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Abstract 
Whole genome sequencing identifies millions of genetic variants per individual. When applied 

to rare disease diagnosis, potentially pathogenic variants are prioritised for clinical 

interpretation, a process that may be influenced by an individual’s genetic ancestry. We 

analysed millions of rare protein-altering variants prioritised in 29,425 participants with rare 

disease from the UK 100,000 Genomes Project. We observed disparities in the number of 

variants prioritised across genetic ancestry groups, with an up to 3-fold increase in participants 

with African compared to European ancestries. Variants prioritised in participants with non-

European ancestries were less likely to be assessed as pathogenic. Leveraging a cohort of 

34,701 diverse genomes from the UK, we identified thousands of candidate variants that were 

ultra-rare or unobserved across populations in gnomAD but common among ancestry-matched 

individuals. Our findings highlight the importance of using reference databases that reflect 

patient genetic diversity when prioritising variants for rare disease diagnosis.  
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Main 

Over 400 million people worldwide are estimated to be living with a rare disease1. While it is 

thought that more than 80% of rare diseases have a genetic component, most patients do not 

receive a genetic diagnosis after diagnostic testing2. By capturing the majority of genetic 

variation in an individual, whole genome sequencing (WGS) has improved genetic diagnosis 

rates2,3. However, separating causative pathogenic variants from the millions of benign variants 

present in the genome remains a key challenge4.  

 

The rare diseases arm of the 100,000 Genomes Project (100kGP) is the largest study of 

sequenced rare disease probands and family members to date5. Candidate variants derived from 

WGS and prioritised through automated pipelines as part of the 100kGP have led to the 

discovery of thousands of novel pathogenic variants in hundreds of previously undiagnosed 

participants2. The 100kGP has provided the foundation for the introduction of WGS testing 

into the UK National Health Service for patients with rare disease as part of routine clinical 

care6.  

 

With some exceptions7,8, penetrant pathogenic variants causing monogenic diseases or traits 

are expected to be rare in all human populations9. Reference databases such as the Genome 

Aggregation Database (gnomAD; https://gnomad.broadinstitute.org)10,11 which aggregate 

WGS and whole-exome sequencing (WES) data from hundreds of thousands of individuals are 

therefore used to provide allele frequency estimates to assist in the prioritisation of candidate 

variants underlying rare diseases4,12. Despite these endeavours, a large fraction of global 

genetic diversity has yet to be surveyed and there continues to be a European bias in 

genomics13,14. Furthermore, reference databases are often stratified into broad, continental 

ancestry groups (e.g. Africa), homogenising the genetic structure that exists within continental 

regions and between their diaspora communities15. As routine genomic sequencing for rare 

disease diagnosis is incorporated into healthcare systems across the world6,16,17, it is vital to 

understand the impact that this uneven representation may have on identifying pathogenic 

variation in individuals and families. 

 

Here, using data from the 100kGP, we investigate the potential influence of an individual’s 

genetic ancestry on the number of candidate protein-altering variants prioritised for clinical 

review, and assess the role of ancestry-related ascertainment biases in reference databases on 

the variant prioritisation process. We also investigate the relationship between a proband’s 

genetic ancestry and their likelihood of receiving a genetic diagnosis with a prioritised variant. 

 

 

Cohort overview 

We analysed WGS data from a cohort of 61,512 individuals (29,425 probands and 32,087 

family members) recruited to the 100kGP1 (Supplementary Information 1-5). Disorders 

covered a broad spectrum of 112 rare diseases and probands had no genetic diagnosis at the 

time of recruitment (Table 1). 
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Table 1. Cohort characteristics.  

Family structure  
 

 

 Singleton 11,793 

 Duo† 4,088 

 Trio† 9,839 

 Other 3,705 

 Total 29,425 

Proband karyotype  

 XY 15,198 

 XX 14,227 

Median (IQR) age of proband at recruitment (Years) 26 (42) 

Median (IQR) autosomal coverage (x) 40.0 (8.4) 

Median (IQR) number of small variants 4,898,153 (66,199) 

Cases fully or partially solved¶ 5,793 
 

† Refers to complete parent-offspring duos or trios.  
‡ Multi- and single nucleotide variants and indels <50bp 
¶ As indicated by clinical teams in the Genomics England v18 data release (21st December 2023)  

IQR = interquartile range. 

 

 

 

Representation of self-reported ethnic groups among probands in the 100kGP was broadly 

similar to that reported for England in the 2021 Office for National Statistics (ONS) Census18 

given the age profile of the cohort (Supplementary Figure 1). 75% of probands whose ethnic 

group was reported and known self-reported as White British (Methods).  

 

Genetically inferred ancestries and population structure within the 100kGP 

Classification of individuals into discrete populations is an inadequate description of human 

genetic diversity, which is continuous and varies throughout the genome19. However, given the 

reliance of rare variant prioritisation for rare disease diagnosis on population allele frequencies, 

we first organised 100kGP probands on the basis of their genetic similarity to a set of sub-

continental reference population groups previously curated using the UK Biobank20,21, a 

reference dataset that reflects the diversity of the UK (Methods; Extended Data 1). We refer to 

these as genetically inferred ancestry (GIA) groups (Figure 1).  

GIA groups aligned with clustering patterns in a low-dimensional topological map (UMAP) 

generated from the first 16 PCs (Supplementary Figures 2 & 3). 1,712 probands (5.8% of the 

total) mapping to multiple reference populations were not assigned to any one GIA group 

(described as ‘remaining participants’; Extended Data 1) (Supplementary Figure 4). GIA 

groups and ancestry coefficient estimates21 (Methods) broadly corresponded with probands’ 

self-reported ethnicity (Supplementary Figures 5 and 6) and with ancestry group classifications 
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predicted using reference populations provided by gnomADv3.110 (Supplementary Figure 7 

and 8), often with added granularity. 

Figure 1. Genetic structure and GIA groups within the 100kGP a: The numbers of 100kGP rare disease 

programme probands assigned to sub-continental GIA groups curated using the UK Biobank21 

(Extended Data 1). b: PCA of 100kGP probands coloured by assigned GIA. The top 2 genotype 

principal components are shown. PCs were calculated using all unrelated probands and family members 

(<3rd degree, Supplementary Information 4) across a genotype matrix of 60,878 high-quality SNVs used 

to perform the PCA (Methods; Supplementary Information 5). PCs 1-16 are shown in Supplementary 

Figure 2. Remaining participants include those without an assigned GIA or those assigned to groups 

with less than 50 probands in the 100kGP (Extended Data 1). 
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Candidate protein-altering variants (cPAVs) 

Candidate small variants predicted to be protein-altering (candidate protein-altering variants or 

cPAVs) potentially linked to rare Mendelian disease were triaged using Genomics England’s 

bioinformatics pipelines (Methods; Supplementary Information 7, Supplementary Figure 9). 

