, parameters compared to the true values in 50 simulations. Panels indicate the
number of pathogens (3, 5 or 7). The black dashed line indicates where estimated
values would equal the true values. Blue points and lines highlight the model esti-
mates where the true value was contained within the 95%CrI and orange highlight
those that did not contain the true value within estimated 95%CrI.
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Figure 12 Coverage of true parameter values within credible intervals in 3D,
5D and 7D simulations. Coloured points show the proportion of estimated param-
eter values that contained the true value within the 95%CrI estimates for 3D, 5D and
7D simulations. Each panel represents a different parameter - infection prevalence
(π), cross reactivity (ϕ), Gaussian means (µ0 and µ1), Gaussian standard deviations
(σ0 and σ1), and correlation parameters (ρ00 and ρ11).
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Figure 13 Estimated vs true Gaussian parameters in 3D, 5D and 7D simu-
lations. Coloured points and lines show the median and 95%CrI model parameter
estimates compared to the true values in 50 simulations. Columns indicate the number
of pathogens (3, 5 or 7), while rows represent each parameter. The black dashed line
indicates where estimated values would equal true values. Blue points and lines high-
light the model estimates where the true value was contained within the 95%CrI and
orange highlight those that did not contain the true value within estimated 95%CrI.
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Figure 14 Model fits to 3D simulations. Grey bars show the density distribution
of simulated antibody titers for each of the 50 simulations, for pathogens A, B and
C. The lines and shaded ribbons show the median and 95%CrI model reconstructed
titer distributions. Blue and orange indicate the reconstructed distribution of nega-
tive and positive titers to each pathogen respectively, while green shows the overall
reconstructed titer distribution (combined across all components).

3.2.3 Varying infection prevalence

In this section we fit two model versions to simulated data for 2 related pathogens
where infection prevalence varies across 3 locations of equal sample size. We compared
the performance of a base model that estimates only a single overall prevalence per
pathogen and that of a location model that estimates pathogen-specific prevalence for
each location. We found good consistency between estimated and true overall infec-
tion prevalence for both the base and location models with adjusted R2 values of 0.91
and 0.99, respectively. True values of overall infection prevalence values were within
the estimated 95%CrIs for 80% and 100% of the base and location model estimates
respectively as shown in Figure 15. In addition, 100% of location-specific prevalence
estimates by the location model accurately recovered the true values (Figure 15). For
the cross-reactivity parameters, ϕ, 91% and 96% estimates were accurately estimated
by the base and location models respectively, shown in Figure 16. 84% and 92% of
ρ00 and 84% and 94% of ρ11 estimates were accurately estimated by the base and
location models respectively (Figure 16).

For µ0 parameters, true values were recovered for 92% and 95% of estimates across
the 50 simulations, while for µ1 parameters true values were recovered in 92% and
98% of estimates for the base and location models respectively. In addition, 86% and
92% of σ0 true parameter values, and 92% and 96% of σ1 true parameter values were
recovered by the base and location models respectively, shown in Figure 17. The
location model outperformed the base model in all 50 simulations, as measured by
DIC, WAIC and ELPD LOO. The median difference in DIC (base - location model)
was 734.70 (range: 90.30 to 1967.9) and 729.73 (range: 90.76 to 1965.44) for WAIC.
For the ELPD LOO metric the median difference (base - location model) was -364.9
(range: -982.71 to -45.38).
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Figure 15 Recovery of location-specific infection prevalence estimates. Panel
(a) shows the estimated vs true overall pathogen prevalence estimates from the base
model and location model. Panel (b) shows the estimated vs true location-specific
prevalence estimates from the location model. Coloured points and lines show the
median and 95%CrI model estimates of the prevalence parameters, compared to the
true values in 50 simulations. The black dashed line indicates where estimated values
would equal the true values. Blue points and lines highlight the model estimates
where the true value was contained within the 95%CrI and orange highlight those
that did not contain the true value within estimated 95%CrI.
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Figure 16 Recovery of cross-reactivity and correlation parameters with het-
erogeneous infection prevalence. Coloured points and lines show the median and
95%CrI model estimates of cross-reactivity and correlation parameters, compared to
the true values in 50 simulations. The black dashed line indicates where estimated
values would equal the true values. Blue points and lines highlight the model esti-
mates where the true value was contained within the 95%CrI and orange highlight
those that did not contain the true value within estimated 95%CrI. Panels A-¿B and
B-¿A represent the estimates of relative titer increase from A to B and B to A, re-
spectively. Panels r00 and r11 represent the correlation in the Gaussian distribution
for infection statuses negative to both pathogens and positive to both pathogens,
respectively. Row panels represent which model the estimates come from - the base
model or location model.
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Figure 17 Estimated vs true Gaussian mean and standard deviation param-
eters from location and base models. Coloured points and lines show the median
and 95%CrI model estimates of the µ and σ parameters, compared to the true val-
ues in 50 simulations. The black dashed line indicates where estimated values would
equal the true values. Blue points and lines highlight the model estimates where the
true value was contained within the 95%CrI and orange highlight those that did not
contain the true value within estimated 95%CrI. Row panels represent which model
the estimates come from - the base model or location model.

