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Summary Box 57 

What is already known on this topic: Dietary interventions can alter gut microbiome composition, 

but the impact of food processing, including in nutritionally balanced very low energy diets (VLEDs), 

is less understood. 

 

What this study adds: This study shows that a food-based VLED, with more whole food components 

and fewer highly processed industrial ingredients, increases gut microbiome diversity more than a 

supplement-based VLED. 

 

How this study might affect research, practice, or policy. Summarise the implications of this study: 

Our findings underscore the need for further research into how specific components and attributes 

of diets, both including and beyond nutritional composition, influence the gut microbiome. 

  58 
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Abstract 59 

Objective: To compare the effects of consuming food-based versus supplement-based very low-60 

energy diet (VLED) programs on gut microbiome composition in women with a high body mass index 61 

(BMI).  62 

 63 

Design: An investigator-initiated, single-blind, two-arm, parallel-group randomised controlled-feeding 64 

trial with computer-generated 1:1 randomisation. From May 2021 to February 2022, women aged 30–65 

65 years with BMI 30–45 kg/m² were recruited from southwest Victoria, Australia, and randomised to 66 

a three-week food-based or supplement-based VLED program. The primary outcome was between-67 

group differential change in faecal microbiome alpha diversity (Shannon index) from baseline to week 68 

three, assessed using shotgun metagenomics. Outcome assessors, study investigators, and analysing 69 

statisticians were blinded to group allocation until analysis completion. Allocation concealment was 70 

managed by an independent researcher using a computer software system. Modified intention-to-71 

treat (mITT) analyses using linear mixed-effects regression models estimated mean between-group 72 

differential changes, reported as beta-coefficient point estimates (β) and 95% confidence intervals 73 

(95%CI), adjusted for multiple comparisons. 74 

 75 

Results: Forty-seven participants were randomised (food-based: n=23, supplement-based: n=24). Of 76 

the 45 participants analysed, there was a between-group differential change in the Shannon index 77 

(mITT β: 0.37, 95%CI: 0.15 to 0.60) from baseline to week three, with a greater increase in the food-78 

based group (mean change: 0.26, 95%CI: 0.09 to 0.44; n=23) versus supplement-based group (mean 79 

change: −0.10, 95%CI: −0.25 to 0.05; n=22). There were 27 non-serious adverse events (food-based: 80 

8, supplement-based: 19), all non-serious. 81 

 82 

Conclusion: A food-based VLED, with more whole food components and fewer highly processed 83 

industrial ingredients, increases gut microbiome diversity more than a supplement-based VLED. 84 

Keywords: gut microbiome, very low-energy diet, dietary intervention, randomised controlled trial, 85 

obesity, women. 86 

Trial registration number: ACTRN12620000301965 87 
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Introduction 88 

The gut microbiome is intricately connected to human health and disease 1. Understanding the 89 

influence of diet on its composition and function may inform gut-focussed treatment strategies 1. The 90 

gut microbiome is shaped by both short- and long-term dietary exposures 2-5. Dietary interventions, 91 

including high-fibre and Mediterranean-style diets, have been shown to beneficially alter the gut 92 

microbiome 6 7. This includes increasing bacterial diversity and the abundances of bacterial species 93 

considered beneficial for health, enhancing carbohydrate breakdown by microbiome enzymes, and 94 

reducing inflammation 4 7. Conversely, more "Westernised" diets, characterised by higher intakes of 95 

sugar, fat, and protein and lower intakes of fibre, are linked to reduced gut microbiome diversity and 96 

functional capacity, higher body mass index (BMI), increased inflammatory markers, elevated risk of 97 

diseases such as cancer 8 9, and decreased hippocampal function within as little as four days 10. 98 

 99 

Although dietary interventions have been linked to alterations in gut microbiome composition and 100 

potential function 4 6 7 11, the effects of food processing on the gut microbiome have yet to be directly 101 

evaluated. Examples of heavily processed food items include the supplement-based shakes, bars, and 102 

soups consumed as meal replacements in very low-energy diet (VLED) programs, which are designed 103 

to provide an adequate ratio of macronutrients (proteins, fats, carbohydrates) and sufficient levels of 104 

essential vitamins and minerals, whilst limiting energy. These VLEDs, designed for individuals with a 105 

BMI of 25–30 kg/m² or higher, work by restricting energy intake to approximately 800–900 kcal per 106 

day. While VLEDs have shown effectiveness in reducing weight and improving markers of type 2 107 

diabetes and cardiovascular disease 12 13, the impact of highly processed supplement-based VLEDs on 108 

the gut microbiome is not well understood, especially compared to food-based VLEDs 14. Given the 109 

crucial role of the gut microbiome in health 1, understanding whether differential effects of these 110 

