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Abstract 12 

Epilepsy affects over 50 million people worldwide, with approximately 30% experiencing drug-13 

resistant forms that may require surgical intervention. Accurate localisation of the epileptogenic zone 14 

(EZ) is crucial for effective treatment, but how best to use intracranial EEG data to delineate the EZ 15 

remains unclear. Previous studies have used the directionality of neural activities across the brain to 16 

investigate seizure dynamics and localise the EZ. However, the different connectivity measures used 17 

across studies have often provided inconsistent insights about the direction and the localisation 18 

power of signal flow as a biomarker for EZ localisation. In a data-driven approach, this study employs 19 

a large set of 13 distinct directed connectivity measures to evaluate neural activity flow in and out 20 

the seizure onset zone (SOZ) during interictal and ictal periods. These measures test the hypotheses 21 

of "sink SOZ" (SOZ dominantly receiving neural activities during interictal periods) and "source SOZ" 22 

(SOZ dominantly transmitting activities during ictal periods). While the results were different across 23 

connectivity measures, several measures consistently supported higher connectivity directed 24 

towards the SOZ in interictal periods and higher connectivity directed away during ictal period. 25 

Comparing six distinct metrics of node behaviour in the network, we found that SOZ separates itself 26 

from the rest of the network allowing for the metric of “eccentricity” to localise the SOZ more 27 

accurately than any other metrics including “in strength” and “out strength”. This introduced a novel 28 

biomarker for localising the SOZ, leveraging the discriminative power of directed connectivity 29 

measures in an explainable machine learning pipeline. By using a comprehensive, objective and data-30 
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driven approach, this study addresses previously unresolved questions on the direction of neural 31 

activities in seizure organisation, and sheds light on dynamics of interictal and ictal activity in focal 32 

epilepsy. 33 
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Introduction 36 

More than 50 million people worldwide have epilepsy (Kwan & Brodie, 2000), and in about 30% of 37 

them, anti-seizure medications cannot effectively control the disorder (Chen et al., 2018). In cases of 38 

focal epilepsy, where seizures originate from a specific part of one hemisphere, those with drug-39 

resistant forms may undergo presurgical evaluations to identify seizure-generating areas. This often 40 

involves intracranial electroencephalography (EEG) to delineate the epileptogenic zone (EZ), 41 

considered to be the sites primarily responsible for generating seizures (Lagarde & Bartolomei, 42 

2024). If the clinical risk-benefit analysis is favourable, the EZ can be surgically removed or 43 

disconnected through resection or laser ablation. Despite advancements in multimodal approaches 44 

like magnetic resonance imaging (MRI), electroencephalography (EEG) and positron emission 45 

tomography (PET) scans, and extensive clinical expertise, accurate localisation of the EZ remains 46 

challenging and can hinder achieving seizure freedom (Vakharia et al., 2018). 47 

 48 

Quantification methods have shown significant potential in localising the EZ by analysing intracranial 49 

EEG signals (Bartolomei et al., 2017; Bernabei et al., 2023; Gentiletti et al., 2022; Grinenko et al., 50 

2018; Karimi-Rouzbahani & McGonigal, 2024). These methods typically focus on either the interictal 51 

or ictal time windows. In the ictal window, the most common epileptiform activities include low 52 

voltage fast activity (LVFA), baseline slow wave shifts, rhythmic spikes/spike-waves, and preictal low 53 

frequency spiking which are more dominant in seizure onset zone (SOZ1), where seizures are thought 54 

to originate from (Bernabei et al., 2023). These features have been successfully extracted from 55 

signals and used for EZ localization in previous studies (Di Giacomo et al., 2024; Grinenko et al., 56 

2018). In the interictal window, traditional epileptiform characteristics which are quantified include 57 

interictal spikes/discharges and high-frequency oscillations (HFOs), with ongoing debate about which 58 

is more effective and ultimately possible increased predictive power by measuring their co-59 

occurrence (Roehri et al., 2018). While clinical observations and animal models suggest spatial 60 

 
1 In this work we define the epileptogenic zone (EZ) as the areas primarily responsible for generating seizures  
(Lagarde & Bartolomei, 2024; Ryvlin et al., 2024) and the seizure onset zone as where seizures start from 
(Bernabei et al., 2023). Nonetheless, this work analyses the directed connectivity only relative to the SOZ, but 
we try to use the term used in the original studies when reporting their results. 
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overlap between interictal and ictal neural activities to a variable degree (Avoli et al., 2006), the 61 

temporal balance between interictal and ictal states may depend on the directionality of activities 62 

measured using functional connectivity properties (Gunnarsdottir et al., 2022; Lagarde, Roehri, 63 