3.2.4 1D model biases

To understand the levels of bias that can occur when cross-reactive antibodies are
present but not accounted for, we fit classic single-dimension (1D) mixture models
independently to each of the two pathogens from the same two pathogen system
simulations of the previous section. Low consistency between estimated and true
infection prevalence values, π, was observed from these models with an adjusted
R2 of 0.40. True values of prevalence were contained within the 95%CrIs in 55%
of estimates, shown in Figure 18, panel (a). We observed large overestimates of
prevalence from the 1D models, coinciding with a general trend of underestimation of
µ1 parameters and overestimation of µ0, shown in Figure 18, panel (b) and Figure 19.
We found that the absolute bias in prevalence estimates is highest in simulations where
both the level of prevalence of the unobserved pathogen is high and the level of cross-
reactivity from infection with the unobserved pathogen against the observed pathogen
is also high, shown in Figure 20. In contrast, high prevalence of the unobserved
pathogen coupled with low cross-reactivity to the observed pathogen caused less bias
in prevalence estimates. Similarly, high cross-reactivity from the unobserved to the
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observed pathogen coupled with low prevalence levels of the unobserved pathogen
also resulted in reduced bias in prevalence estimates by the 1D model (Figure 20).
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Figure 18 Bias in 1D model parameter estimates. Panel (a) shows the estimated
vs true prevalence, π, from fitting classic 1D mixture models to 2D simulated data
independently for pathogens A and B. Coloured points and lines show the median and
95%CrI model estimates of the π, compared to the true values in 50 simulations. The
black dashed line indicates where estimated values would equal the true values. Blue
points and lines highlight the model estimates where the true value was contained
within the 95%CrI and orange highlight those that did not contain the true value
within estimated 95%CrI. Panel (b) shows the density of bias (estimated - true) in
model median estimates for all parameters for both the 1D (blue) and 2D models
(green) for 50 simulations.
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Figure 19 Estimated vs true Gaussian mean and standard deviation param-
eters from 1D models. Coloured points and lines show the median and 95%CrI
model estimates of the µ and σ parameters, compared to the true values in 50 simu-
lations. The black dashed line indicates where estimated values would equal the true
values. Blue points and lines highlight the model estimates where the true value was
contained within the 95%CrI and orange highlight those that did not contain the true
value within estimated 95%CrI.
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Figure 20 Bias in infection prevalence estimates from 1D models. Coloured
tiles show the absolute bias in prevalence estimates by 1D models for varying levels
of prevalence of the unobserved pathogen as well as varying cross-reactivity from
infection with the unobserved pathogen against the observed pathogen.

3.2.5 Determining pathogen presence vs absence

In this section we explored the ability of the model to differentiate between present
and absent pathogens. Using the same 2 and 3 pathogen simulations as in the previous
sections, we set the prevalence of one pathogen to zero and re-simulate the data with
N=1,500. We then fit the same base model as before to each dataset as well as the
“absent model” which assumes the absence of the truly absent pathogen. Only one
3D simulation was excluded from summary results due to non-convergence of model
chains. High consistency between median estimates and true prevalence of the present
pathogens was observed for both models with adjusted R2 values of 1.00 and 1.00 for
the base and absent models respectively in both 2D and 3D simulations. Estimates of
prevalence contained the true value within 95%CrIs for 100% of simulations for both
the base and absent model in both 2D and 3D simulations, shown in Figure 21. For
the absent pathogen, the base model estimates near zero infection prevalence for the
majority of simulations, with a median estimate of 0.001 (range: <0.01-0.09) across
simulations for the 2D system and a median estimate of 0.002 (range: <0.01-0.02)
across the 3D simulations (Figure 21).