VLEDs on the gut microbiome exist will help assess the full risk-benefit profile of these weight loss and 111 

disease prevention approaches.  112 

 113 

This study aimed to explore the effects of a food-based versus supplement-based VLED program on 114 

gut microbiome composition and function, and physical and mental health outcomes, in women with 115 

high BMI. As preclinical models have demonstrated that diet-microbiome associations are sex-116 

dependent 15, the present study was conducted entirely in women, with the next step being a larger 117 

study to determine if findings extend to both sexes. 118 

119 
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Materials and Methods 120 

Trial design 121 

The MicroFit Study was a three-week, investigator-initiated, single-blind, two-arm, parallel-group 122 

randomised controlled-feeding trial with computer-generated 1:1 randomisation. Women with BMI 123 

30–45 kg/m² were recruited from the south-west region of Victoria, Australia. Participants were 124 

screened against eligibility criteria online via the REDCap platform 16 17, and research assistants 125 

obtained informed consent via telephone once eligibility was confirmed. At the baseline assessment, 126 

research assistants collected anthropometric measurements to verify participants' eligibility based on 127 

BMI. Eligible participants were randomised to consume a meal replacement program comprising 128 

either primarily food-based or supplement-based VLED options. Participants attended in-person study 129 

visits at baseline and week three at Australian Clinical Labs (ACL, Geelong, Australia) where a 130 

phlebotomist collected serum samples after an overnight fast. Participants were provided kits to 131 

collect faecal samples at home at baseline and week three, which they sent via prepaid mail to 132 

Microba Pty Ltd (Brisbane, Australia) for analysis. Questionnaire data, including sociodemographic, 133 

dietary, and health-related factors, were self-reported by participants at home using REDCap online 134 

at both study timepoints 18 19. Participants logged their food consumption using the Easy Diet Diary 135 

application (Xyris Software Pty Ltd, Australia) every day for the entire study period. An a priori power 136 

calculation was conducted, based on 40 participants (20 in each arm). However, by study completion, 137 

we randomised 47 participants to account for missing baseline data and higher than anticipated 138 

dropout, and the power calculation was adjusted accordingly. 139 

This trial received ethical approval from the Barwon Health (19/112) and Deakin University (2018/211) 140 

Human Research Ethics Committees and was registered on the Australian New Zealand Clinical Trials 141 

Registry (ACTRN12620000301965). This manuscript is presented as per the Consolidated Standards of 142 

Reporting Trials (CONSORT) statement and checklist 20 and gut microbiome data are reported as per 143 

the Strengthening the Organising and Reporting of Microbiome Studies (STORMS) checklist 21. The 144 

completed checklists and additional details are provided in the Supplementary Methods. The trial and 145 

manuscript development did not involve patients or the public owing to the absence of funding to 146 

support consumer engagement for this research. 147 

 148 

Recruitment and participants 149 

Community-based recruitment was conducted from May 2021 to February 2022 using online 150 

platforms hosted by Deakin University and Barwon Health (e.g. Facebook, Instagram, Twitter, Barwon 151 
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Health online newsletter), distributing flyers to local general practitioner offices, and through a variety 152 

of both paid and free online advertising services. 153 

 154 

Inclusion criteria were: of female sex (as a means of reducing interindividual heterogeneity); aged 30–155 

65 years; with a BMI of 30–45 kg/m2; able to commit to all study procedures, including attending in-156 

person appointments and consuming only the investigational products and recommended extras for 157 

the study duration; able to understand study materials and directions presented in English; with 158 

access to the internet and a computer, smartphone, or tablet; and able to agree to not to enrol in 159 

another clinical trial while taking part in the study.  160 

 161 

Exclusion criteria were: currently consuming VLED products; having a diagnosed food allergy or food 162 

intolerance; receiving treatment with medications related to obesity; confirmed/suspected/planned 163 

pregnancy, or lactating; diagnosed with or having commenced a new treatment for, anxiety and/or 164 

depression within one month before baseline; having gastrointestinal disease or history of major 165 

gastrointestinal surgery; having a pre-existing cardiometabolic conditions; having had a heart attack 166 

within the past six months; having a diagnosed eating disorder; having other major medical conditions 167 

likely to have systemic effects or deemed unfit for study participation by the research team (e.g., type 168 

