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Abstract 

Background: The COVID-19 pandemic has led to substantial health and financial burden worldwide, and 
vaccines provide hope to reduce the burden of this pandemic. However, vaccinated people remain at risk for 
SARS-CoV-2 infection. Genome-wide association studies (GWAS) may allow for the identification of 
potential genetic factors involved in the development of COVID-19 breakthrough infections (BI), however 
very few or no GWAS have been conducted for COVID-19 BI so far.  
Methods: We conducted a GWAS and detailed bioinformatics analysis on COVID-19 BI in a European 
population based on the UK-Biobank (UKBB).  We conducted a series of analyses at different levels, 
including SNP-based, gene-based, pathway, and transcriptome-wide association analyses, to investigate 
genetic factors associated with COVID-19 BI and hospitalized infection. Polygenic risk score (PRS) and 
Hoeffding's test were performed to reveal genetic relationships between BI and other medical conditions. 
Results: Two independent loci (LD-clumped at r2=0.01) reached genome-wide significance (p<5e-08), 
including rs36170929 mapped to LOC102725191/VWDE, and rs28645263 mapped to RETREG1.  Pathway 
enrichment analysis highlighted pathways such as viral myocarditis, Rho-selective guanine exchange factor 
AKAP13 signaling, and lipid metabolism. PRS analyses showed significant genetic overlap between 
COVID-19 BI and heart failure, HbA1c and type 1 diabetes. Genetic dependence was also observed between 
COVID-19 BI and asthma, lung abnormalities, schizophrenia, and type 1 diabetes, based on the Hoeffding's 
test.  
Conclusions: This GWAS study revealed two significant loci that may be associated with COVID-19 BI, 
and a number of genes and pathways that may be involved in BI. Genetic overlap with other diseases was 
identified. Further studies are warranted to replicate the findings and elucidate the mechanisms involved.  
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Introduction 

COVID-19 has resulted in substantial health and financial burden worldwide. According to the data 
published by World Health Organization (WHO), over 700 million confirmed cases and 7 million deaths 
have been reported worldwide as of 1 Jan 20241. Vaccines for COVID-19 are widely perceived to be the 
most promising strategy to minimize severe disease, mortality, and the burden of this pandemic.   
 
COVID-19 vaccination also reduces risks of infection and transmission, especially prior to the emergence 
of Omicron variants.  In an English study of 151,821 contacts of 99,567 index patients in 2021, the rate of 
transmission from people fully vaccinated with BNT162b2 (Pfizer-BioNTech) was 23% vs 49% for 
transmission from unvaccinated people (adjusted odds ratio [aOR], 0.35 [95% CI, 0.26-0.48] for 
transmission of Delta to unvaccinated contacts; aOR, 0.10 [95%CI, 0.08-0.13] for transmission of Delta to 
fully vaccinated contacts)2.  
 
Nevertheless, evidence shows that fully vaccinated people still remain at risk for SARS-CoV-2 infection. 
For example, a total of 10,262 SARS-CoV-2 vaccine breakthrough infections had been reported from 46 U.S. 
states and territories from 1 Jan, 2021 to April 30, 20213, in the period shortly after the launch of vaccination. 
It is intriguing to study why some individuals are susceptible to breakthrough infection (BI) or severe 
disease despite vaccination.3 
 
Importantly, BI is uncommon in the pre-Omicron period since the vaccine provides a high protection against 
infection and severe disease3; as such, those who indeed develop BI may have specific genetic and/or 
clinical risk factors. For Omicron variants, vaccination in general provides much weaker protection against 
infection and the protective effects wanes more quickly. For example, a recent study4 of Omicron variants 
showed that 100 days after immunization, vaccine effectiveness for infection was 26% and 35% for three 
and four doses of the BioNTech BNT162b2 vaccine, and to 6% and 11% for three and four doses of the 
CoronaVac inactivated vaccine. Other studies also found low to moderate protective effects and quick 
waning in the Omicron era5. We therefore chose to focus on infection (and severe COVID-19) in the pre-
Omicron period; otherwise, we may be finding genetic variants associated with infections/severe disease in 
general, instead of genetic factors specifically linked to immune responses to vaccination and BI. Overall, 
we believe that learning about BI may provide important biological and clinical insights into the 
pathophysiology of COVID-19 and the immunological mechanisms underlying vaccine responses.  
 
Several studies have been conducted on BI of COVID-19. Sun et al.6 identified that persons with immune 
dysfunction had a substantially higher risk for COVID-19 BI. Bergwerk et al.7 conducted a study on BI in 
healthcare workers, and found that the occurrence of COVID-19 BI was correlated with neutralizing 
antibody titers during the peri-infection period and most BI were mild or asymptomatic, although persistent 
symptoms did occur. Kim et al.8 presented a case series of vaccinated subjects who were later hospitalized 
from COVID-19, and found 7 out of 10 patients did not show observed serological response to mRNA 
vaccination.  
 
However, most studies of COVID-19 BI did not study the influence of genetic factors, especially at a 
genome-wide level. Identifying genetic factors related to BI may help researchers better understand the 
mechanisms underlying poor responses to vaccination, shedding light on the pathogenesis of COVID-19. 
Also, the identified genetic factors may be useful for guiding drug repurposing in the future9.  
 
Here, we conducted a genome-wide association study (GWAS) for breakthrough infection (BI) (COVID-19 
BI) based on the UK Biobank (UKBB).  To the best of our knowledge, there are no published works on 
GWAS of COVID-19 BI yet. This is likely the first GWAS to investigate the genetic basis of COVID-19 BI 
and severe infection (focusing on pre-Omicron variants), including a comparison of severe vs mild BI, 
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coupled with detailed post-GWAS bioinformatics analyses. The workflow in our study was shown in Figure 
1. Briefly, we defined different study cohorts according to the number of vaccine doses received and 
whether the participants developed hospitalized or fatal BI. Then we performed GWAS analysis based on 
each scenario to identify the underlying genetic loci. Post-GWAS analysis was also conducted, including 
gene-based, pathway enrichment, and transcriptome-wide association studies (TWAS) analyses, as well as 
polygenic risk score (PRS) association analysis with other related medical conditions. 

Methods 

Participants and Cohort Definition 

Data source. All the individual-level data in our study were extracted from the UK Biobank (UKBB), a 
large-scale prospective cohort comprising ~500,000 individuals. The age of individuals in the current study 
varied from 50 to 89. Our current analysis was based on UKBB project number 2873210. 
 