Lambert, Trebuchon, et al., 2018). Beyond the abovementioned epileptogenic patterns of ictal (e.g., 64 

LVFA, baseline shifts) and interictal activity (e.g., spikes and HFOs) various other more complex and 65 

often nonlinear features have also been successful in localising the SOZ in both windows (Andrzejak 66 

et al., 2012; Mooij et al., 2020; Sato et al., 2019). In a recent work, we evaluated the performance of 67 

a large array of 34 distinct signal features in localising the EZ in both interictal and ictal windows. We 68 

showed that signal power and network-based connectivity features were among the most localising 69 

features and were among the most generalisable features across patients (Karimi-Rouzbahani & 70 

McGonigal, 2024). 71 

 72 

While many traditional methods for EZ localization focused on univariate or single-channel signal 73 

activity, there has been a shift towards multivariate, multi-channel or network-based localisation 74 

(Gallagher et al., 2023; Gunnarsdottir et al., 2022; Johnson et al., 2023; Karimi-Rouzbahani et al., 75 

2024; Lagarde, Roehri, Lambert, Trebuchon, et al., 2018; A. Li et al., 2018, 2021). This approach aligns 76 

with the understanding of epilepsy as a network disorder (Kramer & Cash, 2012; Spencer, 2002) and 77 

has demonstrated better localisation performance compared to univariate methods in several 78 

studies (Balatskaya et al., 2020a; Bernabei et al., 2022; Kini et al., 2019). These have established the 79 

connectivity measures as valuable biomarkers for EZ localisation. In the interictal period, the 80 

consensus is that connectivity is higher within the EZ than within the non-involved zones (NIZ) and 81 

that EZ is relatively disconnected from the NIZ (Johnson et al., 2023; Lagarde, Roehri, Lambert, 82 

Trébuchon, et al., 2018). In the ictal period, areas within the SOZ increase their internal connectivity 83 

and become less connected to non-SOZ areas upon seizure onset (Liu et al., 2021; Runfola et al., 84 

2023; Schindler et al., 2007; Warren et al., 2010). While these studies showed consensus on 85 

increased connectivity within the EZ/SOZ and decreased connectivity between EZ/SOZ and non-86 

involved areas, they generally focused on non-directed connectivity methods. Non-directed methods 87 

quantify the level of connectivity or interaction between areas but remain silent about the direction 88 

of activity flow. Specifically, they quantify the interaction without providing information about 89 

whether an area dominantly sends or receives neural activities from other connected areas. 90 

 91 

Recent studies have focused on directed connectivity measures for the localisation of the EZ (Jiang et 92 

al., 2022; Z. Li et al., 2023; Nahvi et al., 2023). Directed connectivity methods provide insights into 93 
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the direction of neural activities relative to each individual brain area and have shown better 94 

localising performance than non-directed connectivity measures (Narasimhan et al., 2020). The 95 

knowledge about the directionality of neural activity flows within and across epileptogenic networks 96 

can provide valuable insights such as where seizures are generated and how they are propagated. 97 

Specifically, one hypothesis in epilepsy, which has attracted increasing attention, is the “interictal 98 

suppression hypothesis”, which posits that the EZ is inhibited by other brain areas in the interictal 99 

period (i.e. that this is why the brain does not continuously seize in subjects with epilepsy), and that 100 

seizures occur when this inhibition mechanism fails (Doss et al., 2024; Gunnarsdottir et al., 2022; 101 

Jiang et al., 2022; Johnson et al., 2023; Narasimhan et al., 2020; Paulo et al., 2022; Vlachos et al., 102 

2017). However, findings are non-unanimous with some studies showing that interictal neural 103 

activities are dominantly towards the EZ (Gunnarsdottir et al., 2022; Jiang et al., 2022; Johnson et al., 104 

2023; Narasimhan et al., 2020; Paulo et al., 2022; Vlachos et al., 2017) and others showing outward 105 

from the SOZ (Amini et al., 2011; Bettus et al., 2011; Lagarde, Roehri, Lambert, Trebuchon, et al., 106 

