1 A new preprocedural predictive risk model for post-endoscopic retrograde

2 cholangiopancreatography pancreatitis: The SuPER model

3

4	Mitsuru Sugimoto ^{1*} , Tadayuki Takagi ¹ , Tomohiro Suzuki ² , Hiroshi Shimizu ² , Goro
5	Shibukawa ³ , Yuki Nakajima ³ , Yutaro Takeda ⁴ , Yuki Noguchi MD ⁴ , Reiko Kobayashi
6	MD ⁴ , Hidemichi Imamura ⁴ , Hiroyuki Asama ⁵ , Naoki Konno ⁵ , Yuichi Waragai ⁶ ,
7	Hidenobu Akatsuka ⁷ , Rei Suzuki ¹ , Takuto Hikichi ⁸ , and Hiromasa Ohira ¹
8	
9	¹ Department of Gastroenterology, Fukushima Medical University, School of Medicine,
10	Fukushima, Japan
11	² Department of Gastroenterology, Fukushima Rosai Hospital, Iwaki, Japan
12	³ Department of Gastroenterology, Aizu Medical Center, Fukushima Medical University,
13	Aizu, Japan
14	⁴ Department of Gastroenterology, Ohta Nishinouchi Hospital, Koriyama, Japan
15	⁵ Department of Gastroenterology, Fukushima Redcross Hospital, Fukushima, Japan
16	⁶ Department of Gastroenterology, Soma General Hospital, Soma, Japan
17	⁷ Department of Gastroenterology, Saiseikai Fukushima General Hospital, Fukushima,

18 Japan

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

⁸Department of Endoscopy, Fukushima Medical University Hospital, Fukushima, Japan

- 21 *** For correspondence**
- 22 kita335@fmu.ac.jp
- 23
- 24

25 Abstract

26	Background: Post-endoscopic retrograde cholangiopancreatography (ERCP)
27	pancreatitis (PEP) is a severe and deadly adverse event following ERCP. The ideal
28	method for predicting PEP risk before ERCP has yet to be identified. We aimed to
29	establish a simple PEP risk score model (SuPER model: Support for PEP Reduction)
30	that can be applied before ERCP.
31	Methods: This multicenter study enrolled 2074 patients who underwent ERCP. Among
32	them, 1037 patients each were randomly assigned to the development and validation
33	cohorts. In the development cohort, the risk score model for predicting PEP was
34	established by logistic regression analysis. In the validation cohort, the performance of
35	the model was assessed.
35 36	the model was assessed. Results: In the development cohort, five PEP risk factors that could be identified before
35 36 37	the model was assessed.Results: In the development cohort, five PEP risk factors that could be identified beforeERCP were extracted and assigned weights according to their respective regression
35 36 37 38	the model was assessed. Results: In the development cohort, five PEP risk factors that could be identified before ERCP were extracted and assigned weights according to their respective regression coefficients: -2 points for pancreatic calcification, 1 point for female sex, and 2 points
35 36 37 38 39	the model was assessed. Results: In the development cohort, five PEP risk factors that could be identified before ERCP were extracted and assigned weights according to their respective regression coefficients: -2 points for pancreatic calcification, 1 point for female sex, and 2 points for intraductal papillary mucinous neoplasm, a native papilla of Vater, or the use of
35 36 37 38 39 40	the model was assessed. Results: In the development cohort, five PEP risk factors that could be identified before ERCP were extracted and assigned weights according to their respective regression coefficients: -2 points for pancreatic calcification, 1 point for female sex, and 2 points for intraductal papillary mucinous neoplasm, a native papilla of Vater, or the use of pancreatic duct procedures. The PEP occurrence rate was 0% among low-risk patients
 35 36 37 38 39 40 41 	the model was assessed. Results: In the development cohort, five PEP risk factors that could be identified before ERCP were extracted and assigned weights according to their respective regression coefficients: -2 points for pancreatic calcification, 1 point for female sex, and 2 points for intraductal papillary mucinous neoplasm, a native papilla of Vater, or the use of pancreatic duct procedures. The PEP occurrence rate was 0% among low-risk patients (≤ 0 points), 5.5% among moderate-risk patients (1 to 3 points), and 20.2% among
 35 36 37 38 39 40 41 42 	the model was assessed. Results: In the development cohort, five PEP risk factors that could be identified before ERCP were extracted and assigned weights according to their respective regression coefficients: -2 points for pancreatic calcification, 1 point for female sex, and 2 points for intraductal papillary mucinous neoplasm, a native papilla of Vater, or the use of pancreatic duct procedures. The PEP occurrence rate was 0% among low-risk patients (≤ 0 points), 5.5% among moderate-risk patients (1 to 3 points), and 20.2% among high-risk patients (4 to 7 points). In the validation cohort, the C-statistic of the risk score

44	classification (low, moderate, and high) was a significant predictive factor for PEP that
45	was independent from intraprocedural PEP risk factors (precut sphincterotomy and
46	inadvertent pancreatic duct cannulation) (OR 4.2, 95% CI 2.8-6.3, $P < 0.01$).
47	Conclusions: The PEP risk score allows an estimation of the risk of PEP prior to ERCP,
48	regardless of whether the patient has undergone pancreatic duct procedures. This simple
49	risk model, consisting of only five items, may aid in predicting and explaining the risk
50	of PEP before ERCP and in preventing PEP by allowing selection of the appropriate
51	expert endoscopist and useful PEP prophylaxes.
52	