Briefly, these pipelines applied variant filters based on population allele frequencies, predicted 

variant consequence (Supplementary Table 1), and (where family data was available) co-

segregation with disease. In total, we identified 1,951,659 cPAVs, 30.3% of which were 

identified in more than one proband (Supplementary Figure 10). 1,865,089 cPAVs (95.6% of 

the total) were either absent or ultra-rare in every annotated population across all queried 

reference databases (population maximum allele frequency (popmax AF) <0.1%) including 

gnomADv211, gnomADv310, and UK10K22 (Supplementary Table 2). The remaining 86,570 

uncommon cPAVs (popmax AF >0.1%; 4.4% of the total) passed a more lenient frequency 

threshold (popmax AF <1%) applied exclusively to variants with biallelic modes of 

inheritance. 

An average of 172 (standard deviation (SD): 120, minimum-maximum (min-max): 0-1013) 

cPAVs were identified per proband (Supplementary Figure 10), with differences 

predominantly driven by the availability of WGS data from family members and the clinically 

indicated penetrance mode (Supplementary Figure 11). Probands analysed as part of full 

parent-offspring trios (mean (SD, min-max) = 23 (21,1-422)) or larger family group types (25 

(40,0-404)) under the assumption of complete penetrance had the fewest cPAVs identified on 

average. Singleton probands (273 (69, 0-1,013)) or probands for whom co-segregation pattern 

filters were bypassed to account for incomplete penetrance (216 (74,16-760)) had the greatest 

number of cPAVs on average. 

Adjusting for family group type, penetrance mode, sequencing quality metrics, and other 

covariates predicted to impact variant calling and triaging (Methods; Supplementary Figure 12, 

Supplementary Table 3) we observed a strong association between GIA and the number of 

cPAVs identified in the proband (ANOVA Type II p < 2.20 x10-308). 13 of 14 GIA groups had 

significantly greater number of cPAVs when compared to the Europe North West group, the 

largest group in the cohort (Figure 2; Supplementary Table 4a). The Africa East GIA group 

had the greatest number of cPAVs (Rate ratio (RR) vs Europe North West = 2.93, p < 2.20 x10-

305). Only the Ashkenazi GIA group had significantly fewer cPAVs (RR vs Europe North West 

= 0.73, p = 4.40x10-51). 
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Figure 2. GIA predicts the number of cPAVs identified in the proband. Multivariable negative binomial 

regression model coefficients showing the association between each GIA group and the number of 

cPAVs identified in the proband vs 21,872 probands assigned to the Europe North West GIA group, 

adjusted for covariates (Supplementary Tables 4 and 5a). Error bars show 95% confidence intervals. 

RR = Rate ratio. * 0.05< p-value < 0.01. ** 0.001 <p-value < 0.01. *** p-value < 0.001 after Bonferroni 

adjustment. 

 

 

Protein-altering variation missing from gnomAD  

gnomAD (v2.1 and v3.1) was the main source of population allele frequencies used to identify 

cPAVs in the 100kGP (Supplementary Table 2). To explore whether the observed disparity in 

the numbers of cPAVs across GIA groups may be linked to ancestry-related ascertainment bias 

in gnomAD, we calculated the total number of small, predicted protein-altering variants 

(Supplementary Table 1) called in each proband that were missing from gnomADv2.1 

(exomes) and gnomADv3.1 (whole genomes). We considered all missing protein-altering 

variants, irrespective of whether they were triaged as cPAVs, so that ascertainment bias could 

be assessed independent of any potential influence from the triaging process. 

Protein-altering variation in European GIA groups appeared to be well captured by gnomAD. 

For example, the Europe North West group had fewer missing protein-altering variants per 

proband (mean (SD, min-max) = 46 (7, 22-102)) than any other GIA group apart from 

Ashkenazi (33 (6, 21-56)) (Figure 3a). The latter aligns with the recent genetic bottleneck in 

the demographic history of the Ashkenazi population23 (Supplementary Figure 13; 

Supplementary Information 9), resulting in a relative paucity of genetic variation in this group 

not already captured by the Ashkenazi reference populations annotated in gnomAD. 
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In marked contrast, the Africa East GIA group had an average of 161 (17, 123-216) protein-

altering variants missing from gnomAD per proband, whilst the Africa South GIA group had 

the greatest intra-group variability in missing protein-altering variants (111 (32, 66-227). These 

observations are consistent with Africa’s immense genetic diversity24, as well as the over-

representation of individuals with ancestries from West Africa (e.g. African Americans) in 

genomic reference databases relative to other sub-continental regions15. 

Overall, we found that average differences in the number of predicted protein-altering variants 

missing from gnomAD were highly correlated with rate ratios for the relative increase in the 

number of triaged cPAVs across GIA groups (Pearson’s product of moment (Pr) = 0.98, p = 

1.09x10-10; Figure 3b). This positive correlation was also observed at the individual level (p < 

2.20 x10-308; Supplementary Table 4b), inclusive of probands without an assigned GIA group. 

This relationship between the number of triaged cPAVs and predicted protein-altering variants 

missing from gnomAD was apparent irrespective of family group type, despite the latter’s 

marked effect on cPAV numbers (Figure 3c-e). 

 

reuse, remix, or adapt this material for any purpose without crediting the original authors.
this preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, 

The copyright holder has placedthis version posted August 14, 2024. ; https://doi.org/10.1101/2024.08.12.24311664doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.12.24311664


 8 

 

Figure 3. Protein-altering variation missing from gnomAD and cPAVs across the ancestry continuum. 

a: Raincloud plot showing the numbers of protein-altering variants missing from gnomADv2.1 

(exomes) and gnomADv3.1 (genomes) per proband in the 100kGP, stratified by GIA group. b: Rate 

ratios describing the number of small, predicted protein-altering variants missing from gnomAD (vs 

Europe North West), plotted against rate ratios from Figure 2 describing the number of cPAVs (also vs 

Europe North West) identified in the proband. See main text and Methods for details on regression 

models. Error bars show 95% confidence intervals. RR = Rate ratio. Pr = Pearson’s product of moment. 