Cross reactivity parameters from the present pathogens to the absent pathogen
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were well recovered in both 2D and 3D simulations, shown in Figure 22. Cross
reactivity estimates by the base model from the absent pathogens to the present
pathogens, returned the prior in the majority of simulations (Figure 22). Correlation
of negative titers, ρ00 was also well recovered in most simulations. Correlation of
positive titers, ρ11 could only be well recovered in 3D simulations where a signal from
the 2 present pathogens allowed it to be identified (Figure 22). In 2D simulations, as
expected, the base model could not identify this parameter and returned the prior.
High recovery of true Gaussian mean and standard deviation parameter values by
the base and absent models were also observed for both 2D and 3D simulations. As
expected, the base model returned the priors for µ1 and σ1 parameters that related
to the absent pathogens.

To compare model performance between the base and absent models we calcu-
lated the difference in metrics between models (base model metric - absent model
metric) as well as the LIPpp and LIPpc. The absent model was preferred to the base
model by DIC in 45/50 2D simulations and 42/49 3D simulations, shown in Figure
23. Comparing model performance by WAIC, 44/50 simulations preferred the absent
model in 2D simulations and 46/49 in 3D simulations. By ELPD LOO, 44/50 and
46/49 simulations preferred the absent model to the base. The median difference
in log-likelihood values for 2D simulations was -0.74 (range: -1.19 - 5.23) and -0.79
(range: -1.58 - 5.21) in 3D simulations (Figure 23). Differences in DIC ranged from
-2.33 to 8.01 with a median of 3.00 in 2D simulations, compared to a median of 3.43
in 3D simulations, ranging from -4.64 to 11.08. Median differences in WAIC were
1.72 (range: -6.93 - 3.05) and 1.85 (range: -6.43 - 4.93) in 2D and 3D simulations
respectively. The median LIPpp for base compared to absent models across 2D simu-
lations was 0.01 (range: -0.27 - 0.14) and 0.00 (range: -0.02 - 0.05) in 3D simulations,
shown in Figure 23, panel B. The median LIPpc for base compared to absent models
was -0.02 (range: -0.54 - 0.28) in 2D simulations and 0.00 (range: -0.02 - 0.06) in 3D
simulations.
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Figure 21 Recovery of infection prevalence parameters with absent
pathogen. Panel (a) shows the estimated and true infection prevalence values π
of present pathogens estimated by the base or absent model (column panels) for 2D
and 3D simulations (row panels). Points and lines indicate median and 95%CrI es-
timates. Blue points and lines highlight the model estimates where the true value
was contained within the 95%CrI and orange highlight those that did not contain the
true value within estimated 95%CrI. The black dashed line indicates where estimated
values would equal the true values. Panel (b) shows a box plot of median prevalence
estimates by the base model for the absent pathogen (where true prevalence equals
zero). Orange points represent the median estimates from individual simulations.
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Figure 22 Recovery of cross reactivity and correlation parameters with ab-
sent pathogen. Panel (a) shows the estimated vs true values of cross reactivity
parameters, ϕ, and correlation parameters, ρ, in 2D simulations. Panel (b) shows
the same but for 3D simulations. Points and lines indicate median and 95%CrI es-
timates. Blue points and lines highlight the model estimates where the true value
was contained within the 95%CrI and orange highlight those that did not contain the
true value within estimated 95%CrI. The black dashed line indicates where estimated
values would equal the true values. Column panels indicate individual parameters
and row panels indicate the model used for fitting.
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Figure 23 Absent vs Base model performance metrics. Panel A shows box plot
summaries of the difference in model metrics (base minus absent model) for 2D and 3D
simulations. Coloured boxes show the median and interquartile range of values while
points show the individual values. Red dashed lines highlight a difference of zero,
where base and absent model performances are equal. Panel B shows the likelihood
increment percentage per parameter (LIPpp) and likelihood increment percentage per
component (LIPpc) in 2D and 3D simulations. This calculates the percent increase
in log likelihood per parameter or component for the base model compared to the
simpler absent model.
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