2 diabetes, prediabetic, insulin resistance); regularly using opioid-based medications; regularly using 169 

recreational or illicit drugs; regularly using sodium-glucose co-transporter-2 inhibitors (i.e., gliflozins); 170 

having used antibiotics, prebiotics, and/or probiotics in the month before baseline; and having been 171 

enrolled in another clinical trial within the past three months. 172 

 173 

Randomisation, allocation, and blinding 174 

Eligible participants were randomly assigned in a 1:1 ratio to either the food-based or supplement-175 

based VLED using a computer-generated randomisation sequence with randomly ordered blocks of 176 

sizes 2 and 4. This sequence was created by a study statistician and input into REDCap online by an 177 

independent researcher to ensure allocation concealment from the study investigators. An unblinded 178 

trial coordinator enrolled and informed participants of the VLED program to which they had been 179 

assigned. The outcome assessors (research assistants) and all other study investigators, including the 180 

analysing statisticians, remained blinded to the group allocations until data analysis completion. As 181 

the study was single-blind, participants were aware of their group allocations and instructed not to 182 

discuss their allocation with the outcome assessors to preserve blinding.  183 

 184 

Interventions 185 
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The VLEDs were intended to be matched in overall energy (800–900 kcal per day), macronutrient 186 

profiles, sugar, sodium, and fibre. The supplement-based VLED comprised three daily total meal 187 

replacement options. Participants chose from a selection of powdered shakes and soups, bars, and 188 

desserts (16 items). On average, approximately 70% of the composition of these options was made of 189 

extracted, refined, fractionated, modified, and/or isolated proteins (e.g., calcium caseinate), 190 

carbohydrates (e.g., maltodextrin), fats (e.g., medium chain triglycerides), and fibres (e.g., fructo-191 

oligosaccharide), as well as added vitamins (e.g., B1) and minerals (e.g., potassium citrate), and 192 

additives like emulsifiers (e.g., 472c), non-sugar sweeteners (e.g., aspartame), flavours (e.g., 193 

unspecified "flavour"), colours (e.g., curcumin), thickeners and stabilisers (e.g., vegetable gum 414). 194 

The remaining 30% consisted primarily of whole powdered milk. The food-based VLED comprised 195 

three daily total meal replacement options (55 items) and a discretionary snack (11 items). 196 

Participants chose from a selection of pre-prepared meals. On average, approximately 93% of the 197 

composition of these options was made of vegetables (e.g., green cabbage),  fruits (e.g., banana), 198 

whole grains (e.g., oats), beans (e.g., cannellini beans), legumes (e.g., chickpeas), lean meats (e.g., 199 

chicken), dairy cheeses (e.g., ricotta), nuts (e.g., almond meal), seeds (e.g., flaxseed), herbs (e.g., 200 

parsley), and spices (e.g., cinnamon). The remaining 7% of the composition consisted primarily of 201 

protein isolates (e.g., whey protein isolate), as well as additives such as emulsifiers (e.g., soy lecithin), 202 

non-sugar sweeteners (e.g., stevia), flavours (e.g., vanilla extract), thickeners and stabilisers (e.g., guar 203 

gum), with approximately less than 1% of the composition of discretionary snacks including an added 204 

and isolated fibre (e.g., oligofructose) and the probiotic Lactobacillus plantarum (now 205 

Lactiplantibacillus plantarum). The full list of the options in each group and their ingredients are 206 

detailed in the Supplementary Methods. 207 

 208 

Participants received all meal replacements without cost, delivered directly to their homes. They could 209 

choose any three meal replacements to consume at any time throughout the day. Participants were 210 

also permitted to include additional 'recommended extras' foods from a predetermined list (see 211 

Supplementary Methods) . The supplement-based VLED group was recommended to consume at least 212 

two cups of low starch vegetables. The food-based VLED group was recommended to include one 213 

additional fruit or protein snack and three serves of side salads or vegetables. Non-sugar sweeteners, 214 

diet jelly desserts, and sugar-free lollies and gum were not recommended for daily use in the food-215 

based VLED group, with diet cordial and diet soft drinks recommended as occasional options. The 216 

supplement-based VLED group were recommended to consume these items ad libitum, with no 217 

restrictions. Participants logged their daily food consumption using the Easy Diet Diary application 218 

throughout the entire study period. These data were used to monitor adherence to the approximately 219 
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900 kcal per day target and to assess macronutrient intake, which was analysed using Australian food 220 

composition databases via the FoodWorks Professional nutrient analysis software (Xyris Software Pty 221 

Ltd, Brisbane, Australia 22 23. 222 

 223 

Sample size 224 

An a priori sample size calculation was conducted based on 40 participants (20 in each arm) and a 225 

similar study's sample size at the time of protocol development 24. As per benchmarks proposed by 226 