Sr = Spearman’s rank. Colour-filled points show significant (p < 0.05) differences vs Europe North 

West after Bonferroni adjustment. c-e: Number of cPAVs plotted against the number of protein-altering 

variants missing from gnomAD per proband, coloured by proband GIA, stratified into c: Singleton 

probands d: Parent-offspring duos e: full parent-offspring trio. Point shapes are determined by the 

indicated penetrance mode, relevant only when familial co-segregation data is available. 
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Predicted deleteriousness of ultra-rare cPAVs  

Variants with deleterious effects are more likely to be rare or unobserved across all populations 

due to purifying selection25. Conversely, common variants are more likely to be tolerated. We 

hypothesised that a greater number of common variants may have been misclassified as ultra-

rare cPAVs in probands with genetic ancestries that are under-represented across queried 

reference databases (Supplementary Table 2), resulting in an excess of triaged cPAVs that are 

predicted to be non-deleterious in these individuals. To test this, we annotated cPAVs using 

CADD26 and two missense effect prediction tools: AlphaMissense27 and PrimateAI-3D28. We 

excluded common (popmax AF >0.1%) cPAVs triaged under biallelic modes of inheritance 

(Supplementary Figure 10b) and tested the association between GIA and the proportion of 

cPAVs estimated to be deleterious, adjusted for covariates (Methods; Supplementary Table 3). 

All three tools predicted that ultra-rare cPAVs identified in European GIA groups contained a 

significantly higher proportion of deleterious variants, in line with our hypothesis (Figure 4; 

Supplementary Figure 14, Supplementary Table 5a-c). Odds ratios measuring the association 

between GIA and the proportion of deleterious, ultra-rare cPAVs showed strong negative 

correlations with rate ratios measuring the association between GIA and the number of ultra-

rare cPAVs identified in the proband (Figure 4d-f). Africa South and Africa East GIA groups 

were consistently estimated as having the lowest proportion of deleterious cPAVs (Figure 4). 
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Figure 4. Predicted deleteriousness of ultra-rare cPAVs by GIA group. a-c: Percentage of ultra-rare 

cPAVs across GIA groups annotated as deleterious using a: CADD (n = 1,822,798); b: PrimateAI-3D 

(n = 1,337,158); and c: AlphaMissense (n = 1,365,877). Method-specific default score cut-offs are 

shown in y-axis labels. d-f: Rate ratios (vs Europe North West) describing the number of ultra-rare 

cPAVs, plotted against odds ratios (also vs Europe North West) describing the proportion of annotated 

ultra-rare cPAVs predicted to be deleterious by d: CADD; e: PrimateAI-3D; and f: AlphaMissense 

(Supplementary Tables 5 and 6). cPAVs exclude common variants (popmax AF > 0.1%) triaged under 

biallelic modes of inheritance. Error bars show 95% confidence intervals. RR = Rate ratio. OR = Odds 

ratio. Pr = Pearson’s product of moment. Sr = Spearman’s rank. Colour-filled points show significant 

(p < 0.05) associations vs the Europe North West reference GIA group after Bonferroni adjustment. 
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cPAVs within applied virtual gene panels 

After application of the triaging process used to identify cPAVs in the 100kGP Methods; 

Supplementary Figure 9), an additional step involves the identification of a subset of cPAVs 

that appear within genes contained in expert-assessed PanelApp29 virtual gene panels 

associated with the proband’s condition (Supplementary Information 7). These gene-panel 

candidate protein-altering variants (gene-panel cPAVs) undergo clinical interpretation with the 

highest priority. In total, we identified 51,838 unique gene-panel cPAVs using the most recent 

PanelApp gene panel versions (Extended Data 2). An average of 1.46 (2.37, 0-38; SD, min-

max) gene-panel cPAVs were identified per proband.  

Despite representing only 2.7% of the total cPAVs in the 100kGP, observed associations 

between GIA and both the number (Figure 2) and the proportion of deleterious cPAVs 

identified in the proband (Figure 4) remained when evaluating gene-panel cPAVs alone 

(Supplementary Figures 15-17; Supplementary Tables 5c-d and 6d-f). 

 

Identifying cPAVs classified as ultra-rare that are common in a diverse 

reference database from the UK population 

To investigate whether a relatively small number of diverse genomes from a GIA-matched 

control cohort could reveal under-represented common variation classified as ultra-rare cPAVs 

in the 100kGP, we leveraged WGS data from 34,701 individuals recruited into the UK COVID-

19 genomics study30 (Supplementary Information 2). Individuals in the COVID-19 cohort were 

organised into GIA groups using the same method as described above for the 100kGP. We 

found analogous patterns of predicted protein-altering variation missing from gnomAD across 

GIA groups in the COVID-19 cohort as previously observed in the 100kGP (Supplementary 

Figure 18). This indicates that the COVID-19 cohort captures genetic diversity that is under-

represented in reference databases, such as gnomAD, and could therefore be informative for 

variant prioritisation and interpretation. 

For all 14 GIA groups with n>100 unrelated (<3rd degree) individuals in the COVID-19 cohort 

(Figure 5a), we calculated allele frequencies for ~500 million small variants across the 

autosomes and the X-chromosome. We also calculated 95% confidence maximum filtering 

allele frequency thresholds (FAF95; Methods) to account for the reduced precision and 

upward-bias with which AFs are estimated in groups with smaller sample sizes (Figure 5b)31.  

In total, 986,893 variants identified as cPAVs in the 100kGP (50.6% of all cPAVs) were 

observed at least once in the COVID-19 cohort. Of these, we identified 25,420 cPAVs that 

were ultra-rare across all previously queried reference databases (popmax AF <0.1%; 

Supplementary Table 2) yet appeared at FAF95 >0.1% in at least one GIA group in the COVID-

19 cohort. 1,941 such cPAVs were missing from all previously queried reference databases, 

66.0% (n = 1,282 of which were observed at FAF95 >0.1% amongst individuals in the COVID-

19 cohort Africa East GIA group (Supplementary Figure 19).  