2018; Wilke et al., 2009). In the ictal period also, the intuition is that SOZ not only initiates the 107 

seizures but also transmits activity to other brain areas. However, the application of directed 108 

connectivity measures has shown discrepant results with some studies showing that ictal activity 109 

propagates from the SOZ to other areas (Balatskaya et al., 2020b; Courtens et al., 2016; Jung et al., 110 

2011; Yang et al., 2018) supporting a change of role from “sink” to “source” of activity (Gunnarsdottir 111 

et al., 2022; Jiang et al., 2022). Nonetheless, other studies have shown the opposite direction of 112 

neural activities dominantly towards the SOZ in the ictal period (An et al., 2020; Janca et al., 2021; 113 

Mao et al., 2016; Nahvi et al., 2023). While the dominant outflow from the SOZ can be explained by a 114 

significant increase in power in the SOZ being propagated to other areas (Liou et al., 2020), it has 115 

been postulated that the latter can possibly be justified by potential efforts of the non-SOZ areas to 116 

inhibit and stop the seizure (surrounding inhibition) (Schevon et al., 2012). 117 

 118 

One main reason for the discrepancy between studies evaluating the direction of activity flow 119 

(connectivity) could be the different directed connectivity methods used in different studies (Lagarde 120 

et al., 2022; Lagarde & Bartolomei, 2024). As each of directed connectivity methods is 121 

mathematically distinct, they rely on distinct aspects of signals and their potential relationship (i.e., 122 

connectivity). For example, while directed transfer function (DTF) measures the influence of one 123 

signal on another in the frequency domain using power analysis and Fourier transform, directed 124 

coherence (DCOH) method uses a spectral transfer matrix and normalises the inflow from one signal 125 

to another by their noise covariance (Baccalá & Sameshima, 2001). Considering such significant 126 

mathematical difference in the directed connectivity methods, this could be suspected to potentially 127 
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contribute different levels and sometimes opposite directions of activity flow across studies (Plomp 128 

et al., 2014). Therefore, the development of more objective and data-driven approaches are required 129 

to determine the direction of activity towards and away from the SOZ (Doss et al., 2024; Lagarde & 130 

Bartolomei, 2024). 131 

 132 

This study aims to establish the direction of neural activity in and out of the SOZ, in an unbiased, 133 

data-driven, and objective fashion. To that end, we used a large set of 13 mathematically distinct 134 

methods for quantifying directed connectivity used in the literature in the interictal and ictal periods. 135 

We then used network-analysis metrics (also known as connectomes (Doss et al., 2024)) including in 136 

strength and out strength to determine the dominant direction of broadband activity flow in and out 137 

of the SOZ. The aim is to see if the activities generally and dominantly flow towards or away from the 138 

SOZ and test the sink/source hypotheses in epilepsy with minimal effect of subjective method 139 

selection. Moreover, the knowledge about the directionality of neural activities in the interictal and 140 

ictal periods, if meaningful, can inform the development of automated EZ localisation methods. 141 

Specifically, if the SOZ were consistently at the receiving end of activity in the interictal period, this 142 

could be a valuable localising piece of information for localisation algorithms. Therefore, to evaluate 143 

the localisation power of the directed connectivity methods in intracranial recording, we combined 144 

all directed connectivity methods to localise the SOZ in both interictal and ictal periods. 145 

 146 

Methods 147 

 148 

Dataset  149 

This study uses a well-structured open-access intracranial dataset which brings together data from 150 

multiple centres (Bernabei et al., 2022; Kini et al., 2019). The dataset includes 57 patients who had 151 

been implanted with either subdural grid/strip (termed “electrocorticography” (ECoG)) or SEEG as 152 

their presurgical workup, and subsequently treated with surgical resection or laser ablation. Two 153 

patients’ data were excluded from our analyses as one had no interictal and the other no ictal 154 

recordings. Among the 55 patients analysed, 27 patients’ magnetic resonance imaging findings were 155 

lesional (28 non-lesional) and 35 patients were implanted with SEEG (20 ECoG (long-term subdural 156 

grid/strip recordings)). Thirty-four patients had Engel I, 6 Engel II, 11 Engel III and 2 had Engel IV 157 

outcomes. Resections/ablations targeted frontal (FRT) areas in 10 patients, temporal (TPR) in 24, 158 

mesiotemporal (MTL) in 15, insular in 2, frontoparietal in 1, parietal in 1 and mesiofrontal areas in 2 159 

patients (see patient demographics in Supplementary Table 1). Clinically determined seizure onset 160 
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channels were provided. Each patient had 2 interictal recordings and between 1 to 5 (mean = 3.7) 161 

ictal recordings/seizures (110 interictal and 204 ictal recordings over all patients). The interictal data 162 

was selected from awake brain activities determined both by the selection of day-time recordings (8 163 

am – 8 pm) and the use of a custom non-REM sleep detector (explained in detail in (Bernabei et al., 164 

