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Abstract 
 
Background: Generative Large language models (LLMs) represent a significant advancement in natural 
language processing, achieving state-of-the-art performance across various tasks. However, their application in 
clinical settings using real electronic health records (EHRs) is still rare and presents numerous challenges. 
 
Objective: This study aims to systematically review the use of generative LLMs, and the effectiveness of 
relevant techniques in patient care-related topics involving EHRs, summarize the challenges faced, and suggest 
future directions. 
 
Methods: A Boolean search for peer-reviewed articles was conducted on May 19th, 2024 using PubMed and 
Web of Science to include research articles published since 2023, which was one month after the release of 
ChatGPT. The search results were deduplicated. Multiple reviewers, including biomedical informaticians, 
computer scientists, and a physician, screened the publications for eligibility and conducted data extraction. 
Only studies utilizing generative LLMs to analyze real EHR data were included. We summarized the use of 
prompt engineering, fine-tuning, multimodal EHR data, and evaluation matrices. Additionally, we identified 
current challenges in applying LLMs in clinical settings as reported by the included studies and proposed future 
directions. 
 
Results: The initial search identified 6,328 unique studies, with 76 studies included after eligibility screening. 
Of these, 67 studies (88.2%) employed zero-shot prompting, five of them reported 100% accuracy on five 
specific clinical tasks. Nine studies used advanced prompting strategies; four tested these strategies 
experimentally, finding that prompt engineering improved performance, with one study noting a non-linear 
relationship between the number of examples in a prompt and performance improvement. Eight studies 
explored fine-tuning generative LLMs, all reported performance improvements on specific tasks, but three of 
them noted potential performance degradation after fine-tuning on certain tasks. Only two studies utilized 
multimodal data, which improved LLM-based decision-making and enabled accurate rare disease diagnosis and 
prognosis. The studies employed 55 different evaluation metrics for 22 purposes, such as correctness, 
completeness, and conciseness. Two studies investigated LLM bias, with one detecting no bias and the other 
finding that male patients received more appropriate clinical decision-making suggestions. Six studies identified 
hallucinations, such as fabricating patient names in structured thyroid ultrasound reports. Additional challenges 
included but were not limited to the impersonal tone of LLM consultations, which made patients uncomfortable, 
and the difficulty patients had in understanding LLM responses. 
 
Conclusion: Our review indicates that few studies have employed advanced computational techniques to 
enhance LLM performance. The diverse evaluation metrics used highlight the need for standardization. LLMs 
currently cannot replace physicians due to challenges such as bias, hallucinations, and impersonal responses. 
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1. Introduction 
 
The Transformer architecture, introduced by Vaswani et al. in 2017, marked a significant breakthrough in 
natural language processing (NLP) by enabling models to handle vast amounts of textual data with unparalleled 
efficiency and effectiveness.1 This architecture relies on self-attention mechanisms to process input sequences in 
parallel, allowing it to capture long-range dependencies and contextual relationships more effectively than 
previous models. Building on this foundation, two major categories of language models (LLMs) have emerged: 
encoder-based models and generative models. 
 
Encoder-based models, such as BERT (Bidirectional Encoder Representations from Transformers),2 
Longformer,3 NYUTron,4 GatorTron,5 focus on understanding and encoding the input text into dense 
representations that capture the nuanced meanings and relationships within the data. These models excel in 
tasks like text classification and named entity recognition where deep contextual understanding is crucial. 
 
In contrast, generative models, such as GPT (Generative Pre-trained Transformer),2 primarily leverage the 
Transformer’s decoder architecture to comprehend and generate human-like text. These models are designed to 
produce coherent and contextually appropriate language, making them highly effective for applications like 
content creation, dialogue systems, and even complex problem-solving tasks. The generative capabilities of 
these models open new possibilities for human-machine interaction, pushing the boundaries of what AI can 
achieve in language-based tasks. 
 
With the release of ChatGPT6 on November 30th, 2022, recent advancements in transformer-based generative 
large language models (LLMs) have significantly transformed the landscape of natural language processing 
(NLP) and artificial intelligence (AI)1,2,7. These models, distinguished by their substantial size and intricate 
architecture, have gained widespread recognition in both academic and industrial domains due to their 
extraordinary capability to comprehend and generate human-like reasoning8. With billions to trillions of 
parameters, they are exceptionally proficient in capturing complex linguistic patterns and subtleties, achieving 
unprecedented levels of accuracy and depth. 
 
Given the remarkable capabilities of generative LLMs in processing text data, there has been a surge in research 
exploring their applications in healthcare. Numerous studies have reviewed and synthesized recent 
advancements in applying LLMs to various healthcare domains.9–12 Some researchers have evaluated LLMs' 
ability to answer healthcare-related questions by analyzing their responses to queries from medical specialty 
associations.13–15 Other studies have tested LLMs' performance in specific clinical tasks, often benchmarking 
their accuracy against that of human experts.16–19 Additionally, comparisons have been made between LLMs 
and traditional AI approaches,20 as well as search engines21–23 to assess their relative effectiveness. Despite these 
advances, there are still emerging opportunities and challenges in leveraging LLMs in healthcare. 
 
Electronic health records (EHRs) have revolutionized healthcare by offering a comprehensive digital repository 
of a patient's medical history, accessible to authorized providers across various healthcare settings. This 
seamless information sharing significantly enhances the quality, safety, and efficiency of patient care by 
integrating diverse data types, including medical history, diagnoses, medications, and test results. EHRs 
facilitate more accurate and timely decision-making, reduce the likelihood of medical errors, and contribute to 
improved patient outcomes. Additionally, they serve as an invaluable resource for healthcare research and 
quality improvement initiatives. However, the vast and complex datasets generated by EHRs present growing 
challenges for effective analysis and utilization. 
 
While generative LLMs have been widely explored for healthcare data analysis, their application in real-world 
EHR data remains limited due to significant privacy concerns. For example, as of April 18, 2023, the use of 
ChatGPT with the widely used Medical Information Mart for Intensive Care (MIMIC) data has been explicitly 
prohibited,24–26 underscoring the need for Health Insurance Portability and Accountability Act (HIPAA)-
compliant platforms to safely leverage LLMs on EHR data.27 Although several reviews have examined the 
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broader use of generative LLMs in healthcare, there is a distinct lack of focused analyses on their application 
within EHR data for enhancing patient care in specific clinical tasks. To fill this gap, we conducted a systematic 
review that evaluates the effectiveness of various prompting and fine-tuning strategies in applying LLMs to 
specific clinical tasks. Additionally, we review the integration of multimodal data and its benefits, summarize 
the evaluation metrics used (e.g., confusion matrix, Likert scale) and evaluation purposes involved (e.g., 
correctness, completeness), and discuss future directions for the application of LLMs in clinical settings. This 
comprehensive analysis aims to provide critical insights and guide the advancement of patient care through 
these technologies. 
 