Of note, we identified 2,046 cPAVs previously classified as ultra-rare (popmax AF < 0.1%; 

Supplementary Table 2) that appeared at least an order of magnitude more frequently (FAF95 

>1%) in at least one GIA group in the COVID-19 cohort (Figure 6c), meaning that they are 

reuse, remix, or adapt this material for any purpose without crediting the original authors.
this preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, 

The copyright holder has placedthis version posted August 14, 2024. ; https://doi.org/10.1101/2024.08.12.24311664doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.12.24311664


 12 

unlikely to be the cause of a rare genetic disease. 62.7% (n = 1,282) of these common cPAVs 

appeared at >1% FAF95 in the Africa East GIA group, 34.2% (n = 438) of which were 

unobserved in any other group. Indeed, overall, 11.7% (n = 8,336) of all cPAVs identified in 

the 100kGP Africa East GIA group were observed at FAF95 >1% among GIA-matched 

individuals in the COVID-19 cohort; an average of 58 (SD, min-max; 41,1-159) variants per 

proband. 
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Figure 5. cPAVs classified as ultra-rare that are common in a diverse reference database from the UK 

population. a: Circle plot with circle sizes representing the number of individuals from each GIA group 

in the COVID-19 cohort. Only GIA groups with n >100 individuals genetically unrelated to the 3rd 

degree (both to others in the COVID-19 cohort and all probands in the 100kGP) are shown. b: For each 

GIA group in the COVID-19 cohort, the probability of observing a variant of a given allele frequency 

(true AF) at either (top) AF >1% or (bottom) FAF95 >1% given the GIA group sample size (in number 

of haplotypes), where FAF95 is the maximum credible GIA group AF (lower bound of the 95% CI). 

We assumed true allele frequencies in each group followed Hardy-Weinberg equilibrium and calculated 

probabilities using the binomial distribution. c: Number of cPAVs identified in the 100kGP and 

observed at popmax AF<0.1% across all previously queried reference databases (Supplementary Table 

2) observed at FAF95 >1% across GIA groups in the COVID-19 cohort. 
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Of the 111 ultra-rare gene-panel cPAVs that appeared at FAF95 >1% in at least one GIA group 

in the COVID-19 cohort (Extended Data 3), none were clinically assessed as pathogenic or 

likely pathogenic (P/LP) with all either assessed as variants of uncertain significance (VUS) or 

remaining unclassified. As an example, a heterozygous splice site donor variant 

(rs1456162375) in the 5’UTR region of the nuclear-encoded mitochondrial mitofusin 2 

(MFN2) gene was triaged as a monoallelic gene-panel cPAV in a proband with Charcot-Marie 

Tooth Disease assigned to the Africa East GIA group and was assessed as a VUS. This variant 

is missing from both gnomADv2.1 (exomes), gnomADv3.1 (genomes) and the COVID-19 

cohort except among the Africa East GIA group where it was observed at an allele frequency 

of >3% (FAF95: 1.5%). 

 

Clinical assessment of gene panel cPAVs 

Gene-panel cPAVs have been a major source of novel genetic diagnoses in the 100kGP. 

Among the 29,425 probands analysed in this study, they represent 75.7% (n = 5,415) of the 

total disease-associated variants assessed as P/LP using criteria from the American College of 

Medical Genetics and Genomics and Association of Molecular Pathology (ACMG/AMP)32,33 

(Methods). A further 263 cPAVs were assessed as P/LP but did not appear within applied 

virtual gene panels. 

A principal aim of the 100kGP variant triaging process is to maximise the number of P/LP 

variants while minimising the number of variants requiring clinical assessment2. We explored 

the influence of the proband’s ancestry on this process by estimating the positive predictive 

value (PPV) of gene-panel cPAVs, defined as the proportion of gene-panel cPAVs assessed as 

P/LP. After adjusting for covariates (Methods; Supplementary Table 3), we found that gene-

panel cPAVs identified in 9 out of 11 non-European GIA groups had a significantly lower PPV 

than those identified in the Europe North West group (Figure 6, Supplementary Table 6). Odds 

ratios measuring the association between GIA and the PPV of gene-panel cPAVs were 

negatively correlated with rate ratios measuring the association between GIA and number of 

gene-panel cPAVs (Figure 5b).  

We next used multivariable logistic regression to examine the association between GIA and 

the likelihood of receiving a diagnosis with a gene-panel cPAV, with diagnosis defined as a 

case that was solved or partially solved through the discovery of at least one P/LP variant in 

the proband (Methods). The full model explained 18.7% of the variance (Nagelkerke’s R2), 

with the majority (14.5%) attributed to the proband’s disease phenotype. A range of additional 

factors were associated with the likelihood of receiving a diagnosis with a gene-panel cPAV, 

including the proband’s sex, family group type, and whether family members were affected by 

the disease (Supplementary Figure 20). However, we found no significant association between 

the proband’s GIA and their likelihood of receiving a diagnosis with a gene-panel cPAV 

(ANOVA Type II p = 0.21; Supplementary Figure 21; Supplementary Table 7a). Whilst these 

sub-continental GIA groupings enable more granular comparisons, they may limit power to 

detect broader differences due to small group sample sizes and greater multiple testing burden. 

We therefore repeated our analysis, stratifying probands using commonly-used, continental 

reference populations provided by gnomADv310 (‘continental GIA group’; Methods; Figure 
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6c) and restricting our comparison to groups with greater than 150 individuals (Non-Finnish 

European (nfe) = 23,838, South Asian (sas) = 2,925, African (afr) = 1,197, East Asian (eas) = 

198). Again, we found no significant association between a proband’s continental GIA group 

and their likelihood of receiving a diagnosis with a gene-panel cPAV (Figure 6d; 

Supplementary Table 7b).  

 
 

Figure 6. Clinical assessment of gene-panel cPAVs (GPcPAVs). a: Summarised differences in the 

proportion of gene-panel cPAVs assessed as P/LP (PPV) across GIA groups. b: Rate ratios describing 

differences in the number of gene-panel cPAVs (x), plotted against the odds ratios describing 

differences in the PPV of gene-panel cPAVs (y), both compared to Europe North West Group. Filled 

points show significant (p < 0.05) differences vs the Europe North West reference group after 

Bonferroni adjustment. c: The proportion of probands in each GIA group (see x-labels in a) by assigned 

continental GIA group d: Model coefficients showing the association between a proband’s assigned 

continental GIA group and the likelihood of a case being solved using at least one gene-panel cPAV. 