2022)). The interictal data were at least 2 hours before the beginning of a seizure and at least 2 hours 165 

after a subclinical seizure, 6 hours after a focal seizure and 12 hours after a generalised seizure, free 166 

of spikes if possible and not within the first 72 h of recording to minimize immediate implant and 167 

anaesthesia effects. Epileptogenic zones/resected areas ranged from frontal, frontoparietal, 168 

mesiofrontal, temporal, mesiotemporal, parietal and insular areas. 169 

 170 

Pre-processing 171 

Bad channels, as marked in the dataset, were excluded from analyses. An average of 105.6 contacts 172 

(std = 38.04) per patient remained after bad channels were removed. There was an average of 114.2 173 

(std = 41.2) and 88.8 (std = 25.3) channels recorded in patients implanted with SEEG and ECoG, 174 

respectively. Among these, an average of 12.87% (std = 11.1%) of channels were in the SOZ area in 175 

each patient. The sampling frequencies of the signals varied across patients and ranged from 256 to 176 

1024 Hz. We adjusted the sampling rate to 256 Hz across patients for analyses. We applied a 60Hz 177 

notch filter to the data to remove line noise. To reduce the computational load, we only kept a 178 

maximum of 30 contacts per patient for analysis - in a random sampling procedure, we kept all the 179 

channels within the SOZ, and the other channels (remaining of 30) were randomly selected from 180 

non-SOZ contacts which were inside the grey matter and at least 10 mm away from other contacts. 181 

 182 

Calculation of directed connectivity measures 183 

We selected a 2-minute window of signal from each interictal recording (4 minutes per patient) and a 184 

patient-specific length of signal from each ictal recording (from seizure onset to the termination of 185 

seizure). Within those windows, we selected three 2-second epochs of data for analysis. The three 186 

epochs were chosen to capture early, mid and late dynamics of the signals within each recording. 187 

Specifically, in the 2-minute interictal window, the early, mid and late epochs were separated by 59 188 

seconds, and in the ictal period, the early and late epochs were separated by the length of the 189 

seizure while the mid epoch was in between the two windows. Our choice of 2-second epochs was to 190 

to select a mid-range epoch compared to previous studies which have used a wide range of epochs 191 

from 0.25s to 10 minutes to calculate connectivity in the interictal (Balatskaya et al., 2020b; Mooij et 192 
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al., 2020; Sato et al., 2019) and from 20 to 60 seconds in the ictal (Li et al., 2018; Runfola et al., 2023) 193 

data. 194 

 195 

We used the open-source python toolbox called PySpi (Cliff et al., 2023) which implements the 196 

largest set of directed and non-directed connectivity measures for time series (here intracranial EEG 197 

channels). We used the 13 available directed connectivity measures implemented in the toolbox for 198 

this work to follow an unbiased data-driven approach in analysis. The measures are categorised here 199 

into “information theory” (n=6), “frequency-domain” (n=6) and “time-domain” (n=1) methods. We 200 

briefly explain the characteristics of each connectivity measure below. For more information about 201 

each measure, the reader is advised to study the references cited for each measure. 202 

 203 

Information theory measures 204 

Additive Noise Model (ANM) 205 

This measure assesses directed nonlinear dependence (or causality) of x → y under the assumption 206 

that the effect variable, y, is a function of a cause variable, x, along with an independent noise term 207 

(Hoyer et al., 2008). PySpi utilises the statistic from Causal Discovery Toolbox (CDT) as connectivity. 208 

This involves initially predicting y from x using a Gaussian process using a radial basis function kernel, 209 

followed by computing the normalized Hilbert-Schmidt Independence Criterion (HSIC) test statistic 210 

from the residuals. ANM is commonly used in causal inference studies, particularly when the 211 

underlying causal mechanisms are assumed to be deterministic and additive in nature. 212 