53 Introduction

54	Endoscopic retrograde cholangiopancreatography (ERCP) is widely performed as an
55	important diagnostic and therapeutic procedure for pancreaticobiliary diseases.
56	ERCP-related procedures are relatively risky among endoscopic procedures. The
57	high-risk adverse events of ERCP include duodenal perforation and bleeding after
58	endoscopic sphincterotomy (EST) and post-ERCP pancreatitis (PEP). The rate of PEP
59	occurrence is 3.1-13.0% (Andriulli et al., 2007, Freeman et al., 1996, Glomsaker et al.,
60	2013, Katsinelos et al., 2014, Kochar et al., 2015, Loperfido et al., 1998). PEP can
61	even become life-threatening. The fatality rate of PEP is 0.1–0.7% (Andriulli et al.,
62	2007, Kochar et al., 2015). Therefore, the decision to perform ERCP should be made
63	carefully, considering each patient's risk factors for PEP.
63 64	carefully, considering each patient's risk factors for PEP. To predict an individual patient's PEP risk, five scoring systems have been
63 64 65	carefully, considering each patient's risk factors for PEP. To predict an individual patient's PEP risk, five scoring systems have been devised (<i>Chiba et al.</i> , 2021, <i>DiMagno et al.</i> , 2013, <i>Friedland et al.</i> , 2002, <i>Fujita et al.</i> ,
63 64 65 66	 carefully, considering each patient's risk factors for PEP. To predict an individual patient's PEP risk, five scoring systems have been devised (<i>Chiba et al.</i>, 2021, <i>DiMagno et al.</i>, 2013, <i>Friedland et al.</i>, 2002, <i>Fujita et al.</i>, 2021, <i>Zheng et al.</i>, 2020). The first risk scoring system for PEP occurrence was
63 64 65 66 67	 carefully, considering each patient's risk factors for PEP. To predict an individual patient's PEP risk, five scoring systems have been devised (<i>Chiba et al.</i>, 2021, <i>DiMagno et al.</i>, 2013, <i>Friedland et al.</i>, 2002, <i>Fujita et al.</i>, 2021, <i>Zheng et al.</i>, 2020). The first risk scoring system for PEP occurrence was established in 2002. In that study, pain during the procedure, pancreatic duct
63 64 65 66 67 68	 carefully, considering each patient's risk factors for PEP. To predict an individual patient's PEP risk, five scoring systems have been devised (<i>Chiba et al.</i>, 2021, <i>DiMagno et al.</i>, 2013, <i>Friedland et al.</i>, 2002, <i>Fujita et al.</i>, 2021, <i>Zheng et al.</i>, 2020). The first risk scoring system for PEP occurrence was established in 2002. In that study, pain during the procedure, pancreatic duct cannulation, a history of PEP, and the number of cannulation attempts were identified as
63 64 65 66 67 68 69	carefully, considering each patient's risk factors for PEP. To predict an individual patient's PEP risk, five scoring systems have been devised (<i>Chiba et al.</i> , 2021, <i>DiMagno et al.</i> , 2013, <i>Friedland et al.</i> , 2002, <i>Fujita et al.</i> , 2021, Zheng et al., 2020). The first risk scoring system for PEP occurrence was established in 2002. In that study, pain during the procedure, pancreatic duct cannulation, a history of PEP, and the number of cannulation attempts were identified as risk factors for PEP. After the first scoring system was reported, each new scoring
 63 64 65 66 67 68 69 70 	carefully, considering each patient's risk factors for PEP. To predict an individual patient's PEP risk, five scoring systems have been devised (<i>Chiba et al. , 2021, DiMagno et al. , 2013, Friedland et al. , 2002, Fujita et al. ,</i> <i>2021, Zheng et al. , 2020</i>). The first risk scoring system for PEP occurrence was established in 2002. In that study, pain during the procedure, pancreatic duct cannulation, a history of PEP, and the number of cannulation attempts were identified as risk factors for PEP. After the first scoring system was reported, each new scoring system used risk factors that were extracted by multivariate analyses. These included

72	postprocedural risk factors, precut sphincterotomy and difficult cannulation were
73	proposed, but it is difficult to predict these risk factors and to determine the PEP risk
74	before ERCP. Thus, a new prediction scoring system for PEP before ERCP is desirable.
75	If the risk of PEP could be predicted before ERCP, then the expert endoscopist can
76	perform ERCP from the start, and high-PEP-risk procedures (for example, precut
77	sphincterotomy, multiple cannulation attempts, inadvertent pancreatic duct cannulation)
78	can be avoided (Testoni et al., 2010, Wang et al., 2009). If biliary cannulation without
79	the use of at least one high-PEP-risk procedure is difficult, other treatments (for
80	example, percutaneous transhepatic biliary drainage (PTBD) or endoscopic ultrasound
81	(EUS)-guided biliary drainage (EUS-BD)) could be considered.
82	Therefore, we aimed to establish a PEP prediction model using only risk
83	factors that can be gathered before ERCP. Our model was developed and validated with
84	multicenter data from Japan.
85	
86	Methods
87	We performed a multicenter retrospective study at six institutions in Japan. This study
88	was approved by the institutional review board of Fukushima Medical University and
89	that of each partner medical institution. All patients agreed to undergo ERCP after

- 90 providing written consent.
- 91

92	Patients
93	Among 2,176 patients who underwent ERCP between November 2020 and October
94	2022, 2,074 were enrolled in this study. The other 102 patients were excluded for the
95	following reasons: past history of choledochojejunostomy, acute pancreatitis,
96	choledochoduodenal fistula, difficulty finding the Vater papilla, past history of
97	pancreatojejunostomy, or past history of pancreatogastrostomy (Figure 1).
98	
99	Study design
100	We randomly sampled 50% of the patients as the development cohort and 50% as the
101	validation cohort (Figure 1). In the development cohort, we established a risk scoring
102	system for predicting PEP before ERCP, which was named the support for PEP
103	reduction model (SuPER model). The validation cohort was used to confirm the
104	effectiveness of the scoring system. PEP diagnosis and severity were assessed according
105	to Cotton's criteria (Cotton et al., 1991). Patients who experienced abdominal pain and
106	had hyperamylasemia (more than three times the normal upper limit) at least 24 hours

107 after ERCP were diagnosed with PEP. Mild PEP was defined as pancreatitis that

108	required prolongation of the planned hospitalization by 2-3 days. Moderate PEP was
109	defined as pancreatitis that required 4-10 days of hospitalization. Severe PEP was
110	defined as pancreatitis that required more than 10 days of hospitalization or intervention
111	or hemorrhagic pancreatitis, phlegmon, or pseudocysts.
112	To establish the risk score, the risk factors for PEP were investigated using the
113	data from the development cohort. To determine the PEP risk score, factors that might
114	be associated with PEP occurrence were investigated. To predict the PEP risk score
115	before ERCP, factors related to patient characteristics and previously scheduled
116	procedures, as reported in past studies, were selected. The patients' risk factors included
117	age < 50 years, female sex, a past history of pancreatitis, a past history of PEP, a past
118	history of gastrectomy, pancreatic cancer, intraductal papillary mucinous neoplasm
119	(IPMN), a native papilla of Vater, absence of chronic pancreatitis (CP), normal serum
120	bilirubin (\leq 1.2 mg/dl), and periampullary diverticulum (<i>Ding et al.</i> , 2015, <i>Freeman et</i>
121	al. , 2001, Freeman et al. , 1996, Fujita et al. , 2022, Fujita et al. , 2021, Masci et al. ,
122	2003, Wang et al., 2009, Williams et al., 2007, Zheng et al., 2020). Pancreatic divisum
123	was excluded from the patient risk factor list because pancreatic divisum was observed
124	in only two patients. Pancreatic calcification and a diameter of the main pancreatic duct
125	> 3 mm were considered to indicate CP (Beyer et al., 2023, Sarner and Cotton, 1984).