ORs are compared to the reference group (nfe). See Supplementary Tables 4, 9 & 10 for covariates and 

regression model outputs. Error bars show 95% confidence intervals. P/LP = Pathogenic or Likely 

Pathogenic RR = Rate Ratio. OR = Odds Ratio. PPV = positive predictive value. Pr = Pearson’s product 

of moment. Sr = Spearman’s rank. sas = South Asian, afr = African, eas = East Asian, nfe = Non-

Finnish European. 
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Overall, 90.1% (n = 47,021) of all gene-panel cPAVs were unclassified or assessed as VUS in 

at least one proband (Supplementary Information 8), including 98.6% (n = 36,672) of gene-

panel cPAVs identified in undiagnosed probands. Adjusting for covariates (Methods; 

Supplementary Table 3), we observed that 10 out of 12 non-European GIA groups had a 

significant excess of gene-panel cPAVs that were unclassified or assessed as VUS relative to 

the Europe North West group across both diagnosed and undiagnosed cohorts (Supplementary 

Figure 22; Supplementary Table 8).  

 

Discussion 

With the increasing use of genomic sequencing for the clinical care of rare disease patients, it 

is vital to understand the effect of genetic ancestry on variant prioritisation for clinical 

assessment. Here, we investigated rare variant prioritisation in the 100kGP, a unique resource 

comprising WGS of rare disease probands and family members drawn from the UK population. 

We found significant differences in both the number and predicted deleteriousness of rare 

candidate protein-altering variants prioritised for clinical assessment between genetically 

inferred ancestry groups. Probands with inferred non-European ancestries had up to 3 times 

more candidate variants within disease-associated gene panels compared to those with 

European ancestries. By estimating allele frequencies using ancestry-matched controls from an 

independent UK cohort, we identified thousands of common (FAF95 >1%) candidate variants 

that were ultra-rare (AF < 0.1%) or unobserved in all reference populations used for variant 

prioritisation. Candidate variants identified in probands with inferred non-European ancestries 

were less likely to be clinically assessed as P/LP, with the majority remaining unclassified. 

Finally, we found no evidence that a proband’s genetically inferred ancestry was associated 

with their likelihood of receiving a genetic diagnosis from candidate variants. 

 

Determination of a variant’s frequency in large population reference databases is an essential 

step in prioritising and interpreting candidate pathogenic variants for rare disease diagnosis12. 

Over time, complex demographic and adaptive histories have resulted in variability in allele 

frequencies across globally diverse populations34. As a result, variants that are common among 

individuals from ancestral backgrounds that are under-represented in allele frequency resources 

can appear superficially rare, increasing the likelihood that they are prioritised for clinical 

assessment35,36. Without allele frequency evidence from a large number of ancestry-matched 

controls available to assist in interpretation of pathogenicity, there is also an increased risk that 

candidate variants are assessed as VUS12. In contexts where VUS are clinically assessed, this 

can be both time consuming and expensive, and may result in increased uncertainty for clinical 

teams when considering appropriate treatment or care options37. Our finding that higher 

numbers of superficially rare candidate variants were prioritised in probands with inferred non-

European ancestries and were either unclassified or assessed as VUS is therefore a matter of 

concern.  

Difficulties in the ability to pinpoint benign or pathogenic variants in patients from diverse 

ancestral backgrounds have been widely reported, and have resulted in recommendations that 
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a patient’s genetic ancestry should be a key point of consideration during clinical variant 

assessment36,38. Our findings reiterate the importance of considering genetic ancestry 

throughout the variant prioritisation process for rare diseases. In particular, our analysis 

indicates that sub-groups used for allele frequency estimation should reflect the structure of 

genetic variation in the patient population, and suggests that the use of broad, continental 

population descriptors39 may contribute to an excess of candidate variants in some patients. For 

example, our results are consistent with complex demographic and admixture histories of 

ancestral lineages in under-represented East African populations40 resulting in patterns of 

common genetic variation distinct from the African (afr) reference populations annotated in 

gnomADv2 and gnomADv3. Efforts to include larger, more ancestrally diverse reference data 

are vital if we are to mitigate the disparities in variant prioritisation observed in our study. 

Future investigations should consider gnomADv4 

(https://gnomad.broadinstitute.org/news/2023-11-gnomad-v4-0/) and other genomic resources 

such as the Regeneron Genetic Center Million Exomes (RGC-ME) dataset41, which 

collectively include a further 335,000 individuals from previously under-represented 

backgrounds. Integration of data from sequencing initiatives such as those pioneered by 

H3Africa24, GenomeAsia100k42 and All of Us43 will also help to address the European ancestry 

bias in existing resources. However, increased investment in the generation of genomic data 

from additional under-represented regions such as Eastern Africa or Oceania36 is needed to 

achieve the goal of globally representative reference databases.  

 

Investigation of the influence of genetic ancestry on diagnostic yield from genomic testing for 

rare diseases is challenging. Several previous studies have reported a lower diagnostic yield 

among patients with non-European ancestries likely resulting from greater uncertainty in 

variant classification13,44. Despite the observed disparities in the number of identified candidate 

variants, including those appearing within disease-associated genes, we found no evidence that 

a proband’s genetic ancestry was associated with their overall likelihood of receiving a genetic 

diagnosis with a prioritised candidate variant. As such, these results may reflect developments 

in in-silico prediction methods27,28 and functional genomic screening technologies45 that are 

better able to distinguish pathogenic variants from the benign bystanders that likely make up 

the majority of excess candidate variants identified in probands with non-European ancestries. 

However, the large variance in diagnostic yield attributed to rare disease phenotypes in the 

100kGP suggests that we should be cautious concluding that biases related to genetic ancestry 

do not exist, since proband numbers with non-European ancestries for many diseases are small. 

Furthermore, we note that there is increased potential for genetic misdiagnosis to occur among 

patients from under-represented ancestral backgrounds36,38.. With criteria such as absence from 

reference databases used as supporting evidence of a variant’s pathogenicity (ACMG/AMP 

criteria; PM232, the continual reassessment of current diagnoses in the light of novel genetic 

variation captured by increasingly diverse reference data is warranted. Importantly, this would 

likely benefit patients from all backgrounds since variants that are shown to be common and 

benign in any one population are likely to be benign in all populations. Finally, the diagnostic 

evaluation of participants in the 100kGP is an ongoing process, and pathogenic variants 

identified through additional research are increasing the number of diagnoses across the cohort. 
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Further work is required to investigate the potential for ancestry biases in these novel and 

emerging diagnostic pathways. 