Cohen (1998), the a priori power calculation showed that the study had above 80% power with an 227 

alpha of 5% to detect moderate between-group difference effect sizes (d=0.91) in gut microbiome 228 

alpha diversity (Shannon index). An a posteriori power calculation based on 45 participants had 80% 229 

power to detect effect sizes of d=0.85. 230 

 231 

Clinical outcomes measures 232 

Anthropometric measurements included height (stadiometer), weight (electric scales), and hip and 233 

waist circumferences (measuring tape). BMI was calculated as: BMI = (weight, kg) / (height, m)2. Serum 234 

inflammation markers (homocysteine, interleukin (IL)-β, IL-6, and tumor necrosis factor (TNF)-α) were 235 

assayed using the BDtm Cytometric Bead Array platform (SA Pathology, Adelaide Women's and 236 

Children's Hospital). Serum leptin was measured using Merck Millipore radioimmunoassay kits (Royal 237 

Prince Alfred’s Central Sydney Pathology Services). Other serum biomarkers (glucose, insulin, liver 238 

function markers (ALT, GGT, ALP, AST, total bilirubin, albumin, protein, and globulin), and lipid markers 239 

(total cholesterol, HDL, LDL, non-HDL, LDL/HDL ratio, cholesterol/HDL ratio, triglycerides) were 240 

analysed using Siemens’ ADVIA® Chemistry kits (Australian Clinical Labs, Victoria). Self-reported 241 

measures included: mental health symptoms using the Depression Anxiety Stress Scale-21 (DASS-21) 242 

25, with higher scores indicating more severe symptoms; perceived well-being using the World Health 243 

Organization Wellbeing Scale (WHO-5) 26, with higher scores indicating better well-being; sleep-244 

related difficulties using the Athens Insomnia Scale (AIS) 27, with higher scores indicating more severe 245 

issues; gastrointestinal symptoms using the Visual Analogue Scale for Irritable Bowel Syndrome (VAS-246 

IBS) 28 29, with higher scores indicating better outcomes; stool consistency using the Bristol Stool Form 247 

Scale (BSFS) 30, a 7-point scale spanning from firmest to softest stool, with mean scores estimated for 248 

each participant across one week; physical activity using the International Physical Activity 249 

Questionnaire-Short Form (IPAQ-SF) 31, with categorical scores (i.e., low, moderate, high) estimated 250 

as per guidelines 32; and habitual dietary intake at baseline using the Dietary Questionnaire for 251 

Epidemiological Studies v3.2 (DQES v3.2) 33. Further details are provided in the Supplementary 252 

Methods. 253 
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Sample collection, transport, and storage 254 

Faecal samples (~15g) were collected by participants at baseline and week three using a Copan Italia 255 

SPA FLOQSwab in an active drying tube, including an internal desiccant to preserve samples at room 256 

temperature for up to four weeks, within 24–48 hours of their in-person appointments. Faecal 257 

samples were sent directly to Microba via post at room temperature where they were stored at –80°C 258 

until further processing. Fasted blood samples (40mL) were collected and stored at ACL as per 259 

standard procedures.  260 

 261 

DNA extraction 262 

Faecal samples were extracted using the DNeasy 96 PowerSoil Pro QIAcube HT Kit (Qiagen 47021) in 263 

a 2mL deep well plate format with a modified initial processing step on the QIAcube HT DNA extraction 264 

system (Qiagen 9001793). Mechanical lysis was performed with PowerBead Pro beads (Qiagen 265 

19311). DNA was quantified using a high-sensitivity dsDNA fluorometric assay (QuantIT, 266 

ThermoFisher, Q33120), with samples needing to reach a minimum of 0.2 ng/µL for quality control. 267 

 268 

Library preparation  269 

Libraries were constructed using the Illumina DNA Prep (M) Tagmentation Kit (Illumina, 20018705) 270 

with IDT for Illumina DNA/RNA UD Index Sets A-D (Illumina 20027213-16), modified to accommodate 271 

processing in a 384-plate format. Individual libraries were pooled in equimolar amounts and assessed 272 

using a high-sensitivity dsDNA fluorometric assay (QuantIT, ThermoFisher, Q33120) and visualised 273 

with capillary gel electrophoresis using the QIAxcel DNA High Resolution Kit (Qiagen, 929002).  274 