126	These imaging findings	were confirmed b	y CT, MRI, o	or EUS before	ERCP. The	CT and
] -)) -			

- 127 MRI findings were reviewed by radiologists. IPMN was diagnosed according to the
- results of CT, MRI, and EUS. As pre-ERCP prophylaxes for PEP, gabexate or
- 129 nafamostat, intravenous hydration, and NSAID suppositories were used (Fujita et al.,
- 130 2022). As planned procedure-related risk factors, EST, endoscopic papillary balloon
- 131 dilation (EPBD), endoscopic papillary large balloon dilation (EPLBD) using a \geq 12 mm
- 132 balloon catheter (Itoi et al., 2018), biliary stone removal, ampullectomy, biliary stent
- 133 material (plastic stent, self-expandable metallic stent (SEMS), or covered SEMS
- 134 (CSEMS)), inside stent placement, and procedures on the pancreatic duct were
- 135 evaluated (Freeman et al., 2001, Freeman et al., 1996, Harewood et al., 2005, Kato et
- 136 al., 2022, Masci et al., 2003, Masci et al., 2001, Testoni et al., 2010, Williams et al.,
- 137 2007). A biliary stent above the Vater papilla was also assessed as a prophylactic
- 138 measure against PEP (Ishiwatari et al., 2013).
- 139 To demonstrate the independence of the established risk classification, the
- 140 relationship between it and intraprocedural PEP risk factors (including precut
- sphincterotomy and inadvertent pancreatic duct cannulation) (Testoni et al., 2010, Wang
- 142 et al., 2009) were investigated. Because of the retrospective nature of the data, the
- 143 exact cannulation times and the number of cannulation attempts were not available.

144 Therefore, multiple cannulation attempts and a prolonged cannulation time could not be

145 investigated as intraprocedural PEP risk factors.

146

147 Sample size

148 The primary aim of this study was to establish a PEP prediction model that could be

149 used to calculate a risk score before ERCP. To construct a prediction model by logistic

regression analysis, 10 events per explanatory variable were needed (Wynants et al.,

151 2015). Seven variables were evaluated in the development cohort, so 70 PEP patients

152 were required. Five variables were evaluated in the validation cohort, so 50 PEP patients

153 were necessary for it. According to a previous systematic review, the rate of PEP

154 occurrence was 9.7% (Kochar et al., 2015). Therefore, at least 722 and 521 patients

155 were included in the development and validation cohorts, respectively.

156

157 Statistical analysis

158 In the development cohort, univariate and multivariate logistic regression analyses were

159 performed to identify the risk factors for PEP. The factors that had a p value < 0.10 in

160 the univariate analysis were included in the multivariate analysis. To construct the

161 scoring system for PEP risk, the factors with p < 0.10 in the multivariate analysis were

162	ultimately included in the risk score model. The factors selected in the multivariate
163	analysis were assigned points according to the regression coefficient (each variable's
164	risk points = the ratio of the variable's regression coefficient/minimum regression
165	coefficient). The sum of the assigned points was calculated for each patient, and the
166	patients were classified into three groups (low risk, moderate risk, and high risk)
167	according to the expected rate of PEP occurrence (Friedland et al., 2002). The risk
168	classification system (SuPER model) was also applied to the validation cohort.
169	With respect to both the development and validation cohorts, the effectiveness
170	of the risk score model was evaluated as follows. The correlations between the risk
171	score, risk classification and PEP occurrence were evaluated by the Cochran-Armitage
172	trend test. The predictive accuracy of the risk score was assessed using the C statistic.
173	The goodness of fit of the model was evaluated using the Hosmer–Lemeshow test. The
174	independence of the established risk classification from the unexpected intraprocedural
175	PEP risk factors was assessed by multivariate logistic regression analyses.
176	Patients with missing data for variables selected in the risk score model were
177	removed from the final cohort.
178	Statistical analyses were performed using EZR version 1.62 (Saitama Medical
179	Centre, Jichi Medical University, Saitama, Japan) and SPSS version 26.0 (IBM Corp.,

180 Armonk, NY, USA). A p value < 0.05 indicated statistical significance.

181

182 Results

183

184 Patient characteristics and ERCP outcomes in each cohort

- 185 The patient characteristics and ERCP outcomes in each cohort are shown in Table 1. A
- total of 1037 patients were assigned to each of the development and validation cohorts,
- including 70 (6.8%) and 64 (6.2%) patients diagnosed with PEP, respectively. The
- 188 pre-ERCP prophylactic measures used at each hospital differed, and not all patients
- 189 received prophylaxis.
- 190

191 Construction of the PEP risk scoring system

- 192 According to the univariate analyses, age < 50 years, female sex, IPMN, a native papilla
- 193 of Vater, pancreatic calcification, EST, and procedures on the pancreatic duct had p
- values < 0.10 (**Table 2**). According to the multivariate analysis, female sex, IPMN, a
- 195 native papilla of Vater, pancreatic calcification, and procedures on the pancreatic duct
- had p values < 0.10. These factors were assigned risk points according to their
- 197 respective regression coefficients.