 

Our study has several limitations. Firstly, as highlighted in the Deciphering Developmental 

Disorders study46, a broad array of unmodelled factors are likely to influence the diagnostic 

yield for rare diseases, for example, those linked to the prenatal environment, and any of these 

may be correlated with reference population-based ancestry groups. Care should therefore be 

taken when attributing differences (or lack thereof) in diagnostic outcomes to patterns of 

genetic variation resulting from shared ancestry. Secondly, the large proportion of individuals 

with European ancestries and the very large variety of diseases phenotypes in the 100kGP 

cohort makes the detection of potential disease-specific patterns of bias challenging. Future 

work involving more ancestrally diverse rare disease cohorts with additional linked family and 

patient data may help elucidate any such patterns. Finally, we focussed on the prioritisation of 

small protein-altering variants, the majority of which are captured by both WGS and WES 

technologies. Evidence that both non-coding and large structural variants can contribute to rare 

disease pathogenesis is continuing to emerge47,48. Future investigations should therefore assess 

the influence of genetic ancestry on the prioritisation and interpretation of all types of genetic 

variation covered by WGS. 

 

In conclusion, our analysis highlights the continuing impact of sampling biases that are 

endemic to human genomics. A better understanding of human genetic variation, together with 

a greater emphasis on the use of more granular or continuous metrics of genetic ancestry49 will 

help bring us closer to the goal of equity in the genetic diagnosis of rare disorders.  

 

Online methods 

 

The 100,000 Genomes Project rare disease programme (100kGP) dataset 

We analysed data from participants recruited and sequenced by Genomics England as part of 

the 100kGP rare diseases programme and included in the 100kGP data release (v17). From this 

release we selected 61,512 participants with high-coverage short-read WGS data aligned to the 

NCBI GRCh38 reference genome (mean autosomal read depth ~41x) and included in the multi-

sample small variant aggregate (aggV2; https://re-docs.genomicsengland.co.uk/aggv2/) 

(Supplementary Information 1). Genomic data was linked to detailed metadata for 100kGP 

participants (Supplementary Information 5 and Supplementary Table 4). 29,425 participants 

were probands recruited with a wide range of 112 rare disease phenotypes and without a 

molecular diagnosis (described in detail elsewhere5,250). The remaining 32,087 individuals 

comprised both affected and unaffected family members. 

 

Self-reported ethnicity 

Self-reported ethnic groups encoded using NHS standard 16+1 data categories 

(https://www.datadictionary.nhs.uk/attributes/ethnic_category_code_2001.html) were 

available as linked metadata for 84.4% of probands (n = 24,854), with the remaining recorded 

as `Not Known` or `Not Stated`. After harmonising ethnic group labels (Supplementary 
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Information 6), the proportion of these probands belonging to each ethnic group recruited in 

England (n = 23,939) and stratified by age, (Supplementary Figures 1) was compared to self-

reported ethnicity data from the ONS 2021 Census for England18. 

 

Principal Components Analysis (PCA) 

We performed PCA on genotype matrices composed of a previously generated selection of 

60,825 high-quality (HQ) variant sites from the 100kGP dataset (Supplementary Information 

3) using the bed_autoSVD() function from the bigsnpr R package 

(https://privefl.github.io/bigsnpr/). A subset of 32,459 participants genetically unrelated to the 

3rd degree (estimated using KING51; Supplementary Information 4) were used to construct PCs 

and the bed_projectSelfPCA() function was used to overlay data from all 29,053 related 

participants. Uniform manifold approximation and projection (UMAP) was subsequently 

performed using a matrix composed of the top 16 PCs using the umap 

(https://github.com/tkonopka/umap) R package with parameters n_neighbours = 15 and 

min_dist = 0.4.  

 

Genetically inferred ancestry (GIA) 

Participants in the 100kGP dataset were assigned to genetically-inferred ancestry (GIA) groups 

according to their genetic similarity to an initial set of 21 sub-continental reference populations 

curated using data from the UK Biobank20 as described in Privé et al 202221 (Extended Data 

1). Specifically, the big_prodMat() function from the bigsnpr R package was used to project 

participant genotypes and reference group allele frequencies (AFs) across 55,706 intersecting 

HQ sites (Supplementary Information 3) onto the top 16 linkage disequilibrium-scaled 

principal components (PCs) previously generated using a selection of individuals from the UK 

Biobank and the 1000 Genomes Project21. Convex ancestry coefficients (α) (via an extension 

of the Summix method52) and squared Euclidean distances on the PC space (converted into an 

approximate FST
53) were calculated between each participant and the 21 reference groups. 

Participants were assigned to the genetically closest reference group when FST < 0.002 or 

otherwise where α > 80%. A small number of closely related groups were merged (as in Privé et 

al 2022) and groups with fewer than 50 participants in the 100kGP (South America, Finland, 

Japan) (Extended Data 1) were relabelled as ‘remaining participants’ alongside all individuals 

unable to be assigned using the above criteria. This resulted in a final set of 15 GIA groups 

(plus those labelled remaining participants). 

 

For comparison, participants in the 100kGP were also assigned to continental GIA groups 

according to their genetic similarity to a set of 9 reference populations released as part of 

gnomADv3.1. Following the protocol outlines in 

https://gnomad.broadinstitute.org/news/2021-09-using-the-gnomad-ancestry-principal-

components-analysis-loadings-and-random-forest-classifier-on-your-dataset/, the pc_project 

function from the Hail Python package (https://github.com/hail-is/hail) was used to project 

participant genotypes and reference group AFs across 76,003 sites onto the top 20 

gnomADv3.1 PC loadings. The assign_population_pcs function from gnomAD Hail utilities 

(https://github.com/hail-is/hail) was then used to predict group assignments alongside using the 
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trained ONNX random forest model as the fit parameter with a minimum probability of 0.8. 

Participants with a fitted probability of <0.8 to all reference populations were labelled ‘oth’. 