COVID-19 infection status. COVID-19 infection data were downloaded from the UKBB data portal. (for 
details, please refer to https://biobank.ndph.ox.ac.uk/showcase/exinfo.cgi?src=COVD19).  Briefly, the latest 
COVID-19 test results were downloaded from UKBB, with the last update on 21 Jul 2021. COVID-19 
infection status was primarily defined based on test results. Besides, COVID-19 diagnosis was also made 
based on ICD code U071 from hospital inpatient or mortality records, or code "Y2a3b" in TPP General 
Practice clinical records. 
 
Vaccination status. Vaccination status was extracted from the TPP and EMIS GP clinical records (TPP last 
update 21 Jul 2021; EMIS last update 10 Aug 2021). Because the type of vaccine was missing in our 
datasets for most of the individuals, we did not perform analysis by vaccine type. Known data indicated 
participants received either BioNTech BNT162b2 or Oxford-AstraZeneca ChAdOx1 nCoV-19 vaccines (the 
median length of follow-up for the vaccinated group was 54 days). We defined three groups based on 
vaccination status: one dose, at least one dose, and two doses. 
 
Inclusion and Exclusion criteria. Firstly, we included individuals with vaccination records under the TPP 
and EMIS systems (sample size N=393,544). Individuals with a prior infection were excluded as previous 
infections may also confer immunity. Afterwards, individuals with available imputed genotype data and 
labeled as European ancestry (UKB data-field 22006) were included. 
 
Phenotype definition. COVID-19 BI was defined as an infection occurring 14 days after vaccination. If a 
subject received one dose of vaccination before the date of infection, we define this scenario as ‘one dose of 
vaccine’. The same applies to other dosages of vaccination.  
 
We defined three cohorts A, B and C based on different criteria (Table 1). Cohort A compared hospitalized 
or fatal BI to non-hospitalized BI. Cohort B compared hospitalized or fatal BI to individuals without 
COVID-19 BI. Cohort C compared all BI cases to individuals without BI. 

Genotyping and Quality Controls 

Genotyping and data imputation were performed by the UKBB using Applied Biosystems UK BiLEVE 
Axiom Array (~�50,000 participants) and Applied Biosystems UK Biobank Axiom Array (~�450,000 
participants)11.  Marker positions were aligned to the GRCh37 reference genome. 
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In the first step, quality control (QC) of imputed genotyping data was performed by PLINK 1.9 to include a 
relatively small set of SNPs for computing the genetic relationship matrix (GRM). Briefly, we excluded 
SNPs with minor allele frequency (MAF) below 1%, minor allele count (MAC) below 100, genotype 
missingness above 10%, and Hardy-Weinberg equilibrium p-value less than 1e-10, and samples with more 
than 10% missingness.  In total, 485,623 common variants with MAF > 0.01 and 488,371 individuals 
remained after the QC. These variants were used to compute the sparse genetic relationship matrix (GRM). 
Imputation was carried out by the UKBB (resulting in ~96M genotypes)12,13. Details are provided elsewhere 
(https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/impute_ukb_v1.pdf).  

The imputed data were filtered with standard QC criteria, e.g., MAC ≥ 1014, HWE test P ≥  1e-10, 

genotyping rate ≥ 0.9, and imputation info score ≥ 0.3. The resulting set of imputed variants (ranging from 
5,638,489 to 12,275,176 across cohorts) was used in the final GWAS analyses (Table S21).  

Genome-wide association study 

GWAS was performed using a generalized linear mixed model (GLMM)-based method to test for 
association between imputed SNP dosages and BI phenotypes in cohort A, B and C. We employed 
fastGWA-GLMM15 to perform the GWAS analysis. This tool calculated a sparse genomic relationship 
matrix to evaluate pedigree-relatedness among individuals. In addition, fastGWA-GLMM can handle 
imbalanced data (for example when cases are rare compared to controls).  We fitted age, sex, age*age, 
age*sex, and the top 10 genetic principal components provided by UKBB (data-field 22009) as covariates.  

SNP-based Analysis 

LD-clumping was further performed using PLINK 1.9 (r2=0.5, distance = 250kb) to identify the independent 
loci. The European samples in Phase 3 1000 Genomes were used as the LD reference (GRCh37)16. SNP-to-
Gene mapping was performed by the Bioconductor17 package ‘biomaRt’18 (version 2.48.2) on R-4.0.3. In 
addition, the OpenTargets Genetics portal19 was employed to prioritize the most relevant genes for each 
variant as a supplementary analysis. 

Gene-set and pathway analyses 

Gene-based test with fastBAT. Gene-based test was performed using fastBAT20, with 1000 Genomes 
European ancestry samples as the LD reference21. 
 
Multiple testing controlled by FDR. False discovery rate (FDR) was used to control for multiple testing. 
The Benjamini–Hochberg procedure (BH) adjusted P-value were used22. We set a FDR threshold of 0.05 to 
declare significance, while FDR<0.1 is considered an ‘suggestive’ association.  
 
Pathway and Gene Ontology (GO) enrichment analyses with GAUSS23. Enrichment analysis of 
biological pathways was performed by Gene set analysis Association Using Sparse Signals (GAUSS)23.  
 
Two collections of gene-sets (C2 and C5) were used, obtained from the Molecular Signature Database 
(MsigDB v6.2)24. C2 refers to a collection of curated pathways, including many canonical pathways such as 
KEGG, BioCarta, etc. C5 is another collection containing gene-ontology (GO) gene-sets. GAUSS identifies 
a subset of genes (called the core subset) within the gene set, which produces the maximum signal of 
association. 
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The corresponding p-value and core subset (CS) of genes for each outcome-pathway combination were 
computed via a composition of copula-based simulation and generalized pareto distribution (GPD)25. BH 
procedure for FDR control was used to correct for multiple testing.  
 
Transcriptome-wide association studies (TWAS) and Meta-TWAS 

TWAS provides a novel approach for gene-trait association studies. TWAS utilizes known genetic variants 
(eQTLs) associated with transcript abundance to infer gene expression from GWAS data, thereby exploring 
associations between genetically regulated gene expression and complex traits.  Here we performed TWAS 
for 48 tissues (see Table S17.1), including whole blood and lung tissues in GTEx v8 using the program S-
PrediXcan26 FDR was used to correct multiple testing. We also performed a ‘meta-TWAS’ using S-
Multixcan, integrates the results across different tissues to enhance statistical power27. 