198	The risk score of each patient was calculated as the total of that patient's risk
199	points and ranged from -2 to 7 points (Table 3). The risk score was found to be
200	correlated with PEP occurrence ($p < 0.01$, Cochran–Armitage trend test). The patients
201	were classified as low (≤ 0 points), moderate (1-3 points), or high risk (4-7 points) for
202	PEP according to the risk score. The PEP rates were 0% (0/327) among the low-risk
203	patients, 5.5% (27/492) among the moderate-risk patients, and 20.2% (39/193) among
204	the high-risk patients. The risk classification was correlated with PEP occurrence ($p < p$
205	0.01, Cochran–Armitage trend test).
206	The C statistic of the risk score model was sufficiently high at 0.77 (95%
207	confidence interval (CI) 0.72-0.82) (Table 4). The goodness of fit of the risk score
208	model was also confirmed by the Hosmer–Lemeshow test ($p = 0.59$).
209	
210	Validation of the PEP risk scoring system
211	The risk score was associated with PEP occurrence in the validation cohort ($p < 0.01$,
212	Cochran–Armitage trend test) (Table 3). We found that 2.4% (8/331) of the patients at
213	low risk, 5.3% (27/513) of those at moderate risk, and 18.0% (29/161) of those at high
214	risk experienced PEP. The risk classification was also correlated with PEP occurrence in
215	the validation cohort ($p < 0.01$, Cochran–Armitage trend test).

216	The C statistic of the risk score was 0.71, which was also high in the validation
217	cohort (Table 4). The PEP risk score model showed good fitness according to the
218	Hosmer–Lemeshow test ($p = 0.40$). According to the above results, the preprocedural
219	PEP risk could be calculated, as shown in Figure 2 .
220	
221	Risk classification and unexpected PEP risk factors
222	The relation between the established risk classification and intraprocedural PEP risk
223	factors is shown in Appendix 1-table 1. In all patients, the development cohort, and the
224	validation cohort, the risk classification was significantly associated with the occurrence
225	of PEP. On the other hand, precut sphincterotomy and inadvertent pancreatic duct
226	cannulation were not significantly associated with the occurrence of PEP.
227	
228	Discussion
229	In this multicenter study, we created a risk scoring system (the SuPER model) using five
230	items that could be measured before performing ERCP. With this score, PEP occurrence
231	could be accurately predicted to some degree. Besides, the established PEP risk
232	classification was associated with PEP occurrence independently from unpredictable
233	intraprocedural PEP risk procedures.

234	This risk scoring and classification of PEP has several advantages. First, the
235	score is calculated using only five items, all of which can be easily assessed by medical
236	interviews and imaging (for example, CT). One scoring system included sphincter of
237	Oddi dysfunction (SOD) as a test item (DiMagno et al., 2013). The diagnosis of SOD
238	requires sphincter of Oddi manometry and fulfilment of the criteria for biliary pain, but
239	sphincter of Oddi manometry is not widely used (Cotton et al., 2016). The diagnostic
240	criterion for biliary pain included 8 items, and that for SOD included 15 items. Among
241	the items of the SuPER risk scoring system, pancreatic calcification was assigned -2
242	points. Its low weighting could be explained by the following. The international
243	conceptual model of CP can be divided into four stages: acute pancreatitis-recurrent
244	acute pancreatitis, early CP, established CP, and end-stage CP (Whitcomb et al., 2016).
245	Established CP patients have already passed the acute pancreatitis-recurrent acute
246	pancreatitis course, and pancreatic calcification has been reported in established CP
247	patients. Acinar dysfunction has also been observed in these patients (Whitcomb et al.,
248	2016). Therefore, patients with pancreatic calcification may have a lower incidence of
249	PEP.
250	Second, the SuPER risk score can be determined before the ERCP procedure,

as the established risk classification was found to be the sole significant factor

252	predicting the occurrence of PEP independent from intraprocedural PEP risk factors. As
253	described in the Background section, precut sphincterotomy, multiple cannulation
254	attempts, and a cannulation time greater than 10 minutes were identified as high risk
255	factors that cannot be accounted for prior to ERCP (Testoni et al., 2010, Wang et al.,
256	2009). Although the established PEP risk classification was independent from the
257	included intraprocedural risk factors (precut sphincterotomy and inadvertent pancreatic
258	duct cannulation), detailed data on the number of cannulation attempts and the
259	cannulation time were not available. Therefore, to avoid intraoperative procedures
260	associated with a high risk of PEP occurrence, an expert endoscopist can initially
261	perform ERCP for high-PEP-risk patients. In addition, PEP prophylaxis can be
262	administered beforehand for high-PEP-risk patients. As effective prophylaxes for PEP,
263	rectal NSAIDS and pancreatic stent placement have been reported (Elmunzer et al.,
264	2008, Murray et al., 2003, Sugimoto et al., 2019). In this report, rectal NSAID use was
265	not identified as a significant factor preventing PEP. One reason for this is that in past
266	reports describing the use of rectal NSAIDs to prevent PEP, patients at high risk for PEP
267	were often treated (Elmunzer et al., 2008). In contrast, this study included all patients
268	who underwent ERCP. Another reason might be the difference in dose. One hundred
269	milligrams of rectal diclofenac was used in past reports, whereas 12.5-50 mg of

270	diclofenac was used in this study. In Japan, the approved diclofenac dose covered by
271	insurance is 50 mg or less, with the dose being typically lower for elderly patients.
272	Therefore, diclofenac doses of 12.5-50 mg were prescribed by the doctors depending on
273	the age and size of the patients. Pancreatic stent placement itself is one of the
274	procedures performed on the pancreatic duct and was a higher-risk procedure for PEP
275	than endoscopic biliary procedures without an approach to the pancreatic duct
276	(Appendix 2-table 2). Moreover, pancreatic stent placement has become a prophylactic
277	treatment for PEP in patients who have undergone pancreatography or wire placement
278	to the pancreatic duct (Mazaki et al., 2014, Sugimoto et al., 2019). As described above,
279	pancreatic stent placement was performed along with high-risk-PEP procedures (i.e.,
280	guidewire placement to the pancreatic duct or pancreatography); therefore, pancreatic
281	stent placement was grouped together with the other endoscopic retrograde
282	pancreatography procedures as "procedures on the pancreatic duct".
283	This study has several limitations. First, the study was retrospective, and there
284	were missing data. However, the results reported are trustworthy. The percentage of
285	patients who did not meet the inclusion criteria was not more than 5%, and the
286	percentage of missing data was not over 1%. As described in the Materials and Methods
287	section, patients with missing data for the variables selected in the risk score model