  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 19, 2024. ; https://doi.org/10.1101/2024.08.11.24311828doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.11.24311828
http://creativecommons.org/licenses/by/4.0/


2. Methods 
 
2.1.Study Selection Process 
We adhered to the PRISMA guidelines for conducting our literature search (Figure 1).28 The process involved 
several key steps: a Boolean search, removal of duplicates, screening of studies, and data extraction. The 
Boolean search was conducted on May 19th, 2024, with search terms and restrictions determined through team 
discussions. Our search included LLM-related terms, such as "prompt engineering" and the names of various 
LLMs; the detailed query can be found in Supplementary Table S1. To focus on research articles presenting 
original data and quantitative results, we excluded certain article types, such as reviews. Given that the first 
release of ChatGPT was on November 30th, 2022, we included articles published from 2023 onward. Our search 
was conducted in PubMed and Web of Science, with only peer-reviewed articles included, while preprints were 
excluded.  
 
2.2.Inclusion and Exclusion Criteria 
Generative LLMs have been employed with various types of medical data, including but not limited to medical 
imaging, pharmaceutical data, public health data, genomics, biometric data, and EHR data. Our review 
specifically focuses on the application of LLMs to original EHR data, excluding studies using synthetic or 
summarized EHR data. For each included studies, we summarized the data size and data source. 
 
The selection process began with the removal of duplicate articles, followed by a manual review of the 
deduplicated list. The exclusion criteria were as follows: (1) Articles that were not of the appropriate type (e.g., 
preprints, reviews, editorials, comments) were excluded. (2) Articles that did not involve generative LLMs were 
excluded; for example, those discussing chatbots that do not utilize LLMs were not considered. Our review 
specifically focuses on generative LLMs where prompt engineering can be applied. Although some encoder-
based models like Longformer3, NYUTron4, GatorTron5 are powerful and widely used, studies involving only 
these encoder-based models were excluded. (3) Articles where the LLM was not used for English-language 
communication were not included. (4) Articles where the LLM application was unrelated to patient care (e.g., 
LLMs used for passing exams or conducting research) were excluded. (5) Articles that lacked quantitative 
evaluation (e.g., those that only presented communication records with ChatGPT) were excluded. (6) Articles 
that did not involve EHR data were excluded. (7) Articles where the EHR data used was not original (e.g., 
synthetic or summarized data) were excluded. 
 
During the eligibility screening process, two reviewers initially screened a set of 50 identical articles. If the 
agreement rate was above 90%, the reviewers proceeded to independently screen the remaining articles. If not, 
they discussed and screened an additional 50 articles until the agreement reached 90%.  
 
2.3.Data Extraction and Statistical Analysis 
For the included studies, we extracted various categories of information, as detailed in Table 1. This includes 
data-related information, clinical information, LLM-specific details, evaluation metrics, and identified 
challenges. The extracted data encompasses key aspects such as the nature and source of the data, the clinical 
context in which the LLM was applied, the specific LLM models and techniques used, the methods of 
evaluation employed, and the current challenges faced in these applications. Additionally, we provided detailed 
explanations of existing techniques for prompt engineering, generative LLM fine-tuning, and multimodal data 
integration in the Supplementary Material. 
 
2.3.1. Overview of Included Studies 
We extracted details on data size and data source from the included studies. Data size refers to the number of 
samples used in each study, while data source indicates the origin of the data, which could be from a specific 
hospital or a publicly available EHR dataset, such as MIMIC.25,26 We extracted information on clinical 
specialties from each included study, and the distribution of clinical specialties was summarized using a pie 
chart. Specialties represented in less than 5% of the studies were consolidated into a single category. 
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Additionally, we used bar charts to represent the frequency of used prompting strategies, fine-tuning 
approaches, studied LLMs, and evaluation purposes. 
 
2.3.2. Prompt Engineering 
Regarding prompting methods, we documented the specific prompting strategy used, the clinical tasks they 
were applied to, the performance and the quantitative impact of each prompting approach on the performance of 
these tasks.  
 
2.3.3. Fine-Tuning 
In terms of fine-tuning, we extracted information on the base models that were fine-tuned, the specific fine-
tuning methods employed, the hardware used for the fine-tuning process, the performance and the quantitative 
effects on clinical task performance. 
 
2.3.4. Multimodal Data Integration 
For studies involving the application of LLMs to multimodal EHR data, we summarized the data modalities 
involved, the methods used for data integration, and the quantitative impact of multimodal integration on 
performance. 
 
2.3.5. Evaluation Matrices and Purposes 
Researchers employ various evaluation purposes depending on the specific clinical task when assessing LLM 
performance. For example, in clinical decision-making, the emphasis may be on the accuracy and completeness 
of the LLM's output, whereas for clinical note summarization or simplification, readability and conciseness are 
primary evaluation criteria. Given that LLM responses may be used in clinical settings (e.g., providing clinical 
advice to patients), additional factors such as the potential harmfulness of the output and the level of empathy 
conveyed are also critical aspects of performance evaluation. 
 
We summarized the terms from the included studies to represent evaluation purposes, consolidating terms with 
the same meaning (e.g., reliability and stability) into a single category. A bar chart was used to illustrate the 
frequency of each evaluation purpose. For each evaluation metric, we summarized its purpose and the best 
reported value in relation to the corresponding clinical tasks. Additionally, for NLP metrics that assess the 
similarity between the LLM's output and the ground truth, we identified correlated metrics that require human 
judgment for validation. 
 
2.3.6. Generative LLM Challenges 
An introduction to the existing challenges is provided in the Supplementary Material. This review 
summarizes the current challenges of applying generative LLMs to EHR data, including bias, common errors, 
hallucinations, and other issues identified in the included studies. 
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3. Results 
 
3.1.Study Selection Results 
As illustrated in Figure 1, our Boolean search initially yielded 9,323 articles. After removing 1,910 duplicates 
and excluding 1,085 articles published before 2023, we had 6,328 articles remaining for screening. Following a 
thorough screening of titles, abstracts, and full articles, we ultimately included 76 eligible studies for further 
analysis. 
 
3.2.Analysis Result 
 
3.2.1. Overview of Included Studies  
The distribution of data sizes is shown in Figure 2 (A). Detailed information on data size and data source is 
provided in Supplementary Table S2. We found that 38 studies (50.0%) had a data size of less than 100, 21 
studies (27.8%) had a data size between 100 and 1,000, and 17 studies (21.5%) had a data size greater than 
1,000. The distribution of clinical specialties is shown in  
 
Figure 2 (B). The top three clinical tasks identified are radiology (15.8%), general—no specific specialty 
(14.5%), and internal medicine (14.5%). Detailed information on the clinical tasks of each included study is 
provided in Supplementary Table S2.  
 