Phenome Wide Association Studies 

Phenome-wide association study (PheWAS) was performed to study the associations between SNPs and a 
large number of different phenotypes. We performed PheWAS via the OpenTargets Genetics portal19 with 
summary statistics from the UK Biobank, FinnGen, and GWAS Catalog. 
 

Evaluating genetic overlap of COVID-19 breakthrough infections with other medical conditions 

Polygenic risk score analysis  
 
In order to explore genetic overlap of COVID-19 BI with other conditions, we performed polygenic risk 
scores (PRS) analyses based on summary statistics using ‘PRsice’28. The summary statistics GWAS data 
were obtained from FinnGen29 and included a variety of medical conditions such as asthma, heart failure, 
cardiovascular diseases, obesity, diabetes, etc. (Table S18). Here we employed FinnGen maily to ensure no 
overlap with our UKBB samples. Different p-value thresholds (from 5e-8 to 0.01) were explored to filter the 
SNPs in PRS analysis.  LD-clumping was performed at r2=0.05 within a distance of 250kb by PLINK 1.9. 
Harmonization of different sets of summary statistics was performed with ‘TwoSampleMR’ (version 
0.4.26)30. 
 

Genetic dependence between BI and other disorders using full GWAS summary statistics 
 
Inspired by a recent study31, we also employed the Hoeffding’s test32 to evaluate genetic dependence across 
COVID-19 BI and other diseases. As demonstrated in the aforementioned study31, Hoeffding's test of 
independence presents a viable alternative to LD score regression, particularly when dealing with small or 
moderate (effective) sample sizes, while maintaining adequate control of type I errors. (In this study, since 
the number of cases is in general limited, the effective sample size might be too small for a reliable LD score 
regression analysis.) In brief, Hoeffding's test is a well-established non-parametric method that examines the 
marginal and joint distributions of two input variables (say X and Y) 33 and determines whether the 
distributions are independent. This test relies on the ranks of X and Y, avoiding parametric assumptions. 
 
Our testing procedure closely mirrored that described in the reference31 and our recent study34. We 
performed clumping using PLINK (v1.9), setting the physical distance threshold at 10,000 kb and the r2 
threshold at 0.2. We tested genetic dependence of COVID-19 BI with a range of other medical conditions, 
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such as disorders of the respiratory, cardiovascular, endocrine and neurological systems (please refer to 
Table S18 for a comprehensive list). We utilized the R package 'independence' 32 to conduct the analysis.  

Results 

Results from SNP-Based Analysis 

Results from GWAS. We performed GWAS analysis on 9 scenarios (Table 2). We identified two loci that 
were significantly associated with COVID-19 BI at the genome-wide level (p<5e-8), for ‘at least one dose of 
vaccine’ and ‘two doses of vaccine’ of cohort C (i.e., models C2 and C3, Table 3-4). The loci were 
rs36170929 on chromosome 7 (effect allele = G, effect size = 0.21, SE=0.038, allele frequency of G = 0.64, 
P=4.39e-8), and rs28645263 on chromosome 5 (effect allele = C, effect size = 0.35, SE=0.06, allele 
frequency of G = 0.42, P=9.46e-9).   
 
Manhattan plots for GWAS of ‘at least one dose of vaccine’ and ‘two doses of vaccine’ are shown in 
Figures S1-2. Tables 3 and 4 show the top 10 SNPs found in models C2 and C3 for cohort C, respectively. 
All SNPs with p<1e-5 in the 9 scenarios are listed in Tables S1-9. 
 
Significant SNPs mapped to genes. The rs36170929 locus maps to LOC102725191, an uncharacterized 
protein-coding gene. Based on the OpenTargets Genetics database, the top gene mapped to this SNP is 
VWDE (Von Willebrand Factor D And EGF Domains; distance to this gene = 97.62 kb), as rs36170929 is an 
eQTL for VWDE.  The rs28645263 locus maps to RETREG1 (Reticulophagy Regulator 1).  
 
For the top 10 independent SNPs associated with COVID-19 BI in Tables 3-4, the most probable disease-
associated genes corresponding to these SNPs were further prioritized by the OverallV2G (Variant-to-Gene) 
score from OpenTargets Genetics (Table S10). Additional assigned genes using OpenTargets Genetics for 
SNPs with GWAS p-value < 1e-4 are listed in Table S11. 
 
Region plots of significant SNPs. Region plots of rs36170929 and rs28645263 were shown in Figure S3 
and Figure S4, displaying LD-clumped SNPs with these significant loci located within 1Mb. 

Results from Gene-Based Analysis 

Results of fastBAT. We employed fastBAT to perform further gene-level analysis, focusing on common 
variants (MAF>0.01).  Top 10 genes from the gene-based analyses are listed in Table 6. The gene BAGE 
(P=3.86e-8, FDR = 9.51e-4, chromosome 21) reached significance (FDR < 0.05) after adjusting the p-value 
by the BH procedure, while genes BAGE2, BAGE3, BAGE4, BAGE5, ARHGEF3 were considered having 
suggestive associations with BI with FDR < 0.1 (Table S12).   

Results of pathway enrichment analysis by GAUSS.  To gain deeper insights into the relevant functional 
pathways, we employed GAUSS for further analysis of genes extracted from fastBAT. Totally 10,679 
canonical pathways and gene ontology (GO) gene sets from the MSigDB database were tested.  

Table 5 shows the pathway enrichment analysis results. For the results of canonical pathways, some of the 
top enriched pathways included KEGG VIRAL MYOCARDITIS (FDR corrected p = 0.05), BIOCARTA 
AKAP13 PATHWAY (FDR corrected p = 0.06), KEGG TIGHT JUNCTION (FDR corrected p = 0.06), and 
REACTOME TRANSLATION (FDR corrected p = 0.06). More detailed results are listed in Table S13-14. 
For the results of GO gene sets (C5), the top significant associations were observed based on Model A 
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(participants with at least 1 dose of vaccine) for GOCC MUSCLE MYOSIN COMPLEX (FDR corrected p 
= 1.44e-5), GOCC MYOSIN FILAMENT (FDR corrected p = 1.44e-5), and GOCC MYOSIN COMPLEX 
(FDR corrected p = 6.41e-4). 