 275 

Shotgun metagenomic sequencing  276 

Samples were sequenced on the NovaSeq6000 (Illumina) using v1.5 300bp paired-end sequencing 277 

reagents. Sequence data were reviewed for yield and quality, with known control samples included in 278 

each run to monitor for background contamination. Paired-end DNA sequencing data were 279 

demultiplexed and adaptor trimmed using Illumina BaseSpace Bcl2fastq2 (v2.20) with one mismatch 280 

allowed in index sequences. Reads were quality trimmed and residual adaptors removed using 281 

Trimmomatic v0.39 with parameters: -phred33 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 282 

CROP:100000 HEADCROP:0 MINLEN:100. Human DNA was removed by aligning reads to the human 283 

genome reference assembly 38 (GRCh38.p12) using bwa-mem v0.7.17 with a minimum seed length 284 

of 31 (-k 31). Alignments were filtered using SAMtools v1.7, and reads mapping to the human genome 285 

with greater than 95% identity over more than 90% of the read length were flagged as human DNA 286 

and removed. 287 
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Species profiles were obtained using the Microba Community Profiler (MCP) v1.0 and the Microba 288 

Genome Database (MGDB) v1.0.3, with reads assigned to genomes within MGDB to estimate and 289 

report the relative cellular abundance of species clusters. Quantification of gene and pathway 290 

abundance was performed using the Microba Gene and Pathway Profiler (MGPP) v1.0 against the 291 

Microba Genes (MGENES) database v1.0.3. Open reading frames from genomes in MGDB were 292 

clustered against UniRef90 (release 2019/04) using MMSeqs2 with 90% identity over 80% of read 293 

length. Gene clusters were annotated with UniRef90 identifiers and linked to Enzyme Commission and 294 

Transporter Classification Database annotations via the UniProt ID mapping service. Enzyme 295 

Commission annotations were then used to determine MetaCyc pathway encoding using enrichM, 296 

with pathways classified as encoded if completeness exceeded 80%. DNA sequencing read pairs 297 

aligning with gene sequences from any protein within an MGENES protein cluster were summed. The 298 

abundances of encoded pathways for species detected by MCP were calculated by averaging the read 299 

counts of all genes for each enzyme in the pathway. 300 

 301 

Data preparation 302 

Data normalisation was performed by down-sampling to a standardised number of reads before 303 

profiling within the MCP. One sample (food-based, week 3) had low read count (2,779,002) and was 304 

removed in sensitivity analyses. Alpha diversity was calculated using raw count data, with rarefaction 305 

applied to match the smallest total number of prokaryotic reads across all samples. Centred log-ratio 306 

(CLR) transformations were utilised before conducting beta-diversity and differential abundance 307 

statistical tests (species, genus, family, and phylum) given the compositional and non-normal nature 308 

of microbiome relative abundance data. 309 

 310 

Alpha diversity, which summarises community structure within a sample, was evaluated using the 311 

Shannon index and Richness metrics. Richness quantifies the number of different species present in 312 

each sample. The Shannon index considers both the number of detected species (richness) and how 313 

evenly distributed the species are (evenness); communities with higher numbers of detected species 314 

and more even distributions of these species will result in higher Shannon index. Filtering was 315 

conducted to remove low prevalence taxa present in less than 5% of samples. Beta diversity, which 316 

summarises between-sample differences in community structure, was calculated using Aitchison 317 

distances, defined as the Euclidean distance between CLR-transformed samples, via the stats 34 318 

package. Principal Component Analysis (PCA) was used to reduce data dimensionality for visualisation 319 

in two dimensions to identify patterns or clusters of samples within the dataset using the Tjazi 35 320 

package.  321 
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Statistical methods 322 

Participant baseline characteristics were summarised with mean and standard deviation for 323 

continuous variables (or median and interquartile range where appropriate) and frequency and 324 

percentage for categorical variables. We conducted modified intention-to-treat (mITT) analyses, 325 

which included all participants who provided a baseline faecal sample. We also conducted complete 326 

case analyses, which included only participants who provided both a baseline and week three faecal 327 

sample as secondary analyses. We used linear mixed-effects regression (LMER) models to estimate 328 

between-group (food-based vs. supplement-based) differential changes (week three vs. baseline) in 329 

gut microbiome Shannon index (primary outcome) and secondary outcomes using the lme4 36 330 

package. The models included participant as a random effect, and group allocation, nominal time 331 

point, and the interaction between diet group and time point (i.e., diet group x time point) as fixed 332 

effects. The interaction estimated the between-group differential changes from baseline to week 333 

three using beta-coefficient point estimates (β) with 95% confidence intervals (95%CI) and p-values 334 

(two-tailed; p<0.05 for significance) 37. The supplement-based VLED was set as the reference group. 335 