 

Candidate protein altering variants (cPAVs) 

For all 100kGP probands, genome-wide small variants (SNVs and short <50bp indels) 

previously triaged using Genomics England’s automated bioinformatics pipelines (described 

in detail elsewhere22; https://re-docs.genomicsengland.co.uk/tiering/) were included in the 

100kGP v17 data release (Supplementary Information 7). In summary, after sample and 

genotype-level QC, small variants called in the proband and in available family members that 

were predicted to alter protein coding or splicing (sequence ontology (SO; 

http://www.sequenceontology.org/) consequence terms; Supplementary Table 1) were initially 

triaged by the automated bioinformatics pipeline into 'candidate small protein-altering variants’ 

(cPAVs) using mode(s) of inheritance, reference population AF thresholds and appropriate 

familial co-segregation with the disease phenotype given the clinically indicated penetrance 

mode (complete or incomplete) (Supplementary Figure 9). 

 

To summarise the number of cPAVs and gene-panel cPAVs per proband in the 100kGP dataset, 

we started with all cPAVs included in the 100kGP v17 data release as described above, 

restricted to only include cPAVs identified in families with WGS data aligned to the NCBI 

GRCh38 reference genome. With reference to the specific panel(s) applied to the proband and 

the variant’s potential mode(s) of inheritance, we classified a subset of cPAVs as ‘gene-panel 

cPAVs’ (gene-panel cPAVs) using the most recent (as of January 1st 2024) ‘green’ genes 

included in PanelApp29 (Supplementary Information 1, Supplementary Information 7, and 

Supplementary Table 3). gene-panel cPAVs identified in multiple virtual gene panels for each 

proband were recorded only a single time. This database was then filtered to only include 

cPAVs or gene-panel cPAVs that were either absent or rare across a selection of reference 

population databases (Supplementary Table 2), comprised of gnomADv2.1 (exomes, gnomAD 

v3.1 (genomes), the UK10k (exomes), and 6,628 genomes sequenced by Genomics England. 

Specifically, for reference populations with n>2,000 sequenced genomes or exomes, a filtering 

threshold of AF <0.1% was applied under monoallelic (dominant) modes of inheritance and 

<1% under biallelic (recessive) modes of inheritance. To ensure parity with AF filtering 

initially performed by the rare disease prioritisation pipeline (Supplementary Table 2), we 

further filtered cPAVs using a threshold of AF <0.2% (monoallelic) or AF<2% (biallelic) in 

databases with n <2,000 diploid genomes or exomes, with more lenient thresholds used to avoid 

filtration of rare variants whose population AFs may be inflated owing to the smaller number 

of sequenced individuals in the sub-group. All variants that passed these filters were defined 

as cPAVs (and a subset as gene-panel cPAVs) and counts were summarised per proband, with 

a count treated as singular irrespective of the homozygous or heterozygous state of the 

genotype.  

 

Protein altering variants missing from gnomAD 

To summarise the number of small predicted protein-altering variants missing from gnomAD 

per participant in the 100kGP dataset, we first extracted all PASS variants in aggV2 

(Supplementary Information 3) across the autosomes and the X chromosome annotated using 
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ENSEMBL VEP v10555 with SO consequence terms predicted to alter protein coding 

(Supplementary Table 1) in at least one transcript. bcftools v10.1.2 5657 isec was then used to 

extract only those protein-altering variants that were not present in either gnomAD v2.1 

exomes (lifted over to GRCh38 coordinates) or gnomAD v3.1 genomes.  PLINK258 –-sample-

counts was used to summarise the number of missing protein-altering variants genotyped per 

participant (non-missing genotypes, including at multi-allelic sites in aggV2, Supplementary 

Information 1) with a count treated as singular irrespective of the homozygous or heterozygous 

state of the genotype. 

 

Predicted deleteriousness of cPAVs 

Deleteriousness predictions for cPAVs reported in the 100kGP across autosomes and the X 

chromosome were annotated where possible with two proteome-wide missense predictors 

AlphaMissense27 and PrimateAI-3D28 and one genome-wide variant effect predictor: 

CADDv1.626. AlphaMissense scores were extracted from public Google Cloud buckets 

(https://console.cloud.google.com/storage/browser/dm_alphamissense), whilst PrimateAI-3D 

scores were downloaded from (https://primad.basespace.illumina.com/download) (both with 

consent for research-only use). CADD scores (PHRED-scaled) were generated using 

ENSEMBL VEP v105 (as previously applied to all variants in aggV2; Supplementary 

Information 1). Annotations at ENSEMBL canonical transcripts were used for all methods and 

cPAVs were labelled as ‘deleterious’ according to specific method-specific score cut-offs (see 

Figure 4). 

 

Clinical assessment information for cPAVs 

Clinical assessments of variants, including those triaged as gene-panel cPAVs, provided by 

NHS Genomics England medical centres (GMCs; 

https://www.england.nhs.uk/publication/nhs-genomic-england-medicine-centres-map/) using 

standard ACMG/AMP criteria59 and following the Association for Clinical Genomic Science 

best practice guidelines33 were extracted from the Genomics England 100kGP v18 data release. 

Probands assessed as fully or partially resolved cases were defined as having received a 

diagnosis. A partially solved case is one where the causal variant identified was recorded in the 

v18 release as not fully explaining the patient’s phenotype(s). Variants without a recorded 

ACMG/AMP assessment were taken as unclassified. 

 

Multivariable generalised linear models (GLMs) 

Utilising genomic, phenotypic, and pipeline-related data linked to probands in the 100kGP 

dataset, we used a series of multivariable regression models to assess the effect of predictor 

variables (X) on response variables (Y), adjusting for relevant covariates (Supplementary Table 

4), including an interaction term between family structure and penetrance (β6). 

 

All models took the base form:  

 

E(Y) = β0 + β1X + β2proband age at date WGS data was received + β3proband karyotype + 

β4family group type + β5penetrance mode + β6 family structure, penetrance mode + β7 
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disease phenotype + β8date WGS data was received + β9cumulative runs of homozygosity 

(ROH) >1Mb + β10number of ROH >1Mb + β11PanelApp gene panel size (Mb) + 

β12Number of PanelApp panels applied + β13read mapping error rate + β14percentage of 

aligned reads + β15mean autosomal read depth 

 

Where for each model, X is either the proband’s GIA group as assigned using reference 

populations from the UK biobank (with remaining participants represented as a single 

additional group), the probands assigned group utilising gnomADv3.1 reference populations, 

or the number of protein-altering variants called in the proband that were missing from 

gnomAD (calculated as described above); and Y is one of the following variables each of which 

also defines the GLM link function as described: 

 

(1) The count of cPAVs or gene-panel cPAVs (all cPAVs or gene-panel cPAVs 

considered) or the count of rare (population maximum AF < 0.1%) cPAVs or gene-

panel cPAVs identified in the proband. This regression was performed using a negative 

binomial GLM with a log link (as the Poisson was found to be over-dispersed; cPAVs 

Z: 177.9, p < 2.2x10-16) with the glm.nb() function from the MASS R package 

(https://www.stats.ox.ac.uk/pub/MASS4/).  