Results from TWAS. We employed S-Multixcan to investigate the associations between genetically 
regulated gene expression and phenotypes across 48 types of human tissues (TableS17.1), and combine 
evidence across these tissues to improve statistical power. The most significant association with COVID-19 
BI was observed for AQP7P1 (FDR corrected P = 7.34e-3).  Further, PFN1P2 (FDR corrected P = 1.61e-2), 
AL590452.1 and LINC00842 (FDR corrected P <0.05) were observed to be associated. In addition, RP11-
314D7.3 (FDR corrected P=6.94e-2) showed moderate associations with BI (FDR between 0.1 and 0.2). 
More results are provided in Table S17.2. 

Results from analysis of genetic overlap with other conditions 

Results of PRS and genetic dependence analysis of breakthrough infection with other medical conditions. 
We performed polygenic risk score testing for BI with other medical conditions to explore polygenic 
associations. Table 7 lists the results based on model C2 for individuals with at least one dose of vaccine.  
The most significant positive association was observed for heart failure (FDR corrected P = 1.82e-3). We 
also observed significant associations of BI with HbA1c (FDR corrected P = 2.18e-2), and type I diabetes 
(FDR corrected P = 1.22E-02). We also found nominally significant associations (nominal p-value <0.05) 
for several traits such as obesity, BMI, dementia, asthma, COPD/asthma-related infections, serum urate etc. 
(Table S19). 
 
Also, we performed Hoeffding's independence test to evaluate genetic dependence between these 
comorbidities and BI.  Table 8 and Table S20 show the results of Hoeffding's Independence test of BI with 
related traits for individuals with at least one dose of vaccine. Several conditions including asthma, 
abnormal findings on lung imaging, type I diabetes and schizophrenia showed significant genetic 
dependence with FDR<0.05, while a few other traits including pulmonary embolism and cardiomyopathy 
showed FDR<0.1. A variety of other pulmonary, cardiometabolic, neurological and liver conditions were 
nominally significant at p<0.05.  
 
Results of PheWAS with the top associated variants. The PheWAS results for the top 10 SNPs identified in 
Models C2 and C3, based on individuals receiving at least one or two doses of the vaccine, revealed several 
SNPs significantly associated with lymphocyte counts and white blood cell counts. Although some did not 
reach genome-wide significance (P = 5e-8).  
 
Specifically, rs28645263 (P = 3.60e-4, Beta = 0.0078) and rs9661909 (P = 2.64e-6, Beta = -0.008922) were 
significantly associated with lymphocyte counts in PheWAS, with corresponding GWAS P-values of 9.46e-
9 and 1.56e-6, respectively. Additionally, rs28645263 (P = 9e-4, Beta = 0.0073) and rs4073656 (P = 1.23e-5, 
Beta = 0.008) were associated with white blood cell counts, with GWAS P-values of 9.46e-9 and 9.89e-7, 
respectively. Further details are provided in Tables S15-16. 
 
 

Discussion 

In this study, we conducted a GWAS study to uncover the associated genetic factors of BI using data from 
the UKBB. Furthermore, a series of post-GWAS analysis, including gene-based analysis, pathway 
enrichment analysis, PRS analysis etc., were performed to unveil new insights into the genetic architecture 
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of BI. To the best of our knowledge, this is the first GWAS to investigate the genetic basis of breakthrough 
COVID-19 infection (BI) and severe infection (focusing on pre-Omicron variants), including a comparison 
of severe vs mild BI.  
 

Interpretation of findings 

Top loci identified from GWAS.  We identified two loci, rs36170929 (p=4.39e-8) and rs28645263 
(p=9.46e-9), which showed association with COVID-BI at genome-wide significance. These two loci can be 
mapped to two protein-coding genes, LOC102725191 and RETREG1 (Reticulophagy Regulator 1) 
respectively.  RETREG1 is widely considered as an important mediator of reticulophagy (also referred as 
ER-phagy). Reticulophagy is a specific type of autophagy which involves the selective elimination of 
portions of the endoplasmic reticulum (ER)35. Notably, a recent study36 found that the ER-associated 
degradation (ERAD) regulator ERLIN1 strongly impeded the late stages of SARS-CoV-2 replication. 
Furthermore, it was discovered that two additional factors, RETREG1 and FNDC4, which are involved in 
ER-phagy and aggresome-related processes respectively, also hindered SARS-CoV-2 replication. These 
findings suggest that components of the ERAD pathway, including RETREG1, may serve as inhibitors of 
COVID-19 infection.  However, the precise mechanisms by which this gene influences COVID-19 BI 
warrant further investigation. 
 
Although LOC102725191 is a protein-coding gene, its function remains uncharacterized. Based on 
OpenTargets, another gene VWDE (Von Willebrand Factor D And EGF Domains) was listed as the top gene 
mapped to rs3617092, as this SNP is an eQTL for VWDE. Von Willebrand Factor (vWF) is a multimeric 
glycoprotein that is involved in inflammation and hemostasis. It has been reported that COVID-19 is 
associated with elevated levels of vWF antigen and activity, which may be linked to an increased risk of 
thrombosis in infected patients37. 
 
As for the other top loci, a study38 showed that Kruppel-like factor 13 (KLF13) has low activity in moderate 
COVID-19 patients and high activity in severe cases. Low KLF13 expression is associate with reduced pro-
inflammatory and enhanced phagocytic activity in macrophages, necessary for an efficient immune 
response39. These results support KLF13's association with COVID-19 severity40. 
 
Gene-based results. Several BAGE family member genes, including BAGE, BAGE2, BAGE3, BAGE4, 
BAGE5, were observed to be significantly associated with BI in the gene-based analysis. BAGE (B 
Melanoma Antigen) is a protein-coding gene. This gene encodes a tumor antigen recognized by autologous 
cytolytic lymphocytes (CTL)41. There is currently no direct literature or study to support the association 
between BAGE and COVID-19 or related diseases yet, and further studies are needed. In addition, we also 
observed ARHGEF3 was suggestively associated with BI. In another bioinformatics analysis42 of 
differentially expressed genes targets in SARS-CoV-2, ARHGEF3 reached significance (P.adjust = 
0.002415, table 1 of ref42), yet further validation studies are required.  
 