Missing covariate and secondary outcome data were imputed using predictive mean matching (five 336 

imputations) using the mice 38 package, with baseline auxiliary variables included to increase accuracy. 337 

Interaction plots of the estimated marginal means were created using the emmeans 39 package. 338 

Additionally, mean (95%CI) within-group changes are provided for descriptive purposes only and not 339 

as formal statistical tests, due to the limited sample size and low statistical power. 340 

 341 

For beta diversity, we used complete cases to create individual CLR component-wise change scores 342 

(baseline minus week three) and then used permutational analysis of variance using adonis2 via the 343 

vegan 40 package with 999 permutations to calculate the between-group differential change (i.e., beta 344 

diversity change ~ group). We report the R-squared (r2) statistic, providing a measure of the proportion 345 

of variance explained by the grouping factor (i.e., diet group) in the model. 346 

 347 

We applied the Benjamini-Hochberg procedure 41 to adjust for multiple comparisons. Outcomes were 348 

grouped into related categories (e.g., gastrointestinal outcomes) and multiple comparisons testing 349 

was conducted within each category (q<0.1 for significance given the small sample size). Finally, in 350 

sensitivity analyses for the primary outcome, we adjusted for BMI due to baseline group imbalances, 351 

and removed one sample with low read count. Statistical analyses were conducted using R in the 352 

RStudio environment 42. 353 

  354 
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Results 355 

Recruitment and trial retention 356 

We screened 102 participants for eligibility, of whom 40 were initially randomised (Figure 1). Due to 357 

participant withdrawal/loss to follow-up (n=4) and missing faecal samples (n=4), we aimed to recruit 358 

an additional eight participants to reach a sample size of 40 with complete data. Overall, 47 359 

participants were randomised, including 23 in the food-based VLED and 24 in the supplement-based 360 

VLED. Of these, 45 were included in mITT analyses (food-based: n=23, supplement-based: n=22), and 361 

39 in complete case analysis (food-based: n=22, supplement-based: n=17) of the primary outcome. 362 

 363 

 364 

Figure 1. Consolidated Standards of Reporting Trials (CONSORT) flow diagram. 365 
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Baseline characteristics 366 

On average, participants in the food-based VLED were, less commonly married or employed compared 367 

to the supplement-based VLED group (Table 1). More participants in the food-based VLED were taking 368 

medication, and they also had higher average BMI, body weight, physical activity levels, and waist and 369 

hip circumferences, compared to the supplement-based VLED. 370 

 371 

Table 1. Baseline characteristics of participants randomised to food-based versus supplement-based 372 

very low-energy diets. 373 

 

Food-based 

VLED (N=23) 

Supplement-based 

VLED (N=24) Total (N=47) 

Sociodemographic factors    

Age, years – M (SD) 46.5 (10.3) 48.3 (9.91) 47.4 (10.0) 

Born in Australia, n (%) 22 (96%) 19 (79%) 41 (87%) 

Married, n (%) 15 (65%) 19 (79%) 34 (72%) 

Post-secondary school education, n (%) 21 (91%) 20 (83%) 41 (87%) 

Employed, n (%) 18 (78%) 23 (96%) 41 (87%) 

Household income above $74,999, n (%) 13 (57%) 13 (54%) 26 (55%) 

Health factors    

Current smoker, n (%) 1 (4%) 2 (8%) 3 (6%) 

Any medication use, n (%) 18 (78%) 13 (59%) 31 (69%) 

Stool consistency – M (SD) 3.8 (1.1) 4.3 (1.2) 4.0 (1.2) 

Body mass index – M (SD) 36.8 (3.6) 34.8 (3.2) 35.8 (3.5) 

Weight, kilograms – M (SD) 101 (10.1) 94.1 (10.3) 97.3 (10.6) 

Waist circumference, centimeters – M (SD) 107 (8.7) 103 (9.1) 105 (9.1) 

Hip circumference, centimeters – M (SD) 124 (9.1) 119 (7.1) 122 (8.5) 

Low physical activity, n (%) 13 (57%) 18 (75%) 31 (66%) 

Notes: Stool consistency measured using the Bristol Stool Form Scale; Low physical activity measured using the International Physical Activity 374 

Questionnaire. Abbreviations: BSFS, Bristol Stool Form Scale; M, Mean; n (%), Number and proportion of participants; VLED, very low-energy 375 

diet; SD, Standard deviation.  376 
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ADHERENCE & SAFETY  377 

Diet adherence   378 

Of the complete cases (n=39), on average, dietary intake was recorded on 20 out of the requested 21 379 

days. The average daily energy intake of 825 kcal was within the 800–900 kcal VLED target range (Table 380 