288	were removed from the final cohort. The reliability of the SuPER risk score model was
289	also statistically confirmed. Second, some factors cannot be assessed before ERCP.
290	Additional procedures could be conducted during ERCP, and unplanned
291	pancreatography is often performed in patients who are scheduled for endoscopic
292	cholangiography or biliary treatment. However, the established PEP risk classification
293	was independent from the included intraprocedural risk factors. A planned procedure for
294	accessing the pancreatic duct is listed in the SuPER risk model. Therefore, we can
295	predict the SuPER risk score and classification of patients regardless of whether they
296	have undergone pancreatic duct procedures. Third, this study was performed in a single
297	country. Validation studies over wider geographic regions are necessary.
298	In conclusion, a simple and useful PEP scoring system (SuPER model) with
299	only five clinical items was developed in this multicenter study. This scoring system
300	may aid in predicting and explaining PEP risk and in selecting appropriate prophylaxes
301	for PEP and endoscopic pancreaticobiliary procedures for each patient.
302	
303	Acknowledgements

We thank all the staff at the Department of Gastroenterology of Fukushima Medical
 University, the Department of Endoscopy of Fukushima Medical University Hospital,

306	the Department of Gastroenterology of Fukushima Rosai Hospital, the Department of
307	Gastroenterology of Aizu Medical Center, Fukushima Medical University, the
308	Department of Gastroenterology of Ohtanishinouchi Hospital, Koriyama, the
309	Department of Gastroenterology of Fukushima Redcross Hospital, the Department of
310	Gastroenterology of Soma General Hospital, the Department of Gastroenterology of
311	Saiseikai Fukushima General Hospital, and the Gastroenterology Ward of Fukushima
312	Medical University Hospital. We also thank American Journal Experts for providing
313	English language editing services.
314	
315	Additional information
316	Competing interests
317	The authors declare that they have no competing interests to report.

- 318
- 319 Funding
- 320 None.
- 321
- 322 Author contributions

- 323 M.S. wrote the paper, designed and performed the research. T.T. wrote the paper,
- designed and oversaw the research. T.S., H.S., G.S., Y.S., Y.N., Y.T., Y.N., R.K., H.I.,
- H.A., N.K., Y.W., and H.A. performed the research. R.S. provided clinical advice. T.H.
- 326 supervised the report. H.O. supervised the report and the writing of the paper. All
- 327 authors read and approved the final manuscript.
- 328

```
329 Ethics
```

- 330 The study protocol was reviewed and approved by the Institutional Review Board of
- 331 Fukushima Medical University (Number 2453). The analysis used anonymous clinical
- data obtained after all the participants agreed to treatment by written consent, so patients
- were not required to give informed consent for the study. The details of the study can be
- found on the homepage of Fukushima Medical University.
- 335

336 Data availability

The datasets generated and/or analyzed during the current study are available from thecorresponding author upon reasonable request.

340 **References**

341	Andriulli A, Loperfido S, Napolitano G, Niro G, Valvano MR, Spirito F, Pilotto A,
342	Forlano R. 2007. Incidence rates of post-ERCP complications: a systematic
343	survey of prospective studies. American Journal of Gastroenterology
344	102 :1781-1788. DOI: 10.1111/j.1572-0241.2007.01279.x
345	Beyer G, Kasprowicz F, Hannemann A, Aghdassi A, Thamm P, Volzke H, Lerch MM,
346	Kühn JP, Mayerle J. 2023. Definition of age-dependent reference values for the
347	diameter of the common bile duct and pancreatic duct on MRCP: a
348	population-based, cross-sectional cohort study. Gut 72:1738-1744. DOI:
349	10.1136/gutjnl-2021-326106, PMID: PMC10423481
350	Chiba M, Kato M, Kinoshita Y, Shimamoto N, Tomita Y, Abe T, Kanazawa K,
351	Tsukinaga S, Nakano M, Torisu Y, Toyoizumi H, Sumiyama K. 2021. The
352	milestone for preventing post-ERCP pancreatitis using novel simplified
353	predictive scoring system: a propensity score analysis. Surgical Endoscopy
354	35 :6696-6707. DOI: 10.1007/s00464-020-08173-4
355	Cotton PB, Elta GH, Carter CR, Pasricha PJ, Corazziari ES. 2016. Rome IV.
356	Gallbladder and Sphincter of Oddi Disorders. Gastroenterology. DOI:
357	10.1053/j.gastro.2016.02.033

358	Cotton PB, Lehman G, Vennes J, Geenen JE, Russell RC, Meyers WC, Liguory C,
359	Nickl N. 1991. Endoscopic sphincterotomy complications and their
360	management: an attempt at consensus. Gastrointestinal Endoscopy 37:383-393
361	DiMagno MJ, Spaete JP, Ballard DD, Wamsteker EJ, Saini SD. 2013. Risk models for
362	post-endoscopic retrograde cholangiopancreatography pancreatitis (PEP):
363	smoking and chronic liver disease are predictors of protection against PEP.
364	Pancreas 42:996-1003. DOI: 10.1097/MPA.0b013e31827e95e9, PMID:
365	PMC3701741
366	Ding X, Zhang F, Wang Y. 2015. Risk factors for post-ERCP pancreatitis: A systematic
367	review and meta-analysis. Surgeon 13:218-229. DOI:
368	10.1016/j.surge.2014.11.005
369	Elmunzer BJ, Waljee AK, Elta GH, Taylor JR, Fehmi SM, Higgins PD. 2008. A
370	meta-analysis of rectal NSAIDs in the prevention of post-ERCP pancreatitis. Gut
371	57 :1262-1267. DOI: 10.1136/gut.2007.140756
372	Freeman ML, DiSario JA, Nelson DB, Fennerty MB, Lee JG, Bjorkman DJ, Overby CS,
373	Aas J, Ryan ME, Bochna GS, Shaw MJ, Snady HW, Erickson RV, Moore JP,
374	Roel JP. 2001. Risk factors for post-ERCP pancreatitis: a prospective,
375	multicenter study. Gastrointestinal Endoscopy 54:425-434