Pathway and GO enrichment analysis.   
The most significant result in our pathway enrichment analysis was related to KEGG VIRAL 
MYOCARDITIS. Viral myocarditis is a cardiac disease associated with inflammation and injury of the 
myocardium. Myocarditis may be caused by direct cytopathic effects of the virus, a pathologic immune 
response to persistent virus, or autoimmunity triggered by the viral infection. Of note, viral myocarditis is 
associated with both COVID-19 infection and vaccination. According to a study in Isreal, COVID-19 
vaccination increased the 42-day risk of myocarditis by a factor of 3.24 (95% CI, 1.55 to 12.44) as compared 
to unvaccinated persons, with events mostly concentrated among young males43. On the other hand, COVID-
19 itself is also linked to a significantly elevated risk of myocarditis44. It is intriguing that viral myocarditis 
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is identified as the top-ranked pathway, which may suggest that the genes involved in myocarditis are also 
associated with immunological responses to vaccination. The core subset of genes identified by GAUSS in 
this pathway could be a focus for further experimental studies, potentially providing new insights into 
associations between COVID-19 BI and myocarditis. 
 
Another pathway that also shows suggestive association with BI is the BIOCARTA AKAP13 PATHWAY 
(Rho-Selective Guanine Exchange Factor AKAP13 Mediates Stress Fiber Formation). The A-kinase anchor 
protein 13 (AKAP13, also known as AKAP-LBC) is a group of structurally diverse proteins, which have the 
common function of binding to the regulatory subunit of protein kinase A (PKA) and confining the 
holoenzyme to discrete locations within the cell45. A polymorphism near the AKAP13 gene, associated with 
higher levels of AKAP13 mRNA expression in the lung, has been reported to associate with higher risks of 
developing idiopathic pulmonary fibrosis (IPF)46. Several studies47,48 have shown positive and significant 
genetic correlation between IPF and COVID-19. In addition, AKAP13 has been shown to regulate Toll-like 
receptor 2 (TLR2) signaling and play a role in innate immune responses downstream of TLRs49. 
 
It is also worth noting that lipid-related pathways are also ranked among the top, such as 
"WP_LIPID_METABOLISM_PATHWAY" and 
"WP_STEROL_REGULATORY_ELEMENTBINDING_PROTEINS_SREBP_SIGNALLING". Sterol 
regulatory element-binding protein (SREBPs) are key regulators of lipid metabolism including synthesis of 
cholesterol50. During viral infection, lipids play a crucial role in various processes such as membrane fusion, 
replication, and endocytic and exocytic processes.  Drugs targeting lipid metabolism has been suggested as 
drug targets as well51,52,53.  
 
In line with our findings that PRS of diabetes-related traits are significantly associated with BI, the pathway 
leptin-insulin signaling overlap was also top-ranked. Obesity is a well-known risk factor for severe COVID-
19 infection, although the mechanism remains unclear. It has been postulated that leptin, which regulates 
both appetite and immunity54, may contribute to the pathogenesis of COVID-19. 
 
Interleukin-7 signaling pathway was also among the top pathways. Interleukin-7 (IL-7) is a cytokine crucial 
for T cell development and homeostasis. IL-7 has been studied as a potential therapeutic to treat severe 
COVID-19 patients with lymphopenia and lymphocyte exhaustion55.  
 
Another enriched pathway was related to aquaporin signaling. Aquaporins are water channels that play a 
role in fluid homeostasis, and have been implicated in the development of pulmonary edema in respiratory 
diseases56. Another study showed that aquaporin levels were significantly elevated in critical COVID-19 
patients57. 
 
Polygenic score analysis and genetic overlap with other disorders. In the PRS association analysis, we 
observed a positive significant genetic association between COVID-19 BI with several traits, including heart 
failure and glycaemic traits (HbA1c) (FDR<0.05). A recent study also observed a positive genetic 
association between COVID-19 and heart failure58. Combined with our current findings, these results 
provided evidence to support shared genetic etiology between COVID-19 BI and heart failure. Heart failure 
has also been reported to be associated with more severe infections and as one of the long-term sequelae of 
COVID-1959. 
 
In addition, our results showed a statistically significant association between HbA1c and COVID-19 BI. 
Interestingly, a related study60 showed that poor glycaemic control, assessed by mean HbA1c in the post-
vaccination period, was associated with lower immune responses and an increased incidence of SARS-CoV2 
BI in type 2 DM patients, consistent with our findings based on genetic data. Of note, we also observed 
significant genetic overlap of COVID-19 BI with type I diabetes, using both PRS analysis and genetic 
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dependence analysis with Hoeffding’s test. A recent review summarized current studies on vaccine response 
and diabetes, with most studies reporting lower antibody response in diabetic patients61, and some studies 
reported that higher BMI may also be associated with poorer immunogenicity. However, the high 
heterogeneity and modest sample sizes of many studies preclude a firm conclusion from being made.  
 
A range of cardiometabolic traits were also nominally significant in our PRS or genetic dependence analysis, 
although not passing the FDR correction. For example, obesity, BMI, diabetes mellitus (type I and II), and 
serum urate were observed to be have genetic overlap with BI. As discussed above, several pathways related 
to lipid metabolism, leptin-insulin signaling overlap etc. were among the top enriched ones. Taken together, 
our results may suggest that cardiometabolic traits share genetic bases with COVID-19 BI. As such, it will 
be intriguing to study whether these cardiometabolic traits are risk factors or complications of COVID-19 BI.  
 
In the genetic dependence analysis with Hoeffding’s test, we observed several traits showing significant 
results passing FDR correction (FDR<0.05), including asthma, abnormal findings on diagnostic imaging of 
lung, schizophrenia, and type I diabetes. Given the possible genetic overlap between these traits and BI, 
these traits may be associated with increased risks of BI, or present as sequelae post-infection. However, 
further studies are necessary to elucidate these relationships. 

Strengths and limitations 

Firstly, to the best of our knowledge, this is the first GWAS to investigate the genetic basis of breakthrough 
COVID-19 infection (BI) and severe infection (focusing on pre-Omicron variants), including a comparison 
of severe vs mild BI. Secondly, we conducted a comprehensive series of post-GWAS analysis to provide 
insights into the biological basis of COVID-19 BI. These include standard SNP-based tests as well as gene-
based (fastBAT, S-MulTiXcan) and pathway-based (GAUSS) analyses, which may help bridge the gap 
between significant SNPs detected and the corresponding biological mechanisms. Lastly, we explored the 
genetic associations between COVID-19 BI and related disorders through PRS and other analyses. 
 