S1). Both groups had similar average daily intakes of carbohydrate, protein, fibre, sugar, and sodium. 381 

The food-based VLED had higher average total energy intake (903 vs. 748 kcal/d) and total fat intake 382 

(40.1 vs. 22.5 g/d, equivalent to ~158kcal) compared to the supplement-based VLED, respectively. The 383 

difference in average energy intake between the two groups closely matches the energy difference 384 

attributable to the variation in fat intake.  385 

 386 

Adverse Events 387 

Participants in the supplement-based VLED reported more adverse events compared to the food-388 

based VLED (19 vs. 8, respectively) (Table S2). The most common adverse event reported for both 389 

groups was headaches (5 vs. 3 events, respectively). No serious adverse events were reported in either 390 

group. 391 

 392 

PRIMARY OUTCOME 393 

We observed a statistically significant between-group differential change in species-level Shannon 394 

index (mITT β: 0.37 95%CI: 0.15 to 0.60) (Table S3), with the food-based VLED group experiencing a 395 

greater increase in Shannon index (mean change: 0.27, 95%CI: 0.09 to 0.44) compared to the 396 

statistically non-significant decrease observed in the supplement-based VLED group (mean change: 397 

−0.11, −0.27 to 0.05). (Figure 2 - A). Results of complete case analyses (Table S3) and sensitivity 398 

analyses adjusting for BMI and removing a sample with low read count (Table S11) were similar. 399 

 400 

SECONDARY OUTCOMES 401 

From baseline to week three, we observed a between-group differential change in species richness 402 

(mITTβ: 27.9, 12.1 to 43.7), with the food-based VLED group experiencing a greater increase in 403 

richness (mean change: 23.2, 12.7 to 33.7) compared to the statistically non-significant decrease 404 

exhibited in the supplement-based VLED group (mean change: −4.59, −17.0 to 7.78)  (Table S3; Figure 405 

2 – B). 406 

 407 

We also observed a between-group differential change in beta diversity (complete case r²=0.051, 408 

p=0.001) (Table S4), suggesting that 5.1% of the difference in the shift in beta diversity observed 409 

between groups could be explained by the VLEDs. Visual inspection of the data using PCA suggested 410 
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a greater shift in beta diversity in the supplement-based VLED compared to the food-based VLED 411 

(Figure 2 – C). The variance in Aitchison distances explained by time point was 1.8% in the food-based 412 

VLED group and 4.5% in the supplement-based VLED group (Table S4). 413 

 414 

There were 619 species for analysis after prevalence filtering. Of these, we observed between-group 415 

differential changes in 72 bacterial species (Table S5); however, these results were not upheld after 416 

adjustment for multiple comparisons. Results of complete case analyses were similar (Table S6). There 417 

were between-group differential changes in 56 genera (Table S7), eight families (Table S8), three 418 

MetaCyc groups (Table S10), and one phylum (Table S9); of these, 15 genera, 2 families, 6 MetaCyc 419 

groups, and no phyla survived adjustment for multiple comparisons. For other secondary outcomes, 420 

there was a between-group differential change in constipation symptoms; however, this result was 421 

not upheld after adjustment for multiple comparisons (Table S3). No other between-group differential 422 

changes, including in body weight, were observed across other secondary outcomes (Table S3).423 
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 424 

 425 
Figure 2. Interaction plots for the estimated marginal means of A) species-level Shannon index (primary outcome) and B) 426 

species Richness, in participants that received a food-based very low-energy diet (FB-VLED; purple) versus supplement-based 427 

very low-energy diet (SB-VLED; blue) from baseline to week three (final). Vertical bars represent 95% confidence intervals. 428 

C) Principal component analysis of Aitchison distances in those that received a food-based very low-energy diet (FB-VLED; 429 

purple) versus supplement-based very low-energy diet (SB-VLED; blue) at baseline and week three (final). The scatter plot 430 

shows the first two principal components (PC1 and PC2), explaining 9.15% and 6.24% of the variance, respectively. Each 431 

point represents an individual sample. Ellipses around each group represent the 95% confidence intervals, illustrating the 432 

spread and central tendency of the samples within each group. The ellipses provide a visual indication of the multivariate 433 

normal distribution of the data points, helping to identify the degree of overlap or separation between different groups. 434 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 12, 2024. ; https://doi.org/10.1101/2024.08.11.24311823doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.11.24311823
http://creativecommons.org/licenses/by-nc/4.0/