Figure 2 (C) shows the distribution of prompting strategies used across the included studies. Zero-shot 
prompting was by far the most commonly employed strategy, with 71 out of 76 studies utilizing this approach. 
Few-shot prompting was used in six studies, while chain-of-thought was applied in two. Other strategies, such 
as Retrieval-Augmented Generation (RAG) and LLM-Aided Prompting, were also studied but to a lesser extent. 
Additionally, four studies combined multiple prompting strategies in their approach.  
 
Figure 2 (D) presents the frequency of different fine-tuning methods used. A significant majority, comprising 
68 studies, did not involve any fine-tuning. Of the remaining studies, three employed Parameter-Efficient 
Tuning (PEFT) using Low Rank Adaptation (LoRA), two used a combination of PEFT and Quantization-LoRA 
(QLoRA), two implemented DeepSpeed, and one study did not disclose the specific fine-tuning technique used.  
 
Figure 2 (E) provides an overview of the frequency with which different generative Large Language Models 
(LLMs) were used in the studies. ChatGPT was the most frequently utilized model, appearing in 48 studies 
(63.2%). This was followed by GPT-4, which was used in 32 studies (42.1%). Google Gemini was the next 
most common LLM, appearing in six studies (7.9%).  
 
Figure 2 (F) details the frequency of evaluation purposes across the studies. The most frequent evaluation 
purpose was correctness, with 57 instances. This was followed by agreement with expert opinion or ground 
truth (12 instances) and completeness (8 instances). Other evaluation purposes, such as reliability, 
comprehensiveness, and hallucination rate, were less frequently examined. 
 
3.2.2. Prompting Methods 
Table 1 summarizes the findings on prompting methods used in the included studies. Nine studies employed 
advanced prompting techniques, while the remaining 67 studies used zero-shot prompting only. Four studies 
specifically discussed strategies for crafting zero-shot prompts to enhance LLM performance on specific 
clinical tasks. Among the advanced prompting techniques, three studies used few-shot prompting, two studies 
employed chain-of-thought prompting, two studies utilized soft prompting, one study involved RAG, and one 
study used another LLM to assist with prompt generation. 
 
All studies that used advanced prompting techniques reported improvements in LLM performance due to 
prompt engineering, though the significance of these improvements varied depending on the clinical task. For 
instance, one study found that a combination of few-shot prompting, chain-of-thought, and RAG increased the 
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LLM's F1 score by 5% to 15% on a subset of 100 reports when detecting speech recognition errors in radiology 
reports29 Another study combined soft prompting with LLM-aided prompting (using an LLM to help generate 
prompts) for clinical note summarization and found that LLM-aided prompting improved ROUGE-1 by 1% to 
3%, ROUGE-2 by 2% to 4%, and ROUGE-L by 1% to 2%, while soft prompting reduced response variability 
by up to 43%.30 
 
3.2.3. Fine-Tuning Methods 
Table 2 summarizes the studies that fine-tuned LLMs for specific clinical domains or tasks. Of the 76 included 
studies, only 8 (10.5%) involved LLM fine-tuning. Regarding the fine-tuning methods, three studies used 
parameter-efficient fine-tuning (PEFT) with Low-Rank Adaptation (LoRA)31, two used PEFT-Quantized LoRA 
(QLoRA),32 two utilized DeepSpeed33 for full parameter tuning, and one study did not specify the fine-tuning 
technique. 
 
While six of the eight studies reported that fine-tuning improved performance on clinical tasks, three studies 
noted potential drawbacks of fine-tuning, such as 1) catastrophic forgetting34 and 2) low relevance between the 
fine-tuning data and the LLM's application domain or task.35,36 Additionally, it was observed that a smaller fine-
tuned model can sometimes outperform a larger base model in specific domains and tasks. For example, in 
differential diagnosis for PICU patients, the fine-tuned Llama-7B achieved an average quality score of 2.88, 
while the Llama-65B without fine-tuning achieved an average quality score of 2.65 out of 5.0037 
 
3.2.4. Multimodal Data Fusion for LLM 
Two of the included studies utilized multimodal data. In one study, different types of data were encoded and 
fused within the AI model itself after encoding each input data modality.38 The other study converted various 
data modalities into text format before feeding the text into the model.39 Integrating multimodal data was shown 
to enhance overall performance. For instance, a Llama model trained on multimodal data achieved a higher 
macro F1 score (22.3%) compared to a Llama model trained solely on medical notes (macro F1 = 21.8%) for 
disease diagnosis.38 Similarly, using multimodal data for pre-training and fine-tuning LLMs led to better 
performance in diagnosing COVID-19 (accuracy = 90.3% vs. 84.1%) and prognosticating COVID-19 (accuracy 
= 92.8% vs. 94.9%) when compared to using text-only data.39 Notably, the study pre-trained the LLM on Delta 
COVID-19 data, fine-tuned it on 1% of Omicron data, and then evaluated it on the remaining 99% of Omicron 
data. This also suggests that multimodal LLMs can effectively handle scenarios where training data is scarce, 
such as in diagnosing or prognosticating rare diseases. 
 
3.2.5. Evaluation Matrices and Purposes 
Figure 1(D) presents the statistics on the evaluation methods used in the included studies. A total of 22 
evaluation purposes were identified. The three most frequently used evaluation purposes were correctness 
(employed in 56 studies), agreement with experts or ground truth (used in 12 studies), and completeness, 
reliability/stability, and readability (each used in 7 studies). For assessing accuracy, confusion matrix-based 
metrics were the most employed.  
 
Table 3 provides a summary of all evaluation metrics used in the included studies. A total of 55 different 
evaluation metrics were identified, with 35 of them being NLP metrics that measure the similarity between the 
generative LLM's response and the gold standard response. Four studies used Spearman’s correlation to 
examine the relationships between evaluation metrics.35,36,40 The findings were as follows: 1) The Artificial 
Intelligence Performance Instrument (AIPI) correlated with the Ottawa Clinic Assessment Tool (OCAT) when 
managing cases in otolaryngology–head and neck surgery (ρ�=�0.495); 2) BERTScore correlated with the 
quality score derived from a Likert scale when generating impressions for whole-body PET reports 
(ρ�=�0.474); 3) BERTScore correlated with conciseness when summarizing patient questions and progress 
notes; and 4) when generating concise and accurate layperson summaries of musculoskeletal radiology reports, 
BERTScore and MEDCON Score correlated with correctness (ρ�=�0.17), and BLEU correlated with 
completeness (ρ�=�0.225). 
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3.2.6. Challenges for Applying in Real Clinical Settings 
3.2.6.1.Bias 
Among the included studies, only two specifically examined the bias of LLMs. One study reported that 
ChatGPT did not exhibit biases related to demographic factors such as age and gender when making imaging 
referrals.41 However, the other study found that male patients received more appropriate responses than female 
patients, indicating a potential gender bias in how ChatGPT processes information.42 
 