Our study also has a few limitations.  Firstly, although the total sample size in our study is large, the number 
of cases is relatively limited, due to a relatively short follow-up duration (maximum 253 days between 
vaccination and infection dates). However, studies62 have shown that vaccine effectiveness in preventing 
infection wanes over time63. This challenge makes it harder to capture specific genetic factors underlying 
vaccine response as follow-up length increases. We aimed to balance follow-up length and vaccine 
effectiveness to uncover the genetics of BI.  Additionally, the UK Biobank population may not fully 
represent the entire UK population, as participants tend to be healthier and have higher socioeconomic 
status64 compared to non-participants. Furthermore, our study is based on European samples, and the 
generalizability of these genetic findings to other populations remains uncertain. Further studies in other 
populations are warranted. 

In summary, we have conducted a GWAS for breakthrough infection with SARS-CoV-2 in a European 
population using UK Biobank data.  A series of post-GWAS analysis was performed, including gene-based 
analysis, pathway enrichment analysis, PRS association, and others. We discovered two novel genetic loci 
and revealed corresponding genes and pathways that may underlie COVID-19 BI. We believe this work 
provides an important foundation and reference for future studies at elucidating the biological and genetic 
basis of COVID-19 breakthrough infections.  
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Figure 1 Workflow of our study 
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Table 1 Definitions of models for covid-19 breakthrough infections 

Model Case Control 
A Hospitalized or fatal (U07.1) BI Non-hospitalized BI 
B Hospitalized or fatal (U07.1) BI Vaccinated subjects without known history of COVID-19 Dx 
C All subjects with BI Vaccinated subjects without known history COVID-19 Dx 
BI: breakthrough infection; U07.1 is the code for fatal (laboratory-confirmed) COVID-19 infection based on 
the latest ICD coding. Dx, diagnosis. Untested, subjects without COVID-19 testing 
 
 
Table 2 Number of available subjects of different models 

         

Model 
  

  
Subjects with only one dose of 

vaccine (scenario 1) 
    

Subjects with at least one dose 
of vaccine (scenario 2) 

    
Subjects with two doses of 
vaccine (scenario 3) 

  
Submodel 
name Cases Controls Total 

 
Submodel 
name Cases Controls Total 

 
Submodel 
name Cases Controls Total 

A 
 

A1 122 752 874 
 

A2 169 1,353 1522 
 

A3 43 552 595 
B 

 
B1 122 300,655 300,777  

 
B2 169 300,007 300,176  

 
B3 43 198628 198671 

C   C1 874 300,655 301,529    C2 1,522 300,007 301,529    C3 595 198628 199223 

 
 
 
Table 3 Top10 SNP-based results of model C for participants with at least one dose of vaccine 

            

SNP Chr. 
Location 
(bp) 

Effect 
allele 

Non-
effect 
allele 

Frequency 
of effect 
allele 

BETA SE P N INFO GeneSymbol Gene name 

Total 
no.of 
clumped 
SNPs 

S0001 
Top gene 
prioritized by 
OpenTargets 

rs36170929 7 12541187 G A 0.640 0.210 0.038 4.39E-08 301529 0.984254 
  

11 5 VWDE 

rs56150535 15 31647722 T C 0.359 0.203 0.038 1.09E-07 301529 0.996787 KLF13 Kruppel like factor 13 33 20 KLF13 

rs181987785 1 34977912 G A 0.005 1.449 0.284 3.48E-07 301529 0.984316 
  30 30 GJB5 

rs187268954 3 116529463 C T 0.004 1.736 0.358 1.22E-06 301529 0.90264 
  

4 3 LSAMP 

rs7590599 2 108915136 C T 0.604 0.182 0.038 1.26E-06 301529 0.989482 SULT1C2 
sulfotransferase family 1C 
member 2 

8 5 SULT1C2 

rs3737328 13 110866065 T C 0.246 0.198 0.042 3.05E-06 301529 1 COL4A1 collagen type IV alpha 1 4 4 COL4A1 
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chain 

rs142193221 22 21166165 A G 0.006 1.274 0.274 3.31E-06 301529 0.929992 PI4KA 
phosphatidylinositol 4-
kinase alpha 6 6 PI4KA 

rs56070971 1 35025879 T C 0.006 1.275 0.276 3.86E-06 301529 0.968667 
  

29 29 GJB5 

rs72664942 4 85808904 G A 0.007 1.174 0.259 5.75E-06 301529 0.938787 WDFY3 
WD repeat and FYVE 
domain containing 3 

2 2 WDFY3 

rs79158353 10 78798475 A T 0.082 -0.304 0.067 6.48E-06 301529 0.995184 KCNMA1 
potassium calcium-activated 
channel subfamily M alpha 1 

23 13 KCNMA1 

1) S0001, number of clumped SNPs (SNPs in LD) with p<1e-3; only SNPs with S0001 >= 2 are shown.  
     

2) LD clumping settings: r2=0.5, distance = 250kb 
          

 
 
 
Table 4 Top10 SNP-based results of model C for participants with two doses of vaccine               

SNP Chr. Location (bp) 
Effect 
allele 

Non-
effect 
allele 

Frequency 
of effect 
allele 

BETA SE P N INFO GeneSymbol Gene name 

Total no.of 
SNPs from 
LD 
clumping 

S0001 
Top gene 
prioritized by 
OpenTargets 

rs28645263 5 16612885 C T 0.416 0.347 0.060 9.46E-09 199223 0.964  RETREG1 reticulophagy regulator 1 3 3 RETREG1 

rs4073656 2 48981646 G A 0.502 -0.288 0.059 9.89E-07 199223 0.988  LHCGR luteinizing hormone/choriogonadotropin receptor 5 3 STON1-GTF2A1L  

rs9661909 1 206714818 T C 0.506 -0.282 0.059 1.56E-06 199223 0.985  RASSF5 Ras association domain family member 5 11 6 RASSF5 