 213 

Information-Geometric Causal Inference (IGCI) 214 

This measure infers causal influence from x to y within deterministic systems featuring invertible 215 

functions (Janzing et al., 2012). In IGCI, causal inference is approached by examining the geometric 216 

structure of the joint probability distribution of variables. Specifically, IGCI focuses on estimating the 217 

causal influence of one variable (the cause) on another variable (the effect) by analysing the 218 

statistical dependencies between them. PySpi utilises CDT, where the difference in differential 219 

entropies is computed, with probability density estimated via nearest-neighbour estimators. One of 220 

the key features of IGCI is its ability to handle both linear and nonlinear causal relationships, making 221 

it applicable to a wide range of data types and systems. Additionally, IGCI can be used to infer causal 222 

relationships in scenarios where traditional statistical methods may not be suitable, such as when 223 

dealing with high-dimensional or noisy data. 224 
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 225 

Conditional Distribution Similarity Fit (CDS) 226 

This measure provides a quantitative measure of the conditional relationship between variables and 227 

can help identify patterns of dependency or causality in empirical data (Cliff et al., 2023). It 228 

represents the standard deviation of the conditional probability distribution of y given x. This 229 

involves estimating the conditional probability distributions by discretising the values of the x and y 230 

and then computing the standard deviation of these conditional distributions. CDSF does not rely on 231 

specific parametric models to describe the relationship between variables, which makes it ideal for 232 

objective analyses.  233 

 234 

Regression Error-Based Causal Inference (RECI) 235 

This provides an assessment of the causal impact of x → y by measuring the error in a regression of y 236 

on x using a monomial (power product) model (Blöbaum et al., 2018). The rationale behind this 237 

method is that if there is a causal relationship from x to y, the regression model should capture most 238 

of the variation in y. This statistic corresponds to the Mean Squared Error (MSE) resulting from the 239 

linear regression of the cubic (with a constant term) of x with y. While linear regression models are 240 

commonly used, RECI can also be extended to handle nonlinear relationships between variables. 241 

 242 

Causally Conditioned Entropy (CCE) 243 

This measure quantifies the remaining uncertainty in time series y given the entire causal past of 244 

both time series x and y (Cliff et al., 2023). It is computed as a sum of conditional entropies of y given 245 

the past of both x and y with increasing history lengths. CCE is a sophisticated measure for assessing 246 

the causal influence of one time series on another by quantifying the remaining uncertainty in the 247 

target series after conditioning on the past values of both series. It is a versatile tool that can handle 248 

both linear and nonlinear dependencies. For computational efficiency, PySpi sets the history length 249 

of 10. This implies that the joint process is assumed to be, at most, a 10th-order Markov chain. We 250 

used a Gaussian kernel in this work. 251 

 252 

Directed Information (DI) 253 

It is a measure for assessing the information flow from a source time series x to a target time series y 254 

(Massey, 1990). It is calculated as the difference between the conditional entropy of y given its own 255 

past and the CCE. This measure provides an interpretable framework for understanding causal 256 

influence, as it directly quantifies the amount of information transferred from the source to the 257 
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target time series. As in CCE, the computation of directed information is limited to a history length of 258 

10. We used a Gaussian kernel in this work. 259 

 260 

Frequency-domain measures 261 

We also calculated several measures of directed connectivity in the frequency domain. For the 262 

frequency-domain measures, we used the full frequency range of 0 to 128Hz (the upper bound is 263 

limited by the Nyquist theorem to half the sampling rate) to obtain a broad-band index rather than 264 

focusing on a narrow frequency band. This provides general and objective results. The measures are 265 

calculated over 125 uniformly sampled bins across the 0 to 128Hz frequency range and averaged. 266 

 267 

Group Delay (GD) 268 

Group delay quantifies a directed, average time delay between two signals by assessing the slope of 269 

the phase differences as a function of frequency (derived through linear regression) (Hannan & 270 