376	Freeman ML, Nelson DB, Sherman S, Haber GB, Herman ME, Dorsher PJ, Moore JP,
377	Fennerty MB, Ryan ME, Shaw MJ, Lande JD, Pheley AM. 1996. Complications
378	of endoscopic biliary sphincterotomy. New England Journal of Medicine
379	335 :909-918. DOI: 10.1056/nejm199609263351301
380	Friedland S, Soetikno RM, Vandervoort J, Montes H, Tham T, Carr-Locke DL. 2002.
381	Bedside scoring system to predict the risk of developing pancreatitis following
382	ERCP. Endoscopy 34:483-488. DOI: 10.1055/s-2002-32004
383	Fujita K, Yazumi S, Matsumoto H, Asada M, Nebiki H, Matsumoto K, Maruo T,
384	Takenaka M, Tomoda T, Onoyama T, Kurita A, Ueki T, Katayama T, Kawamura
385	T, Kawamoto H. 2022. Multicenter prospective cohort study of adverse events
386	associated with biliary endoscopic retrograde cholangiopancreatography:
387	Incidence of adverse events and preventive measures for post-endoscopic
388	retrograde cholangiopancreatography pancreatitis. Digestive Endoscopy
389	34 :1198-1204. DOI: 10.1111/den.14225, PMID: PMC9540598
390	Fujita K, Yazumi S, Uza N, Kurita A, Asada M, Kodama Y, Goto M, Katayama T,
391	Anami T, Watanabe A, Sugahara A, Mukai H, Kawamura T. 2021. New practical
392	scoring system to predict post-endoscopic retrograde cholangiopancreatography
393	pancreatitis: Development and validation. JGH Open 5:1078-1084. DOI:

394 10.1002/jgh3.12634, PMID: PMC8454475

395	Glomsaker T, Hoff G, Kvaloy JT, Soreide K, Aabakken L, Soreide JA. 2013. Patterns
396	and predictive factors of complications after endoscopic retrograde
397	cholangiopancreatography. Br J Surg 100:373-380. DOI: 10.1002/bjs.8992
398	Harewood GC, Pochron NL, Gostout CJ. 2005. Prospective, randomized, controlled
399	trial of prophylactic pancreatic stent placement for endoscopic snare excision of
400	the duodenal ampulla. Gastrointestinal Endoscopy 62:367-370. DOI:
401	10.1016/j.gie.2005.04.020
402	Ishiwatari H, Hayashi T, Ono M, Sato T, Kato J. 2013. Newly designed plastic stent for
403	endoscopic placement above the sphincter of Oddi in patients with malignant
404	hilar biliary obstruction. <i>Digestive Endoscopy</i> 25 Suppl 2 :94-99. DOI:
405	10.1111/den.12080
406	Itoi T, Ryozawa S, Katanuma A, Okabe Y, Kato H, Horaguchi J, Tsuchiya T, Gotoda T,
407	Fujita N, Yasuda K, Igarashi Y, Fujimoto K. 2018. Japan Gastroenterological
408	Endoscopy Society guidelines for endoscopic papillary large balloon dilation.
409	Digestive Endoscopy 30:293-309. DOI: 10.1111/den.13029
410	Kato S, Kuwatani M, Onodera M, Kudo T, Sano I, Katanuma A, Uebayashi M, Eto K,
411	Fukasawa M, Hashigo S, Iwashita T, Yoshida M, Taya Y, Kawakami H, Kato H,

412	Nakai Y, Kobashigawa K, Kawahata S, Shinoura S, Ito K, Kubo K, Yamato H,
413	Hara K, Maetani I, Mukai T, Shibukawa G, Itoi T. 2022. Risk of Pancreatitis
414	Following Biliary Stenting With/Without Endoscopic Sphincterotomy: A
415	Randomized Controlled Trial. Clinical Gastroenterology and Hepatology
416	20 :1394-1403 e1391. DOI: 10.1016/j.cgh.2021.08.016
417	Katsinelos P, Lazaraki G, Chatzimavroudis G, Gkagkalis S, Vasiliadis I, Papaeuthimiou
418	A, Terzoudis S, Pilpilidis I, Zavos C, Kountouras J. 2014. Risk factors for
419	therapeutic ERCP-related complications: an analysis of 2,715 cases performed
420	by a single endoscopist. Ann Gastroenterol 27:65-72, PMID: PMC3959534
421	Kochar B, Akshintala VS, Afghani E, Elmunzer BJ, Kim KJ, Lennon AM, Khashab MA,
422	Kalloo AN, Singh VK. 2015. Incidence, severity, and mortality of post-ERCP
423	pancreatitis: a systematic review by using randomized, controlled trials.
424	Gastrointestinal Endoscopy 81:143-149 e149. DOI: 10.1016/j.gie.2014.06.045
425	Loperfido S, Angelini G, Benedetti G, Chilovi F, Costan F, De Berardinis F, De
426	Bernardin M, Ederle A, Fina P, Fratton A. 1998. Major early complications from
427	diagnostic and therapeutic ERCP: a prospective multicenter study. Gastrointest
428	Endosc 48:1-10
429	Masci E, Mariani A, Curioni S, Testoni PA. 2003. Risk factors for pancreatitis following

430	endoscopic retrograde cholangiopancreatography: a meta-analysis. Endoscopy
431	35 :830-834. DOI: 10.1055/s-2003-42614
432	Masci E, Toti G, Mariani A, Curioni S, Lomazzi A, Dinelli M, Minoli G, Crosta C,
433	Comin U, Fertitta A, Prada A, Passoni GR, Testoni PA. 2001. Complications of
434	diagnostic and therapeutic ERCP: a prospective multicenter study. American
435	Journal of Gastroenterology 96:417-423. DOI:
436	10.1111/j.1572-0241.2001.03594.x
437	Mazaki T, Mado K, Masuda H, Shiono M. 2014. Prophylactic pancreatic stent
438	placement and post-ERCP pancreatitis: an updated meta-analysis. Journal of
439	Gastroenterology 49:343-355. DOI: 10.1007/s00535-013-0806-1
440	Murray B, Carter R, Imrie C, Evans S, O'Suilleabhain C. 2003. Diclofenac reduces the
441	incidence of acute pancreatitis after endoscopic retrograde
442	cholangiopancreatography. Gastroenterology 124:1786-1791. DOI:
443	10.1016/s0016-5085(03)00384-6
444	Sarner M, Cotton PB. 1984. Classification of pancreatitis. Gut 25:756-759. DOI:
445	10.1136/gut.25.7.756, PMID: PMC1432589
446	Sugimoto M, Takagi T, Suzuki R, Konno N, Asama H, Sato Y, Irie H, Watanabe K,
447	Nakamura J, Kikuchi H, Takasumi M, Hashimito M, Hikichi T, Ohira H. 2019.