rs72718228 14 69475527 T C 0.090 0.493 0.105 2.49E-06 199223 1.000  5 4 ACTN1 

rs4991425 10 123485856 T C 0.363 -0.288 0.061 2.62E-06 199223 0.983  10 8 FGFR2 

rs111692702 19 15651802 A G 0.009 1.729 0.371 3.21E-06 199223 0.970  CYP4F22 cytochrome P450 family 4 subfamily F member 22 3 3 CYP4F22  

rs28718712 17 29882071 T G 0.671 -0.287 0.062 3.60E-06 199223 1.000  32 4 RAB11FIP4  

rs4687124 3 189840935 G A 0.232 0.319 0.070 4.86E-06 199223 0.998  22 22 P3H2 

rs2874139 4 169751502 C G 0.680 -0.288 0.063 5.49E-06 199223 0.979  PALLD palladin, cytoskeletal associated protein 43 15 PALLD 

rs12466174 2 184802609 T G 0.122 0.417 0.092 5.81E-06 199223 0.969      8 7 NA 
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Table 5 Top 15 pathway enrichment results (GAUSS) for genes identified through gene-based analysis (fastBAT) 

GeneSet Length_GS pvalue excluded p_adjust_BH Model 

KEGG_VIRAL_MYOCARDITIS 41 9.05E-06 22 5.69E-02 A1 

BIOCARTA_AKAP13_PATHWAY 21 9.91E-06 1 6.23E-02 B2 

KEGG_TIGHT_JUNCTION 73 1.38E-05 11 6.29E-02 A2 

REACTOME_TRANSLATION 295 2.00E-05 76 6.29E-02 B2 

REACTOME_MITOCHONDRIAL_TRANSLATION 96 1.10E-04 4 1.73E-01 A2 

REACTOME_PASSIVE_TRANSPORT_BY_AQUAPORINS 13 8.00E-05 0 5.03E-01 C3 

MYLLYKANGAS_AMPLIFICATION_HOT_SPOT_29 33 1.60E-04 0 5.35E-01 C1 

YAMASHITA_LIVER_CANCER_WITH_EPCAM_DN 53 1.70E-04 0 5.35E-01 C1 

APRELIKOVA_BRCA1_TARGETS 48 2.00E-04 8 7.17E-01 C2 

WP_LEPTIN_INSULIN_OVERLAP 30 2.50E-04 1 7.17E-01 C2 

REACTOME_INTERLEUKIN_7_SIGNALING 9 3.90E-04 13 7.17E-01 C2 

WP_LIPID_METABOLISM_PATHWAY 23 3.40E-04 0 7.76E-01 B1 

WP_STEROL_REGULATORY_ELEMENTBINDING_PROTEINS_SREBP_SIGNALLING 8 3.70E-04 4 7.76E-01 B1 

REACTOME_PI3K_AKT_ACTIVATION 9 2.90E-04 1 7.97E-01 C3 

WP_STRIATED_MUSCLE_CONTRACTION_PATHWAY 11 3.00E-04 2 8.39E-01 A1 

 
 
Table 6 Top15 results of gene-based analysis based on all the model in our study             

Gene Chr Pvalue p_adjust_BH TopSNP TopSNP.Pvalue Start End nsnps SNP_start SNP_end chisq scenario_tag 

BAGE 21 3.86E-08 9.51E-04 rs139414507 6.80E-05 11057795 11098937 385 rs374458734 rs3964663 902.946 results based on model A1 

BAGE 21 3.47E-06 8.55E-02 rs3898954 9.70E-05 11057795 11098937 385 rs374458734 rs3964663 761.829 results based on model B1 

BAGE2 21 3.63E-06 1.79E-02 rs139414507 6.80E-05 11020841 11098925 419 rs150585080 rs3964663 945.784 results based on model A1 

BAGE3 21 3.63E-06 1.79E-02 rs139414507 6.80E-05 11020841 11098925 419 rs150585080 rs3964663 945.784 results based on model A1 

BAGE4 21 3.63E-06 1.79E-02 rs139414507 6.80E-05 11020841 11098925 419 rs150585080 rs3964663 945.784 results based on model A1 

BAGE5 21 3.63E-06 1.79E-02 rs139414507 6.80E-05 11020841 11098925 419 rs150585080 rs3964663 945.784 results based on model A1 

BAGE 21 4.10E-06 5.88E-02 rs139414507 0.001558 11057795 11098937 385 rs374458734 rs3964663 756.652 results based on model A2 

ARHGEF3 3 4.77E-06 5.88E-02 rs7433556 1.09E-05 56761445 57113336 565 rs7641898 rs6768368 1403.32 results based on model A2 
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LOC102467147 5 1.32E-05 3.26E-01 rs16885475 3.71E-05 55753621 55777596 230 rs286010 rs154251 661.504 results based on model B2 

KLF13 15 1.40E-05 3.44E-01 rs56150535 1.09E-07 31619082 31670102 193 rs146089365 rs34074298 630.988 results based on model C2 

LOC102467147 5 2.09E-05 2.58E-01 rs157845 3.75E-05 55753621 55777596 230 rs286010 rs154251 643.237 results based on model B1 

LOC102467147 5 2.33E-05 1.92E-01 rs285159 8.61E-05 55753621 55777596 230 rs286010 rs154251 638.979 results based on model A2 

CALCOCO1 12 2.92E-05 4.55E-01 rs145371667 6.42E-06 54104901 54121307 132 rs10444557 rs75816804 490.492 results based on model C3 

ARHGEF3 3 4.15E-05 4.51E-01 rs7433556 6.47E-06 56761445 57113336 565 rs7641898 rs6768368 1256.27 results based on model B2 

OPN5 6 4.22E-05 4.55E-01 rs506816 2.91E-05 47749774 47794116 142 rs16876443 rs12660611 500.148 results based on model C3 
Note: the definition of model A1-3, B1-3, C1-3 is defined in Table 2 

 
 