3.2.6.2.Common Errors 
Several studies highlighted common errors made by LLMs. For instance, multiple studies pointed out that the 
LLM made more errors when diagnosing uncommon cases.43 GPT-4 was found to sometimes miss important 
details when converting radiological reports into a structured format.44 Additionally, multiple studies indicated 
that LLMs were not proficient in recommending appropriate treatments or examinations30,45. One study showed 
that ChatGPT often provided unnecessary treatments for 55% of patients with head and neck cases46, and for 
67%-90% of such patients in other instances.47 Another study reported that unnecessary treatments were 
recommended by ChatGPT for 55% of patients with positive blood cultures,48 and ChatGPT was more likely to 
suggest additional treatments compared to physicians (94.3% vs. 73.5%, p<0.001).49 For rhinologic cases, the 
accuracy of GPT-4 in suggesting treatment strategies was only 16.7%50  
 
Several studies also found that LLMs performed poorly when triaging patients. For example, when providing 
triage for maxillofacial trauma cases, Gemini inadequately proposed intermaxillary fixation and missed the 
necessity of teeth splinting in another case.51 In the emergency department, ChatGPT provided unsafe triage in 
41% of cases.52 Furthermore, LLMs may omit critical information in patient history. When tasked with 
improving the readability of clinical notes, LLMs were found to omit the history of present illness and 
procedures in 52.1% of cases53 ChatGPT, relying on static data, lacks the ability to assess individual patient 
history when diagnosing conditions like bacterial tonsillitis.54 Additionally, studies found that patients had 
difficulty understanding ChatGPT’s responses, and the readability of ChatGPT-generated responses to patient-
submitted questions was not as good as those produced by dermatology physicians.55 ChatGPT also struggles 
with diagnosing complex diseases due to ambiguous symptoms.54,56 Two studies noted that ChatGPT might 
overlook compositional information and adjacent relationships of nodules when diagnosing tumor-related 
diseases57,58 
 
3.2.6.3.Hallucinations 
LLMs can sometimes generate hallucinations, producing content that is inaccurate or fabricated. When 
identifying clinical phenotypes within the complex notes of rare genetic disease patients, GPT-J may invent 
Human Phenotype Ontology (HPO) IDs, even after fine-tuning and using few-shot prompting.59 In another 
instance, when identifying confidential content in clinical notes, 87% of the 306 excerpts proposed by ChatGPT 
from a note containing confidential information included hallucinations.60 Additionally, when extracting the 
clinical factor of neoadjuvant chemotherapy status in breast cancer patients, ChatGPT provided a yes or no 
answer despite the pathology report lacking any relevant information.61 While summarizing clinical letters, 
ChatGPT occasionally inserted sentences that were not present in the original letter, such as “please know that 
we are here to support you every step of the way” and “your expertise and insights are invaluable”.62 ChatGPT 
has also been known to fabricate patient names when generating structured thyroid ultrasound reports from 
unstructured ultrasound reports.58 Moreover, when improving the readability of radiology reports, ChatGPT 
incorrectly stated that a patient had a lateral ligament complex tear when the lateral ligament complex was 
intact or claimed there was no fracture of the lateral malleolus when a fracture was indeed present.63 
 
3.2.6.4.Other Challenges 
Three included studies noted that patients felt uncomfortable with ChatGPT's impersonal tone during 
consultations, and they often found it difficult to understand ChatGPT's responses.55,62,64  
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4. Discussion 
 
Recent publications on generative LLMs in healthcare underscore their evolving role and the wide range of 
potential applications. Numerous reviews have been published to summarize the field's development, with a 
general consensus that LLMs hold significant promise in clinical settings, assisting physicians in tasks such as 
answering patient questions and improving the readability of medical documents. However, challenges remain 
in applying LLMs in clinical environments. Omiye et al. reviewed LLM applications in medicine and identified 
major challenges, including bias, data privacy concerns, and the unpredictability of outputs.9 Clusmann et al. 
emphasized that hallucinations are a significant obstacle,10 , while Acharya et al. attempted to address this issue 
by fine-tuning LLMs, only to find that this process led to the loss of previously acquired knowledge.34 
Additionally, Wornow highlighted the lack of benchmarks and standardized evaluation techniques necessary to 
ensure LLM reliability in real clinical settings.11 Unlike existing reviews, our study extends previous work by 
summarizing the techniques, challenges, and opportunities for applying LLMs to real EHR data to improve 
patient care—an area where corresponding studies remain rare due to privacy concerns. 
 
Our review found that out of the 76 included studies, 67 relied on zero-shot prompting. Among the studies that 
employed a specific prompting strategy, only four evaluated its effectiveness, and all four reported that using 
prompting strategies improved performance. For instance, one study noted that soft prompting reduced the 
variability of LLM outputs when summarizing clinical notes.30 However, recent research has suggested that 
prompting strategies, such as few-shot prompting, do not always lead to performance improvements.27,65 This 
may be due to the fact that prompting strategies can increase the length of a prompt, and a longer prompt might 
negatively impact the LLM’s performance.66 Furthermore, the use of prompting strategies is often limited by 
the maximum length constraints of an LLM. Therefore, further testing of prompting strategies in specific 
clinical tasks and specialties is necessary to validate their effectiveness in real clinical settings. 
 
Unlike prompting strategies, fine-tuning an LLM enables it to fully leverage all labeled training data without 
concerns about maximum length limits. However, fine-tuning proprietary LLMs (e.g., ChatGPT and GPT-4) is 
often restricted, and fine-tuning open-source LLMs requires expensive hardware. Fortunately, one included 
study demonstrated that fine-tuning a smaller language model can outperform an unfine-tuned large model.37 
Techniques like LoRA and QLoRA allow researchers to fine-tune LLMs with more affordable hardware,31,32 
and the DeepSpeed algorithm can accelerate the fine-tuning process.33 It’s important to note, however, that fine-
tuning may not enhance performance if the fine-tuning dataset lacks sufficient text relevant to the specific 
domain and task.35 For instance, if the goal is to optimize LLM performance in analyzing PET reports, it would 
be more effective to fine-tune the model using a large corpus of PET reports rather than a mix of different 
clinical notes. Therefore, in clinical settings, we recommend fine-tuning a smaller, open-source language model 
with a domain- and task-specific corpus to achieve better results in specific domains and tasks. 
 
Incorporating multimodal clinical data enhances the performance of clinical decision support systems and 
enables LLM-based support for rare diseases.39 Notably, several studies mentioned that LLMs struggle with 
handling rare diseases, likely due to the limited information about rare conditions in the training data. We also 
observed that only two of the included studies utilized multimodal data, indicating a need for more research in 
the future focused on leveraging LLMs and multimodal EHR data to address challenges in rare disease 
diagnosis and management. 
 