448	Pancreatic stents to prevent post-endoscopic retrograde
449	cholangiopancreatography pancreatitis: A meta-analysis. World J Metaanal
450	7:249-258
451	Testoni PA, Mariani A, Giussani A, Vailati C, Masci E, Macarri G, Ghezzo L, Familiari
452	L, Giardullo N, Mutignani M, Lombardi G, Talamini G, Spadaccini A, Briglia R,
453	Piazzi L. 2010. Risk factors for post-ERCP pancreatitis in high- and low-volume
454	centers and among expert and non-expert operators: a prospective multicenter
455	study. American Journal of Gastroenterology 105:1753-1761. DOI:
456	10.1038/ajg.2010.136
457	Wang P, Li ZS, Liu F, Ren X, Lu NH, Fan ZN, Huang Q, Zhang X, He LP, Sun WS,
458	Zhao Q, Shi RH, Tian ZB, Li YQ, Li W, Zhi FC. 2009. Risk factors for
459	ERCP-related complications: a prospective multicenter study. American Journal
460	of Gastroenterology 104:31-40. DOI: 10.1038/ajg.2008.5
461	Whitcomb DC, Frulloni L, Garg P, Greer JB, Schneider A, Yadav D, Shimosegawa T.
462	2016. Chronic pancreatitis: An international draft consensus proposal for a new
463	mechanistic definition. <i>Pancreatology</i> 16:218-224. DOI:
464	10.1016/j.pan.2016.02.001, PMID: PMC6042966
465	Williams EJ, Taylor S, Fairclough P, Hamlyn A, Logan RF, Martin D, Riley SA, Veitch

466	P, Wilkinson ML, Williamson PR, Lombard M. 2007. Risk factors for
467	complication following ERCP; results of a large-scale, prospective multicenter
468	study. Endoscopy 39:793-801. DOI: 10.1055/s-2007-966723
469	Wynants L, Bouwmeester W, Moons KG, Moerbeek M, Timmerman D, Van Huffel S,
470	Van Calster B, Vergouwe Y. 2015. A simulation study of sample size
471	demonstrated the importance of the number of events per variable to develop
472	prediction models in clustered data. Journal of Clinical Epidemiology
473	68:1406-1414. DOI: 10.1016/j.jclinepi.2015.02.002
474	Zheng R, Chen M, Wang X, Li B, He T, Wang L, Xu G, Yao Y, Cao J, Shen Y, Wang Y,
475	Zhu H, Zhang B, Wu H, Zou X, He G. 2020. Development and validation of a
476	risk prediction model and scoring system for post-endoscopic retrograde
477	cholangiopancreatography pancreatitis. Ann Transl Med 8:1299. DOI:
478	10.21037/atm-20-5769, PMID: PMC7661903
479	
480	

482 Figure legends

- 483 **Figure 1.** Flowchart of the inclusion criteria. ERCP, endoscopic retrograde
- 484 cholangiopancreatography.
- 485 **Figure 2.** Example of the preprocedural PEP risk checklist. ERCP, endoscopic
- 486 retrograde cholangiopancreatography. IPMN, intraductal papillary mucinous neoplasm;
- 487 PEP, post-ERCP pancreatitis.

489 **Tables**

490 **Table 1.** Comparison of patient characteristics and ERCP outcomes between the491 development and validation cohorts.

	Development	Validation	P value
	cohort	cohort	
	(n=1037)	(n=1037)	
Patient factors			
Age, y, mean ± SD	73.8 ± 12.7	75.1 ± 12.5	0.02
Sex, n, male/female	642/395	629/408	0.59
History of pancreatitis, n (%)	73 (7.0)	45 (4.4)	0.01
History of PEP, n (%)	26 (2.5)	24 (2.3)	0.89
History of gastrectomy, n (%)	82 (7.9)	88 (8.5)	0.69
Billroth-I reconstruction, n	24	25	
Billroth-II reconstruction, n	23	25	
Roux-en-Y reconstruction, n	33	36	
Double tract, n	1	1	
Gastric tube reconstruction, n	1	1	
Pancreatic cancer, n (%)	145 (14.0)	174 (16.8)	0.09
IPMN, n (%)	17 (1.6)	8 (0.8)	0.11
Native papilla of Vater, n (%)	535 (51.6)	494 (47.7)	0.08
Total bilirubin, mg/dl, mean \pm SD	3.5 ± 5.3	3.6 ± 5.0	0.45
Diameter of the MPD, mm, mean \pm SD	2.84 ± 2.63	3.1 ± 2.9	0.10
a			
Pancreatic calcification, n (%) ^b	107 (10.6)	87 (8.7)	0.15
Periampullary diverticulum, n (%)	207 (20.0)	224 (21.6)	0.39
Pre-ERCP prophylaxis			
Gabexate or Nafamostat, n (%)	709 (68.4)	703 (67.8)	0.81
Intravenous hydration, n (%)	22 (2.1)	14 (1.4)	0.24
NSAID suppository, n (%)	53 (5.1)	45 (4.3)	0.47
Factors related to the planned procedure			
EST, n (%)	449 (43.3)	434 (41.9)	0.53
EPBD, n (%)	31 (3.0)	40 (3.9)	0.33
EPLBD, n (%)	56 (5.4)	55 (5.3)	1.0
Biliary stone removal, n (%)	327 (31.5)	342 (33.0)	0.51

Ampullectomy, n (%)	5 (0.5)	5 (0.5)	1.0
Biliary stent, n (%)	594 (57.3)	611(58/9)	0.48
Plastic stent, n (%)	445 (42.9)	436 (42.0)	0.72
SEMS, n (%)	119 (11.5)	122 (11.8)	0.89
CSEMS, n (%)	36 (3.5)	44 (4.2)	0.43
Biliary stent above the papilla, n (%)	45 (4.3)	47 (4.5)	0.92
Procedures on the pancreatic duct, n	285 (27.5)	237 (22.9)	0.017
(%)			
PEP occurrence, n (%)	70 (6.8)	64 (6.2)	0.66
Mild, n	60	53	
Moderate, n	8	7	
Severe, n	2	4	

492 ERCP, endoscopic retrograde cholangiopancreatography; SD, standard deviation; PEP, 493 post-ERCP pancreatitis; IPMN, intraductal papillary mucinous neoplasm; MPD, main 494 pancreatic duct; EST, endoscopic sphincterotomy; EPBD, endoscopic papillary balloon

dilation; SEMS, self-expandable metallic stent; CSEMS, covered SEMS.