 
Table 7 Polygenic association testing of BI (model C2, general BI vs population) with related traits using summary statistics (p<0.05 are shown) 
Body system Exposure pval_PRS p_adjust_BH coefficient r2 nsnps exposure_p_filter clump_r2 

cardiovascular system Heart Failure 1.33E-04 1.82E-03 0.030588 4.84E-05 41900 0.05 0.05 

endocrine system Type 1 diabetes, strict (exclude type 2) 1.00E-03 1.22E-02 0.028586 3.59E-05 131 5.00E-08 0.05 
endocrine system Glycaemic_HbA1c 1.96E-03 2.18E-02 0.704835 3.18E-05 250 1.00E-04 0.05 

endocrine system Diabetes mellitus (type 1 and 2) 1.61E-02 1.30E-01 0.097242 1.92E-05 128 5.00E-08 0.05 
endocrine system Obesity 3.63E-02 2.37E-01 0.004535 1.45E-05 56424 0.05 0.05 
endocrine system BMI 1.49E-02 1.32E-01 0.17485 1.97E-05 1365 1.00E-07 0.05 

immune system Human immunodeficiency virus disease 3.71E-02 2.41E-01 0.042006 1.44E-05 17 1.00E-05 0.05 

nervous system Dementia 2.95E-02 2.00E-01 0.003864 1.57E-05 78932 0.1 0.05 

respiratory system COPD/asthma related infections 9.15E-03 8.58E-02 0.01321 2.25E-05 54680 0.05 0.05 
respiratory system Asthma 2.09E-02 1.62E-01 -0.009499 1.77E-05 20426 0.01 0.05 
respiratory system Smoking Cessation 4.00E-02 2.46E-01 0.15793 1.40E-05 2871 0.001 0.05 

renal system Diabetic kidney disease in type 1 DM 9.75E-03 9.00E-02 -0.015166 2.22E-05 1449 0.001 0.05 
renal system Serum urate 1.16E-02 1.04E-01 1.205126 2.11E-05 33 0.05 0.05 
*(1) clump_r2=0.05. (2) More details about the information for each exposure are listed in Table S18  
(2) All the outcome in this table is Model C2 defined in Table 2 
 
 
Table 8 Hoeffding's Independence test of BI with related traits using summary statistics (p<0.05 are shown) 

Exposure Outcome pthres n Dn scaled p.value p.adj_pthres&traitB_sepa
rate 
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Respiratory  
              

Abnormal findings on diagnostic imaging of lung A2 0.1 102776 1.29E-06 4.76 2.05E-04 8.00E-03 

Abnormal findings on diagnostic imaging of lung B2 0.1 102787 7.19E-07 2.66 4.47E-03 1.74E-01 

Asthma (only as main-diagnosis) A2 0.5 372099 1.94E-07 2.6 4.88E-03 1.43E-01 

Asthma (only as main-diagnosis) B2 0.5 372141 1.81E-07 2.42 6.41E-03 8.33E-02 

Asthma (only as main-diagnosis) C2 0.05 68429 1.55E-06 3.82 8.08E-04 2.69E-02 

Asthma, hospital admissions, main diagnosis only A2 0.5 371828 1.63E-07 2.19 9.11E-03 1.43E-01 

COPD/asthma related infections B2 1.00E-05 44 8.24E-04 1.28 3.77E-02 2.56E-01 
COPD/asthma related pneumonia or pneumonia derived 
septicaemia 

A2 0.01 15042 2.35E-06 1.27 3.81E-02 2.97E-01 

Interstitial lung disease A2 0.3 248253 2.02E-07 1.81 1.63E-02 3.08E-01 

Interstitial lung disease endpoints C2 0.2 190993 1.70E-07 1.17 4.49E-02 6.65E-01 

Obesity related asthma A2 0.01 15347 3.12E-06 1.73 1.85E-02 2.41E-01 

Obesity related asthma B2 0.01 15350 2.12E-06 1.17 4.48E-02 5.82E-01 

Pulmonary embolism B2 0.05 58577 1.46E-06 3.07 2.43E-03 6.17E-02 

Tuberculosis A2 0.01 13123 3.08E-06 1.45 2.84E-02 2.77E-01 

Cardiovascular  
              

Cardiomyopathy C2 0.1 103175 9.18E-07 3.41 1.48E-03 5.75E-02 

Cardiomyopathy (excluding other) B2 0.5 363183 1.87E-07 2.44 6.18E-03 8.33E-02 

Cardiomyopathy (no controls excluded) A2 0.01 14204 4.44E-06 2.27 8.07E-03 1.57E-01 

Endocrine 
              

Diabetes mellitus  (type 1 and 2) A2 0.3 275918 1.17E-07 1.16 4.52E-02 3.52E-01 

Diabetes mellitus  (type 1 and 2) C2 0.1 129409 4.66E-07 2.17 9.33E-03 1.82E-01 

Obesity B2 0.4 319934 1.34E-07 1.54 2.49E-02 3.95E-01 

Type 1 diabetes, strict definition A2 1.00E-04 728 9.35E-05 2.45 6.16E-03 1.20E-01 

Type 1 diabetes, wide definition B2 0.2 179971 6.59E-07 4.27 4.21E-04 1.64E-02 

Type 1 diabetes, wide definition C2 0.05 56637 6.89E-07 1.41 3.07E-02 3.99E-01 

Neurological 
              

Schizophrenia or delusion C2 1.00E-05 35 2.00E-03 2.44 6.19E-03 2.41E-01 

Schizophrenia or delusion (more controls excluded) A2 0.01 15032 6.43E-06 3.48 1.33E-03 5.20E-02 
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Schizophrenia, schizotypal and delusional disorders B2 1.00E-05 43 3.09E-03 4.68 2.33E-04 9.09E-03 

Any dementia B2 1.00E-05 109 4.62E-04 1.8 1.66E-02 2.56E-01 

Any dementia (more controls excluded) A2 0.001 1858 2.18E-05 1.45 2.84E-02 2.77E-01 

Liver 
              

Alcoholic liver disease A2 0.001 1690 3.69E-05 2.25 8.35E-03 2.77E-01 

Cirrhosis, broad definition A2 1.00E-04 202 3.92E-04 2.84 3.43E-03 1.20E-01 

Cirrhosis, broad definition  C2 0.3 248811 1.36E-07 1.22 4.12E-02 6.57E-01 

Nonalcoholic fatty liver disease B2 0.2 178801 1.82E-07 1.17 4.45E-02 4.34E-01 

1) More details about the information for each exposure are listed in Table S18. 
2) Scaled statistic: the test statistic rescaled for a standard null distribution (please refer to the R package “independence” for details). FDR adjusted-p < 0.05 
are in bold and those between 0.05 and 0.1 are in italics. FDR adjustment was performed with stratification by trait B 
3) r2 threshold for LD-clumping is 0.2 
4) The definition of the outcomes is listed in Table 2 
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