 

(2) The proportion of rare (population maximum AF < 0.1%, Supplementary Table 2) 

cPAVs or gene-panel cPAVs identified in the proband predicted to be deleterious (the 

count of rare cPAVs or gene-panel cPAVs annotated as deleterious divided by the total 

count of annotated rare cPAVs or gene-panel cPAVs). This regression was performed 

using a binomial GLM with a logit link with the glm() function in R was run separate 

for each of the variant effect predictors used to annotate deleterious cPAVs (SNPs only; 

AlphaMissense, PrimateAI-3D, and CADD) as described above. Unannotated variants 

were not included as counts in the regression. 

 

(3) The proportion of gene-panel cPAVs (or cPAVs) identified in the proband that went on 

to be assessed as pathogenic or likely pathogenic (P/LP) resulting in a full or partial 

genetic diagnosis i.e the positive predictive value (PPV) = the count of gene-panel 

cPAVs assessed as P/LP divided by the total count of gene-panel cPAVs. This 

regression was performed using a binomial GLM with a logit link with the glm() 

function in R. Here, an additional covariate describing the GMC Trust handling the case 

was added to account for possible variation in the clinical assessment of gene-panel 

cPAVs. 

 

(4) A binary variable describing whether at least one disease-associated P/LP cPAV or 

gene-panel cPAV was identified in the proband. This regression was performed using 

logistic regression with the glm() function from base R. Here, as in (3), the handling 

GMC Trust was included as an additional covariate in the model.  
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(5) The count of gene-panel cPAVs identified in the proband that were either unclassified 

(no ACMG/AMP classification) or were assessed as a variant of uncertain significance 

(VUS). This regression was performed using a negative binomial GLM with a log link 

with the glm.nb() function from the MASS R package. Here, as in (3), the handling 

GMC Trust was included as an additional covariate in the model. This analysis was 

performed after stratifying the dataset into two cohorts depending on whether the 

proband had received a full or partial genetic diagnosis. 

 

To identify correlations between the effect of GIA group on the number of cPAVs identified 

in the proband (response variable Y = cPAVs) and the effect of GIA group on the number of 

protein-altering variants missing from gnomAD (as in Figure 3b) we performed the following 

additional negative binomial regression using the glm.nb() function, adjusting for sequencing 

quality control metrics which may influence variant calling:  

 

E(number of protein altering variants missing from gnomAD) = β0 + β1proband GIA group + 

β2read aligned error rate + β3percentage of aligned reads + β4mean autosomal read depth 

 

GIA specific coefficient estimates (effect sizes on a log scale) across specific regression models 

were compared using the cor.test() R function where described (e.g. as in Figure 3b). The 

proportion of variance explained by each model was estimated using Nagelkerke’s R2 via the 

PseudoR2 function from the DescTools R package (https://cran.r-

project.org/web/packages/DescTools/index.html). Type II ANOVA was performed using the 

Anova function from the car R package (https://cran.r-

project.org/web/packages/car/index.html). 

 

The COVID-19 study cohort  

We analysed data from 34,701 participants recruited and sequenced by Genomics England as 

part of the COVID-19 Genomics Study (the COVID-19 cohort)30 and included in the 

aggregated dataset v5 data release (aggCOVIDV5; https://re-

docs.genomicsengland.co.uk/covid5/). This included high-coverage short-read WGS 

sequencing data aligned to the NCBI GRCh38 reference genome (mean autosomal read depth: 

~43x) and subject to variant calling, sample and genotype-level QC, and aggregation as 

previously described30 (Supplementary Information 2). Following the same method for GIA 

assignment as outlined for the 100kGP (see above), we selected 32,043 participants who were 

unrelated to the 3rd degree to participants both in the 100kGP and others within the COVID-19 

cohort (as estimated using KING; Supplementary Information 5) mapping to one of 14 GIA 

groups in the COVID-19 cohort with more than 100 participants (see Figure 6).  

 

Filtering allele frequency (FAF) calculation 

For 505,993,047 variants in aggCOVIDv5 (including multi-allelic sites; Supplementary 

Information 2) across the autosome and the X chromosome, (non-missing) allele counts (AC) 

and allele numbers (AN) for each GIA group were calculated using PLINK2 –-freq-counts. 

After excluding variants with >10% missing genotypes (included masked low-quality sites; 
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Supplementary Information 2), we selected 986,893 variants in the COVID-19 cohort (mean 

missingness: 0.09%) identified as cPAVs in one or more probands in the 100kGP. 10 variants 

with a population maximum AF of <0.1% across all previously queried reference databases 

(Extended Data 1) and >2% cohort-wide AF across the COVID-19 cohort (mean AF: 19.3%), 

likely occurring because of differences in processing, variant calling, or QC between 

aggCOVIDV5 and each of the previously queried reference databases, were excluded from 

downstream analysis. For each of the 14 GIA groups in the dataset we used the Poisson 

sampling method described in Whiffin et al 201731 

(https://github.com/ImperialCardioGenetics/frequencyFilter) to calculate AN adjusted, 95% 

confidence filtering allele frequencies (FAF95), which give the maximum credible GIA group 

AF (lower bound of the 95% CI) to account for the effect of GIA group sample size variance 

on AF estimation.  
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Data availability 

The data supporting the findings of this study are available within the Genomics England 

Research Environment. To access genomic and clinical data within the Research Environment, 

researchers must first apply to become a member of either the Genomics England Research 

Network (academics/healthcare professionals) or the Discovery Forum (industry) via the 

Genomics England website (https://www.genomicsengland.co.uk/research/academic/join-

research-network). 

 

Code availability 

All code used for data generation, analyses, and plotting within the Genomics Research 

Environment are available at: https://github.com/stallmanGEL/gel-ancestry-variant-

prioritisation-publication. 
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