Our review indicates a pressing need for standardized evaluation metrics and solutions to reduce the labor-
intensive nature of human evaluation. We found that different studies often use varying metrics to achieve the 
same evaluation goals, highlighting the necessity of establishing standardized metrics for each evaluation 
purpose to benchmark performance consistently. Although expert evaluation is considered the gold standard, it 
is impractical for physicians to thoroughly review all LLM outputs for performance evaluation.35 As data sizes 
increase, manual review becomes increasingly labor-intensive, costly, and time-consuming. This challenge may 
also explain why 50% of the included studies used a small data size of less than 100 samples. Fortunately, some 
studies have identified correlations between automated similarity metrics and human subjective evaluation 
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metrics. For instance, BLEU scores showed a Spearman’s correlation coefficient of 0.225 with physicians' 
preferences for completeness when summarizing clinical texts.36 Therefore, developing standardized objective 
metrics for each evaluation purpose is crucial for ensuring fair and effective evaluations. Additionally, further 
investigation is needed to explore how automated evaluation metrics can replace human subjective evaluation, 
particularly when dealing with large datasets. 
 
Overall, while ChatGPT and similar LLMs present innovative potential in medical diagnostics and patient 
interaction, significant challenges and biases persist. Although only a limited number of studies have examined 
biases in large language models, there is evidence of gender-related bias in ChatGPT's responses. For instance, 
one study found no bias in imaging referrals related to age or gender,60 while another highlighted a gender bias, 
with male patients receiving more appropriate responses than female patients.61 This finding underscores the 
need for ongoing evaluation and mitigation of biases in LLMs to ensure equitable and unbiased healthcare 
information for all users. Additionally, these models often struggle with diagnosing uncommon cases,62 
accurately converting radiological reports,63 and recommending appropriate treatments.51,64-48 The tendency to 
suggest unnecessary treatments and the high rate of unsafe triage decisions69, 70 further highlight the risks 
associated with relying on LLMs in clinical settings. LLMs may also omit critical patient history details71, 72 and 
provide responses that are difficult for patients to understand.73 Their inadequacies in handling complex 
diseases and ambiguous symptoms,72, 74 as well as the potential for overlooking essential information,75, 76 
suggest that LLMs currently lack the reliability needed for high-stakes medical decision-making. These findings 
emphasize the need for continuous improvement and careful integration of LLMs into healthcare to mitigate 
risks and enhance patient safety.  
 
The findings regarding hallucinations in generative LLMs like GPT-J and ChatGPT highlight a critical issue 
that limits the reliability and safety of these models in clinical settings. Hallucinations, which involve the 
generation of fabricated or incorrect information, are particularly concerning when LLMs are used for tasks 
requiring high accuracy and trust, such as in healthcare. For example, GPT-J's tendency to create fictitious 
Human Phenotype Ontology (HPO) IDs when addressing rare genetic diseases suggests that even advanced 
fine-tuning and prompting techniques may not fully eliminate the risk of hallucinations.77 This issue not only 
compromises the accuracy of diagnoses but also risks misleading healthcare providers who might rely on these 
outputs in decision-making processes. 
 
Moreover, ChatGPT has exhibited similar issues across various medical applications. The model has been 
shown to insert non-existent information into clinical notes and summaries, fabricating phrases intended to 
convey support or even creating fictitious patient names when generating structured reports.78-80 These errors 
are far from benign; they have the potential to cause real harm, especially if clinicians act on incorrect 
information. The implications of these hallucinations are significant. For instance, misstating the condition of 
the lateral ligament complex or incorrectly identifying the presence of fractures can lead to inappropriate 
treatment plans and delayed care.81 Such inconsistencies and inaccuracies call into question the reliability of 
LLMs in clinical environments, emphasizing the need for their cautious use, particularly in high-stakes 
situations.  
 
Beyond technical inaccuracies, the impersonal tone of ChatGPT's responses and the challenges patients face in 
understanding these responses further diminish the effectiveness of LLMs in patient interaction.73, 80, 82 The lack 
of empathy and clarity in communication can erode patient trust and satisfaction, both of which are critical 
components of effective healthcare delivery. While LLMs hold significant promise for enhancing healthcare 
through automation and data processing, the risks posed by hallucinations and communication challenges must 
be addressed. Until these issues are resolved, the integration of LLMs into healthcare should proceed with 
caution, ensuring that human oversight remains central to patient care. 
 
Our review has several strengths and weaknesses. Given the rapid development in the field, the volume of 
articles on LLMs in healthcare is substantial. We identified studies published since 2023 from two databases 
(PubMed and Web of Science) and thoroughly screened each article based on our eligibility criteria. Every 
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included study was analyzed in depth, and we provided detailed summaries. However, a limitation of our 
review is that our Boolean search was conducted in May 2024, so studies published online after this date were 
not included.  
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5. Conclusion 
 
We conducted a systematic literature review to summarize articles that use LLMs to analyze real EHR data for 
improving patient care. We found that the application of prompt engineering and fine-tuning techniques is still 
relatively rare. Additionally, only two studies utilized LLMs with multimodal EHR data, and they demonstrated 
that incorporating multimodal data can enhance decision-making performance and enable more accurate 
diagnoses of rare diseases. Several limitations of LLMs were identified, making them currently unsuitable for 
widespread use in clinical practice. These limitations include the lack of standardized evaluation methods, 
impersonal tone and low readability in responses to patient questions, and the presence of biases and 
hallucinations in generated responses. 
 
Future research should focus on exploring more prompt engineering and fine-tuning approaches tailored to 
specific clinical domains and tasks to optimize their use. Additionally, important future directions include 
standardizing evaluation metrics, mitigating bias and hallucinations, and applying LLMs to multimodal data to 
further improve their performance. 
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Figures 
 

 
 
 
 
 
 
 
  

Figure 1. PRISMA Flow Chart for Eligibility Screening. We initially identified 9,323 studies from P
and Web of Science. After deduplication and excluding articles published before 2023, we included
studies for eligibility screening. Ultimately, 6,252 studies did not meet the inclusion criteria, leaving 76 
for detailed analysis. 

 PubMed 
ded 6,328 
76 studies 
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Figure 2. Result Summarization. (A) illustrates the data size distribution of the included studies, w
majority (38 out of 76, 50%) comprising less than 100 samples. (B) depicts the distribution of 
specialties, where radiology emerges as the most frequently studied specialty, representing 15.8% of the 
(C) shows the frequency of prompting strategies used, with few-shot prompting (N=6) being the most p
among the advanced strategies. (D) presents the frequency of fine-tuning approaches, with PEFT-LoRA
identified as the most commonly employed fine-tuning method. (E) is a bar plot displaying the freque
different LLMs used in the studies, with ChatGPT leading as the most frequently utilized model, appea
48 studies. (F) highlights the frequency of evaluation purposes across the studies, with correctness be
most commonly assessed factor, evaluated in 57 studies. 
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Tables 
 

 
  

Prompting Strategy Summary of Findings Related to Prompting 

Z
ero-S

hot (N
=

71) 

Zero-Shot Only (N=67) 