Thomson, 1973). This slope is computed solely for coherence values that are statistically significant, 271 

and the time delay is acquired through a straightforward rescaling of the slope by 2π. The 272 

implementation provides the output in the form of the rescaled time delay statistic. GD’s ability to 273 

provide directional, frequency-dependent, and time-resolved measures of the interactions between 274 

signals is valuable. Its reliance on phase differences makes it particularly effective for studying the 275 

temporal dynamics of complex systems. 276 

 277 

Phase Slope Index (PSI) 278 

This measure serves as a directed metric for assessing information flow, computed using the 279 

complex-valued coherence (Nolte et al., 2008). Specifically, it evaluates the consistency of phase 280 

difference alterations across a predefined frequency range, with coherence acting as a weighting 281 

factor. The implementation computes the measure in the frequency domain. Its reliance on phase 282 

coherence makes it robust to noise and effective in identifying directed connectivity within specific 283 

frequency bands. However, PSI primarily assumes linear relationships in the phase domain. Nonlinear 284 

interactions may not be fully captured by this measure. Moreover, accurate phase difference 285 

estimation requires high-quality signals. Pre-processing steps such as filtering and artefact removal 286 

are crucial for reliable PSI computation. 287 

 288 
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Directed Transfer Function (DTF) 289 

This measure uses cross-spectral density matrix which can be decomposed into a noise covariance 290 

matrix and a spectral transfer matrix (Eichler, 2006). The directed transfer function is derived from 291 

this decomposition to quantify the inflow from x to y. This inflow is normalized by the total inflow 292 

from all other signals into y, represented by the row-wise sum of the spectral transfer matrix. It can 293 

provide frequency-specific insights into connectivity, and its normalisation allows for direct 294 

comparison of connectivity between distinct pairs of signals. However, the computationally intensive 295 

nature of the method, its assumption linearity limits the application of DTF in detecting nonlinear 296 

relationships. 297 

 298 

Directed Coherence (DCOH) 299 

It is calculated from the inflow from x to y using the spectral transfer matrix (as described in DTF) and 300 

is then normalised by their noise covariance (Baccalá & Sameshima, 2001). It can provide frequency-301 

specific insights into connectivity, and its normalisation allows for direct comparison of connectivity 302 

between distinct pairs of signals. However, the computationally intensive nature of the method, its 303 

assumption linearity limits the application of DCOH in detecting nonlinear relationships. Accurate 304 

estimation of DCOH requires high-quality signals. Noise and artefacts in the data can affect the 305 

reliability of the results, necessitating careful pre-processing steps. 306 

 307 

Partial Directed Coherence (PDCOH) 308 

The partial directed coherence from x to y is determined by the inflow (as described in DTF), 309 

normalized by the total outflow from all other signals into y (the column-wise sum of the spectral 310 

transfer matrix) (Baccalá & Sameshima, 2001). As an advantage to DCOH, by considering the 311 

influence of all other signals in the network (on the signals being evaluated), PDCOH provides a more 312 

accurate assessment of the true directional relationships between specific signal pairs. 313 

 314 

Spectral Granger Causality (SGC) 315 

This measure extends the concept of Granger Causality to the frequency domain, enabling the 316 

assessment of causal interactions between signals at specific frequencies (Friston et al., 2014). It is 317 

calculated using the spectral transfer matrix and noise covariance. These are estimated through 318 

either a parametric (VAR model) approach or a nonparametric (spectral factorization) approach. We 319 

used the nonparametric method to minimise subjective parameter settings. In the PySpi toolbox is 320 

implemented using the Spectral Connectivity Toolbox. SGC’s ability to provide frequency-specific and 321 
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normalized measures of causality makes it particularly useful where understanding the dynamics of 322 

complex systems is important. However, its reliance on linearity and sensitivity to signal quality 323 

should be considered when interpreting the results. 324 

 325 

Time-domain measure 326 

Linear Model Fit (LMFIT) 327 

Linear regression is a widely employed method for assessing independence via model fittings (Cliff et 328 

al., 2023). We employed ridge regression from the toolbox, which uses ℓ2-norm regularization and 329 

the mean squared error (MSE) resulting from a regression of y on x. This measure is a powerful and 330 

widely used statistical method for modelling the directed relationship between signals. Its simplicity, 331 

interpretability, and efficiency make it a valuable tool for relationship analysis, and trend analysis in 332 

various fields of study. However, it has several limiting assumptions including that observations are 333 

independent of each other. Violation of this assumption (e.g., autocorrelation in time series data) can 334 

lead to inaccurate estimates and predictions. Linear regression assumes a linear relationship 335 

between signals. If the true relationship is nonlinear, the model may provide biased or inaccurate 336 

results. Finally, overfitting can occur when the model is too complex relative to the amount of data 337 

available. This can result in poor generalization to new data and unreliable predictions. 338 