⁴⁹⁶ ^a Data were available for 1671 patients.

⁴⁹⁷ ^b Data were available for 2017 patients.

498

	Univaria	Univariate analysis		Multivariate analysis		S		
	OR	95% CI	P value	OR	95% CI	<i>P</i> value	Regression coefficient	Points
Age < 50 years	2.42	0.99-6.0	0.053	1.76	0.67-4.63	0.25	0.56	-
Female	1.91	1.17-3.10	< 0.01	1.72	1.03-2.89	0.039	0.55	1
History of pancreatitis	1.26	0.53-3.0	0.61					
History of PEP	1.84	0.54-6.28	0.33					
History of gastrectomy	0.89	0.35-2.27	0.81					
Pancreatic cancer	1.03	0.51-2.06	0.94					
IPMN	8.15	2.92-22.7	< 0.01	3.04	0.97-9.52	0.056	1.11	2
Native papilla of Vater	4.49	2.42-8.30	< 0.01	2.72	1.30-5.71	< 0.01	1.0	2
Total bilirubin $\leq 1.2 \text{ mg/dl}$	1.13	0.69-1.84	0.62					
Diameter of the MPD $> 3 \text{ mm}^{a}$	1.31	0.76-2.25	0.33					
Pancreatic calcification ^b	0.36	0.11-1.17	0.089	0.32	0.10-1.1	0.072	-1.13	-2
Periampullary diverticulum	0.65	0.33-1.30	0.22					
Gabexate or Nafamostat	0.72	0.44-1.19	0.20					
Intravenous hydration	1.39	0.32-6.08	0.66					
NSAID suppository before ERCP	1.47	0.57-3.83	0.43					
EST	1.71	1.05-2.79	0.03	0.83	0.45-1.52	0.54	-0.19	-
EPBD	< 0.01	0-Infinity	0.98					
EPLBD	0.24	0.03-1.76	0.16					
Biliary stone removal	0.68	0.39-1.19	0.18					

Table 2. Logistic regression analysis of predictive factors for PEP in the development cohort.

Ampullectomy	3.49	0.39-31.6	0.27					
Biliary stent	0.93	0.57-1.52	0.78					
Plastic stent	0.72	0.44-1.20	0.21					
SEMS	1.66	0.87-3.20	0.13					
CSEMS	0.81	0.19-3.43	0.77					
Biliary stent above the papilla	0.30	0.04-2.24	0.24					
Procedures on the pancreatic duct	4.77	2.89-7.89	< 0.01	3.49	1.99-6.12	< 0.01	1.25	2

501 PEP, post–endoscopic retrograde cholangiopancreatography pancreatitis; OR, odds ratio; CI, confidence interval; IPMN, intraductal 502 papillary mucinous neoplasm; MPD, main pancreatic duct; EST, endoscopic sphincterotomy; EPBD, endoscopic papillary balloon

503 dilation; EPLBD, endoscopic papillary large balloon dilation; SEMS, self-expandable metallic stent; CSEMS, covered SEMS.

^a Data were available for 985 patients in the development cohort.

^bData were available for 1012 patients in the development cohort.

506

Risk sco	ore	Developr	Development cohort (n = 1012) ^a			ion cohort ($n = 1005$)	b
		PEP occurrence,	PEP rate (95% CI)	<i>P</i> value ^c	PEP occurrence,	PEP rate (95% CI)	<i>P</i> value ^c
		Ν	(%)		Ν	(%)	
-2		0/29	0 (0-11.9)	< 0.01	0/33	0 (0-10.6)	< 0.01
-1		0/9	0 (0-33.6)		0/5	0 (0-52.2)	
0		0/289	0 (0-1.3)		8/293	2.7 (1.2-5.3)	
1		6/140	4.3 (1.6-9.1)		5/160	3.1 (1.0-7.1)	
2		8/202	4.0 (1.7-7.7)		14/195	7.2 (4.0-11.8)	
3		13/150	50 8.7 (4.7-14.4)		8/158	5.1 (2.2-9.7)	
4		18/97	18.6 (11.4-27.7)		14/84	16.7 (9.4-26.4)	
5		17/83	20.5 (12.4-30.8)		14/71	19.7 (11.2-30.9)	
6		3/9	33.3 (7.5-70.1)		0/3	0 (0-70.8)	
7		1/4	25.0 (0.6-80.6)		1/3	33.3 (0.8-90.6)	
Risk	Risk	PEP occurrence,	PEP rate (95% CI)	<i>P</i> value ^c	PEP occurrence,	PEP rate (95% CI)	P value ^c
classification	score	Ν	(%)		Ν	(%)	
Low	≤ 0	0/327	0 (0-1.1)	< 0.01	8/331	2.4 (1.0-4.7)	< 0.01
Moderate	1-3	27/492	5.5 (3.6-7.9)		27/513	5.3 (3.5-7.6)	
High	4-7	39/193	20.2 (14.8-26.6)		29/161	18.0 (12.4-24.8)	

508 **Table 3.** Patient distribution in terms of risk score and classification.

509 PEP, post–endoscopic retrograde cholangiopancreatography pancreatitis; CI, confidence interval.

^a There were missing data for 25 patients.

^bThere were missing data for 32 patients.

^c The correlations between the risk score or classification and PEP occurrence were evaluated by the Cochran–Armitage test.

513

		Development cohort	Validation cohort
	C-statistic (95% CI)	0.77 (0.72–0.82)	0.71 (0.64–0.78)
	Hosmer–Lemeshow test, p value	0.59	0.40
516	CI, confidence interval.		
517			

Table 4. Goodness of fit of the risk score model.

Preprocedural risk score for Post-ERCP pancreatitis

1. Please check the corresponding items and calculate the total score.

Risk factors		Points		
□ Female sex		1		
□ Native papilla of Vater		2		
□ Pancreatic calcification on in	naging	-2		
		2		
Planned pancreatic duct procession	cedures	2	Total	points

2. Please find the predictive post-ERCP pancreatitis rate according to the total score.

Total points	Risk group	Predictive post-ERCP pancreatitis rate
≤ 0	Low	0-2%
1-3	Moderate	5%
4-7	High	18-20%

%The post-ERCP pancreatitis rate might change due to the actual ERCP procedure performed.