Decision support: The capability of clinical decision making has been tested on specialties of dermatology64, 
emergency medicine41,52,67–72, gastroenterology73,74, internal medicine48,75–83, neurology84, obstetrics and gynecology85, 
oncology46,49,61,86–90, ophthalmology43,91–93, orthopedic62,94,95, otolaryngology40,47,50,54,96–98, pathology99, pediatrics37, 
radiology35,44,58,100–106, surgery51,107, urology42, and general (no specific specialty)34,45,53,55,108–110. Zero-shot prompting 
allows LLM to get promising performances on clinical tasks. For instance, when classifying the emergency 
department patient’s acuity levels, LLM achieved 89% accuracy.72 
 
Clinical document summarization: Zero-shot enabled LLMs to summarize clinical notes, but the performance of 
LLMs needs improvement. For example, when summarizing discharge summaries, 52.1% of inaccuracies were due 
to omitting key information such as history of present illness and procedures.53 
 
Phenotyping patients: Only one included study talked about using LLM to phenotype patients. The authors found 
LLMs achieved 95% positive predictive value when phenotyping patients with postpartum hemorrhage.85 
 
Tips mentioned in corresponding studies for improving the LLM’s performance on specific tasks: 
Clinical note summarization: In the prompt, do not limit the length of the generated answer.78 
Patient question summarization: In the prompt, limit the length of the generated answer.  Without this instruction, the 
model might generate lengthy outputs, occasionally even longer than the input text.36 
Answer questions regarding glaucoma diagnosis and treatment: Instructing the model to respond as a clinician in an 
ophthalmology note format.93 
Radiology reports simplification: Request simplification at a specific grade level103 

 

F
ew

 S
hot 

(N
=

6) 

    
Diagnosing of benign and malignant bone tumors: Few-shot (two shots) improves ChatGPT’s performances: 
accuracy from 0.73 to 0.87; sensitivity from 0.95 to 0.99; specificity from 0.58 to 0.73; AUROC from 0.72 to 0.8356 

 
Few-Shot Only (N=2) 

Identifying clinical phenotypes within the intricate notes of rare genetic disease patients: No mention of the effect of 
prompting strategy. Only mentioned that the literature said few-shot learning and chain-of-thought were effective. 
On dataset, BiolarkGSC, the best-performing LLM (GPT-J fine-tuned with training data and prompted with few-
shot) achieved 83.2% F1 score. On dataset ID-68, the best performing LLM (GPT-3 fine-tuned with training data 
and prompted with few-shot prompting) achieved 81.6% F1 score.59 

 
Identifying the presence of confidential content in clinical notes: No mention of the effect of prompting strategy. 
Using few-shot prompting, ChatGPT achieved 97% sensitivity, 18% specificity, and 34 positive predictive value.60 

     

Clinical text summarization: More examples in the prompt would lead to a better performance, but the improvement 
becomes less obvious when adding more and more examples. For example, on MIMIC-CXR dataset, zero-shot 
achieved a MEDCON score of less than 20. Using 2, 8, 32, and 128 examples led to improved MEDCON scores of 
43, 50, 52, and 53 respectively.36 

 

C
hain-of-T

hought (N
=

3) 

   
Classification tasks related to COVID-19 diagnosis: No mention of the effect of prompting strategy. Only mentioned 
that the literature said few-shot learning was effective. The model achieved 96.3% accuracy.39 

    

Converting free-text clinical notes into structured data: No mention of the effect of prompting strategy. ChatGPT-
3.5, GPT-4 demonstrated the ability to extract pathological classifications with an overall accuracy of 89% and 94% 
separately (primary tumor classification: 87% and 91%; regional lymph node involvement classification: 91% and 
95%; pathology stage identification: 76% and 89%; histological diagnosis: 99% and 99%). In lung cancer dataset, 
LLM outperformed the performance of two traditional NLP methods.  In the pediatric osteosarcoma dataset, 
ChatGPT-3.5 accurately classified both grades and margin status with accuracy of 98.6% and 100% respectively.57 

  
R

A
G

 (N
=

1) 
  

Automatic detection of speech recognition errors in radiology reports: Optimized prompts increased the models’ F1 
scores by 5%–15% on the subset of 100 reports assessed by three independent raters. For GPT-3.5-turbo, F1 score 
increased from 59.1% to 73% for clinically significant errors and 32.2% to 45% for not clinically significant errors. 
F1 score for GPT-4 increased from 86.9% to 91% for clinically significant errors and from 94.3% to 97% for not 
clinically significant errors. Further increases were achieved for text-davinci-003 (72% to 82% F1 score on clinically 
significant errors, 60% to 74.3% F1 score on not clinically significant errors), Llama-v2–70B-chat (58.8% to 67% F1 
score, 31.2% to 41%), and Bard (34.8% to 44% F1 score, 33.2% to 39%).29 

    

S
oft P

rom
pting (N

=
2) 

Soft 
Prompting 

Only 
(N=1) 

Disease diagnosis: EHR-KnowGen-III showed decreased performance across various evaluation metrics (micro f1: 
from 29.7% to 28.3%; macro f1: from 23.8% to 21.1%; accuracy: from 38.1% to 34.6%), emphasizing the 
importance of incorporating soft prompting for multimodal learning.38 
 

    

L
L

M
-A

ided 
P

rom
pting 

(N
=

1) 

Clinical notes summarization: LLM-aided prompt improved similarity score, and soft prompting improved 
reproducibility of LLM. Table 4 in the Chuan et al. (2024)’s studies highlighted detailed improvements 
quantitatively. For example, for Flan-T5 model, adding LLM-aided prompt improved ROUGE-1 F1 score from 
50.7% to a range of 52%-53%, and adding soft prompting reduced the standard deviation from 0.8% to 0.5%; adding 
LLM-aided prompt improved ROUGH-2 F1 score from 35.8% to 39%-40%.30 
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Table 2. Eight Included Studies with LLM Fine-Tuning. 
LLMs That Was Fine-
Tuned 

Fine-Tuning 
Algorithm 

Fine-Tuning 
Hardware 

Summary of Findings Related to Fine-Tuning 

Llama Full Parameter -
DeepSpeed  

2*NVIDIA 
A100 GPUs 

Disease diagnosis: No mention regarding the comparison of fine-tuned model and the original 
model. Fine-tuned Llama achieved 34.9% accuracy, 22.3% macro f1 score, and 28.7% micro f1 
score.38 

Llama PEFT-LoRA 1*Nvidia RTX 
A6000 GPU 

Predicting diagnosis-related group for hospitalized patients: No mention regarding the 
comparison of fine-tuned model and the original model.  DRG-LLaMA -7B model exhibited a 
noteworthy macro-averaged F1 score of 0.327, a top-1 prediction accuracy of 52.0%, and a 
macro-averaged Area Under the Curve (AUC) of 0.986.109 
1) A larger base model led to better fine-tuned performance. The best diagnosis accuracy of 

the fine-tuned Llama-13B achieved 54.6%, while that of the fine-tuned 7B model 
achieved 53.9%.  