 19 

Discussion 435 
We present novel evidence of the differential effects of food-based versus supplement-based VLEDs 436 

on gut microbiome alpha diversity in women with high BMI. Additionally, there were differences in 437 

beta diversity as a secondary outcome. Compared to the supplement-based VLED group, participants 438 

in the food-based VLED exhibited greater increases in alpha diversity, a marker of better gut health in 439 

adults 43, and smaller shifts in beta diversity, suggesting less variability or dissimilarity in overall gut 440 

microbiome community structure between baseline and week three. We did not observe differences 441 

between the two groups in terms of changes to other secondary outcomes, including gut microbiome 442 

functional potential, body weight measures, serum metabolic and inflammatory markers, mental 443 

health, or gastrointestinal parameters. 444 

 445 

Limitations 446 

Several limitations must be considered when interpreting our findings. While the single-blind nature 447 

of the trial likely had little impact on the objective gut microbiome measures, knowledge of 448 

intervention allocation may have influenced self-reported gastrointestinal and mental health 449 

symptoms. Our study was conducted in women with a BMI at or above 30 kg/m2, therefore findings 450 

may not be directly applicable to other populations. Our study was of short duration and VLEDs are 451 

typically followed for 12 weeks or more. Future research should involve more diverse populations and 452 

extended follow-up periods to enhance generalisability. We randomised 47 participants instead of the 453 

planned 40 to address missing data, withdrawals, and loss to follow up; however, mITT principles were 454 

maintained, and LMER models, which partially mitigate bias from missing data, showed consistent 455 

results aligned with complete case analyses. The large number of outcomes assessed increases the 456 

potential for type I errors; however, outcomes were grouped into related categories and adjustments 457 

for multiple comparisons were made for each analysis. There were differences between the groups in 458 

BMI at baseline, likely due to the small sample size, which was not large enough to balance off all 459 

confounders. Whilst results of sensitivity analyses adjusted for BMI at baseline were similar to primary 460 

analyses, larger trials are required to confirm findings. Lastly, while the two VLED programs were 461 

intended to be isocaloric and nutritionally equivalent in terms of macronutrients, differences in fat 462 

and energy intake, as well as other program aspects such as restrictions on non-sugar sweeteners and 463 

the inclusion of the probiotic L. plantarum in the discretionary snacks of the food-based VLED, 464 

introduce additional variability. Although a small number of food-based VLED snacks contained less 465 

than 1% of L. plantarum, this species was not detected in any of the faecal samples. Therefore, the 466 

possible implications of these dietary differences on our findings remains unclear. 467 

 468 
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Implications and future directions 469 

Our study is of potential relevance to the ongoing research and policy discussions regarding the role 470 

of ultra-processed foods in health and disease. Although our study was not specifically designed to 471 

investigate the impact of ultra-processed foods as defined by the widely used Nova food classification 472 

system 44, existing evidence links diets high in these foods to poorer health outcomes, including 473 

greater risks of cardiovascular disease, type 2 diabetes, common mental disorders, and mortality 45. 474 

However, an oft-cited limitation to the current ultra-processed food literature is a lack of causal and 475 

mechanistic understanding of these associations 46 47. Although considered nutritionally complete, the 476 

supplement-based VLED meal replacements were comprised almost entirely of highly processed 477 

industrial ingredients, including substances extracted from foods (such as combinations of 478 

macronutrient isolates like calcium caseinate, sodium caseinate, and medium chain triglycerides), as 479 

well as additives (such as emulsifiers and non-sugar sweeteners like 472c and aspartame, 480 

respectively). Conversely, the food-based VLED meal replacements primarily consisted of vegetables, 481 

whole grains, and legumes, with far fewer heavily processed industrial ingredients. Emerging evidence 482 

suggests that additives such as emulsifiers 48 and non-nutritive sweeteners 49 may adversely impact 483 

the gut microbiome and related health. In contrast, intact food structures and matrices, along with 484 

polyphenols and phytonutrients and diverse sources of fibre found in whole food components may 485 

positively modulate the gut microbiome 50 51. Acknowledging the limitations of our study, the findings 486 

support future research specifically designed to investigate the gut microbiome as a potential 487 

mechanism through which diets high in ultra-processed foods impact health outcomes. 488 

 489 

Conclusion 490 

Our study provides novel evidence of the differential impacts of food-based versus supplement-based 491 

VLEDs on the diversity of the gut microbiome of women with high BMI. Our findings show that a food-492 

based VLED, with greater whole food components and fewer highly processed industrial ingredients, 493 

increases gut microbiome diversity more than a supplement-based VLED. Further research is needed 494 

to better understand specific components or attributes of these diets responsible for the observed 495 

differential effects. 496 

  497 

498 
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