2) Longer input context from the fine-tuning data led to better performance. For fine-tuned 
Llama-13B, when the max input token size was 340, the best diagnosis accuracy was 
49.9%, but the accuracy was increased to 54.6% when the max token size was 1024. 

Llama 2; FLAN-T5; 
FLAN-UL2; Vicuna 
Alpaca 

PEFT-QLoRA 1*NVIDIA 
Quadro RTX 
8000 

Clinical text summarization: Fine-tuned FLAN-T5 improved MEDCON score from 5 to a range 
of 26-69 on four datasets.36 
1) QLoRA FLAN-T5 was the best-performing fine-tuned open-source model. It achieved a 

MEDCON score of 59 on Open-i data, 38 on MIMIC-CXR data, 26 on MIMIC-III data, 
and 46 on patient questions data. 

2) QLoRA typically outperformed ICL with the better models (FLAN-T5 and Llama-2); 
given a sufficient number of in-context examples (from 1 to 64), however, all models 
surpassed even the best QLoRA fine-tuned model, FLAN-T5, in at least one dataset. 

3) An LLM fine-tuned with domain-specific data performed worse than the original model. 
For example, when Alpaca achieved a BLEU value of 30, Med-Alpaca only reached 20. 
This highlights a distinction between domain adaptation and task adaptation. 

GPT-3; GPT-J; Falcon; 
Llama 

PEFT-QLoRA Open AI’s 
Cloud 
Resources 

Phenotype recognition in clinical notes: No quantitative comparison between models before and 
after fine-tuning. Fine-tuned GPT-3 achieved the best performance of 81.6% F1 score on one 
dataset, and fine-tuned GPT-J performed the best on the other dataset (83.2% F1 score) 59 

BART; PEGASUS; T5; 
FLAN-T5; BioBART; 
Clinical-T5; GPT2; 
OPT; Llama; Alpaca 

PEFT-LoRA for 
Llama and Alpaca; 
full parameter tuning 
for other models. 

At least two 
NVDIA A100 
GPUs 

Generating personalized impressions for whole-body PET reports: Biomedical domain 
pretrained LLMs did not outperform their base models. Specifically, the domain-specific fine-
tuned BART model reduced the accuracy from 75.3% to 73.9%. This could be attributed to two 
reasons. First, our large training set diminished the benefits of medical-domain adaptation. 
Second, the corpora, such as MIMIC-III and PubMed, likely had limited PET-related content, 
making pretraining less effective for our task.35 

Llama 2 No mention No mention Predicting opioid use disorder (OUD), substance use disorder (SUD), and Diabetes: Fine-tuned 
Llama 2 achieved 92%, 93%, 74%, and 88% AUROC on four datasets for predicting SUD. 
Fine-tuned Llama 2 achieved 95%, 72%, 73%, and 98% AUROC on four datasets for predicting 
OUD. Fine-tuned Llama 2 achieved 88%, 76%, 64%, and 94% AUROC on four datasets for 
predicting diabetes.34 
1) An experiment of changing instructions suggests that fine-tuning on our datasets might 

have induced catastrophic forgetting particularly when dealing with a large volume of 
data. 

2) Fine-tuned Llama 2 outperformed Llama 2 without fine-tuning on diabetes prediction 
(AUROC increased from 50% to 88%). 

Llama 2-7B; BioGPT-
Large 

Full Parameter -
DeepSpeed 

4*A40 Nvidia 
GPUs 

Differential Diagnoses in PICU Patients: Fine-tuned model outperformed original model, but a 
smaller LM fine-tuned using domain-specific notes outperformed much larger models trained 
on general-domain data.64 Specifically: 
1) Fine-tuned Llama-7B achieved an average quality score of 2.88, while Llama-65B without 

fine-tuning achieved an average quality score of 2.65. 
2) Fine-tuned BioGPT-Large had an average score of 2.78, while BioGPT-Large without 

fine-tuning had a mean score of 2.02 
BART; GPT; MedLM PEFT-LoRA No mention 

 
Early detection of gout flares based on nurses’ chief complaint notes in the emergency 
department: No comparison between models before and after fine-tuning. Fine-tuned BART 
model (BioBART) performed the best, which achieved 0.73 and 0.67 F1 score on datasets 
GOUT-CC-2019-CORPUS and GROUT-CC-2020-CORPUS.71 
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Table 3. Summary of Evaluation Matrices. 
 

General Matrices 
 

Evaluation Matrices Evaluation Purpose Best Reported Performance Clinical Task Clinical 
Specialty 

Confusion Matrices-Based 
Scores 

Correctness 100% Diagnosing glaucoma based on specific 
clinical case descriptions43 

Ophthalmology 

Generating radiology reports from concise 
imaging findings100 

Radiology 

Accelerating review of historic 
echocardiogram reports77 

Internal Medicine 

Interpret symptoms and management of 
common cardiac conditions79 

Internal Medicine 

The diagnosis management of bacterial 
tonsillitis54 

Otolaryngology 

Classifying margin status for lung cancer57 Oncology 
Average Word Count 
Reduction Percentage + Recall 

Balance Between 
Conciseness and 
Completeness 

Average Word Count Reduction 
Percentage=47% when Recall=90% 

Summarizing radiology reports into 
structured format44 

Radiology 

Self-Designed Human 
Evaluation (e.g., Likert-Scale) 

Correctness 89.6% Generating concise and accurate layperson 
summaries of musculoskeletal radiology 
reports101 

Radiology 

Completeness 94.1% Generating concise and accurate layperson 
summaries of musculoskeletal radiology 
reports101 

Radiology 

Conciseness 12% Summarizing patient questions and progress 
notes36 

No specific 
specialty 

Harmfulness* 2% Proposing a comprehensive management plan 
(suspected/confirmed diagnosis, workup, 
antibiotic therapy, source control, follow-up) 
for patients with positive blood cultures48 

Internal Medicine 

Readability 80% Generating radiology reports from concise 
imaging findings100 

Radiology 

Quality 89% Impression generation for whole-body PET 
reports35 

Radiology 

Appropriateness 58.5% Diagnosing and suggest 
examinations/treatments for urology patients 
(subgroups that had the best performance: 
non-oncology)42 

Urology 

Satisfactory 80% Proposing a comprehensive management plan 
(suspected/confirmed diagnosis, workup, 
antibiotic therapy, source control, follow-up) 
for patients with positive blood cultures48 

Internal Medicine 

Reliability/Stability 70% Predicting treatments for patients with aortic 
stenosis83 

Internal Medicine 

Preference over 
Human 

81% Summarizing clinical text36 No specific 
Specialty 

Level of Empathy 61.4% Generating high-quality responses to patient-
submitted questions in the patient portal64 

Dermatology 

Hallucination Rate* 4% Improving the readability of foot and ankle 
orthopedic radiology reports106 

Radiology 

Utility 81.6% Impression generation for whole-body PET 
reports35 

Radiology 

Relevancy 40% Simplifying radiological MRI findings of the 
knee joint105 

Radiology 

Artificial Intelligence 
Performance Instrument 
(AIPI) 

Other Performance 15.1/20.0 Managing cases in otolaryngology–head and 
neck surgery40 

Otolaryngology 

QAMAI Tool Other Performance 18.4/30 Providing Triage for Maxillofacial Trauma 
Cases 

Surgery 

Ottawa Clinic Assessment 
Tool 

Other Performance 3.88/5.00 Recommending differential diagnosis for 
laryngology and head and neck 
(Recommending differential diagnosis) 
cases47 

Otolaryngology 

DISCERN Quality 15/35 Diagnosing and suggest 
examinations/treatments for urology patients 
(subgroups that had the best performance: 
oncology, emergency, and male)42 

Urology 

Root Mean Square Error Error 2.96 Measuring the angle of correction for high 
tibial osteotomy95 

Orthopedic 

Flesch Reading Ease Readability 72.7% Improving the readability of foot and ankle 
orthopedic radiology reports63 

Radiology 

Flesch-Kincaid Reading 
Grade Level* 

Readability 6.2 Summarizing discharge summary53 No specific 
specialty 

Average of Gunning Fog, Readability 7.5 Summarizing X-Ray report103 Radiology 
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Flesch–Kincaid Grade Level, 
Automated Readability, 
Coleman–Liau* 
Patient Education Materials 
Assessment Tool 

Understandability 81% Summarizing discharge summary53 No specific 
specialty 

Cohen’s Kappa Reliability/Stability 1.0 Head and neck oncological board decisions: 
deciding on neoadjuvant chemotherapy and 
chemoradiotherapy treatment 

Oncology 

Agreement with 
Expert or Ground 
Truth 

0.727 Predicting the dichotomized modified Rankin 
Scale (mRS) score at 3 months post-
thrombectomy84 

Neurology 

Cronbach’s α Agreement with 
Expert or Ground 
Truth 

0.754 Managing otolaryngology cases96 Otolaryngology 

Mann-Whitney U test Agreement with 
Expert or Ground 
Truth 

0.770 Providing number of additional examinations 
when managing otolaryngological cases40 

Otolaryngology 

Spearman’s Coefficient Reliability/Stability 0.999 Considering the patient’s symptoms and 
physical findings reported by practitioners 
when managing otolaryngology cases96 

Otolaryngology 

Percentage of Getting the 
Same Response to Identical 
Queries 

Reliability/Stability 100% Predicting hemoglobinopathies from a 
patient’s laboratory results of CBC and 
ferritin values82 

Internal Medicine 

Agreement Percentage Agreement with 
Expert or Ground 
Truth 

80% Determining disease severity for acute 
ulcerative colitis presentations in the setting 
of an emergency department75 

Gastroenterology 

Global Quality Scale Quality 4.2 Analyzing retinal detachment cases and 
suggesting the best possible surgical 
planning92 

Ophthalmology 

Fleiss Kappa Reliability/Stability 0.786 Colonoscopy recommendations for colorectal 
cancer rescreening and surveillance74 

Gastroenterology 

 
Similarity Measurements for Generative NLP Models 

 
Evaluation Matrices Correlated Evaluation (If Reported) Measured by 

Spearman’s Coefficient 
Performance 

Reported Coefficient Evaluation and Task Clinical 
Specialty 

Best 
Reported 
Value 

Task Clinical 
Specialty 

BLEU 0.412 Quality score of 
Impression generation 
for whole-body PET 
reports35 

Radiology 24.7 Impression generation for 
whole-body PET reports35 

Radiology 

0.225 Completeness of 
clinical text 
summarization36 

No 
Specific 
Specialty 

0.125 Correctness of 
clinical text 
summarization36 

0.075 Conciseness of 
clinical text 
summarization36 

BLEU-2    74.5 Generating a comprehensive 
and coherent medical report 
of a given medical image 
from COVID-19 data39 

Internal Medicine 
BLEU-3    67.8 
BLEU-4    63.2 

ROUGE-1 0.402 Quality score of 
Impression generation 
for whole-body PET 
reports35 

Radiology 57.29 Clinical notes 
summarization30 

No Specific 
Specialty 

ROUGE-2 0.379 Quality score of 
Impression generation 
for whole-body PET 
reports35 

Radiology 44.32 Clinical notes 
summarization30 

No Specific 
Specialty 

ROUGE-L 0.22 Completeness of 
clinical text 
summarization36 

No 
Specific 
Specialty 

68.5 Generating a comprehensive 
and coherent medical report 
of a given medical image 
from COVID-19 data39 

Internal Medicine 

0.16 Correctness of 
clinical text 
summarization36 

0.19 Conciseness of 
clinical text 
summarization36 

0.398 Quality score of 
Impression generation 
for whole-body PET 

Radiology 
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reports35 
BERTScore-Precision    86.57 Clinical notes 

summarization30 
No Specific 
Specialty BERTScore-Recall    87.14 

BERTScore-F1 0.18 Completeness of 
clinical text 
summarization36 

No 
Specific 
Specialty 

89.4 Summarizing longitudinal 
aneurysm reports102 

Radiology 

0.18 Correctness of 
clinical text 
summarization36 

0.24 Conciseness of 
clinical text 
summarization36 

0.407 Quality score of 
Impression generation 
for whole-body PET 
reports35 

Radiology 

MEDCON 0.125 Completeness of 
clinical text 
summarization36 

 64.9 Clinical text summarization36 No Specific 
Specialty 

0.175 Correctness of 
clinical text 
summarization36 

 

0.15 Conciseness of 
clinical text 
summarization36 

 

CIDEr 0.194 Quality score of 
Impression generation 
for whole-body PET 
reports35 

Radiology 97.5 Generating a comprehensive 
and coherent medical report 
of a given medical image 
from COVID-19 data39 

Internal Medicine 

BARTScore+PET 0.568 -1.46 Impression generation for 
whole-body PET reports35 

Radiology 
PEGASUSScore+PET 0.563 -1.44 
T5Score+PET 0.542 -1.41 
UniEval 0.501 0.78 
BARTScore 0.474 -3.05 
CHRF 0.433 42.2 
Moverscore 0.420 0.607 
ROUGE-WE-1 0.403 54.8 
ROUGE-LSUM 0.397 50.8 
ROUGE-WE-2 0.396 40.7 
METEOR 0.388 0.279 
ROUGE-WE-3 0.385 42.5 
RedGraph 0.384 0.397 
PRISM 0.369 -3.24 
ROUGE-3 0.345 20.5 
S3-pyr 0.302 0.71 
S3-resp 0.301 0.79 
Stats-novel trigram 0.292 0.99 
Stats-density 0.280 6.51 
BLANC 0.165 0.131 
Stats-compression 0.145 8.36 
SUPERT 0.082 0.557 
Stats-coverage 0.078 8.36 
SummaQA 0.075 0.180 
* Lower value represents better performance. 
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