 339 

Node metrics 340 

To characterise the role and behaviour of each node in the brain network, we used several network 341 

analysis metrics (i.e., connectomics). Specifically, in network analysis, each network is composed of 342 

nodes which are the electrode contacts here and links which are the (assumed) inter-node 343 

connections. Using the open-source brain connectivity toolbox (Rubinov & Sporns, 2010), we 344 

extracted six node metrics to evaluate the node behaviour in the network: 345 

 346 

In strength is the sum of inward link weights (connectivity values). Nodes with higher in strength are 347 

influential receivers within the network, as they accumulate a significant amount of incoming 348 

influence, resources, or interactions from other nodes. 349 

 350 

Out strength is the sum of outward link weights. Nodes with higher out strength are influential 351 

senders within the network, as they contribute a significant amount of outgoing influence, resources, 352 

or interactions to other nodes. 353 
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 354 

First passage time is the expected number of steps it takes a random walker to reach one node from 355 

another. Nodes with higher first passage times are often located on the periphery, farther away from 356 

central or densely connected regions. 357 

 358 

Clustering coefficient is the fraction of triangles around a node and is equivalent to the fraction of 359 

node’s neighbours that are neighbours of each other. Nodes with higher clustering coefficients are 360 

typically located in densely connected neighbourhoods. These nodes have many connections to 361 

neighbouring nodes, forming cohesive groups or communities. 362 

 363 

Eccentricity is the maximal shortest path length between a node and any other node. Nodes with 364 

higher eccentricity are typically located on the periphery of the network. They are farther away from 365 

the central core or densely connected regions. 366 

 367 

Betweenness centrality is the fraction of all shortest paths in the network that contain a given node. 368 

Nodes with higher betweenness centrality often serve as bridges or connectors between different 369 

clusters, communities, or groups within the network. They lie on many of the shortest paths 370 

connecting nodes in different regions. Nodes with lower betweenness centrality are typically located 371 

on the periphery of clusters or communities within the network. They have fewer connections to 372 

other nodes and are less likely to lie on shortest paths between nodes. 373 

 374 

Multivariate pattern classification for SOZ localisation 375 

We employed a standard multivariate pattern classification approach to localize the seizure onset 376 

zone (SOZ), distinguishing contacts within the SOZ from those outside it (non-SOZ) (Karimi-377 

Rouzbahani & McGonigal, 2024). Initially, we computed inter-channel directed connectivity values. 378 

Subsequently, we calculated the six aforementioned node metrics for each contact based on the 379 

connectivity matrix, which has a size of N×N, where N represents the number of nodes or contacts. 380 

These metrics were then concatenated and utilised as features for the classifiers. The classification 381 

performance gauged the discriminability of SOZ and non-SOZ contacts using directed connectivity 382 

measures, assessed by the area-under-the-curve (AUC) metric for comprehensive, threshold-free 383 

classification performance. Consistent with recent localisation studies (Jiang et al., 2022; Karimi-384 
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Rouzbahani & McGonigal, 2024), we employed decision tree (DT) classifiers, treating each contact as 385 

an observation in classification. Our DT classifiers utilised a random forest algorithm with 50 bags of 386 

feature combinations, suitable for nonlinear feature classifications and offering insights into feature 387 

contributions. This approach clarifies the "contribution" of each feature by permuting the contact 388 

labels (i.e., SOZ vs. non-SOZ) in each feature separately and assessing its impact on performance, 389 

where contribution is inversely proportional to performance drop. For classification, we conducted 390 

separate analyses within interictal and ictal time windows for each patient, employing a 10-fold 391 

cross-validation procedure. This procedure was applied individually for each recording data from ictal 392 

and interictal packets and also their combinations. To address the imbalance in the number of SOZ to 393 

non-SOZ contacts and prevent bias toward one class in classification, we employed an up-sampling 394 

procedure to increase the number of observations for the class with fewer observations/contacts, 395 

repeating each classification of data 1000 times before averaging the results. Additionally, we 396 

generated chance-level performances by shuffling (SOZ/non-SOZ) contact labels 1000 times and 397 

recalculating the classification performance, resulting in 1000 chance-level classification outcomes 398 

against which we assessed the significance of our true classification performances. 399 

 400 

Statistical analysis 401 

We employed Bayes Factor (BF) analysis for statistical inference. We compared the AUC levels against 402 

chance-level AUCs and assessed main effects on classifications. We interpreted levels of BF evidence 403 

strictly: BFs above 10 and below 1/10, were considered evidence for the alternative and null 404 

hypotheses, respectively. BFs falling between 1/10 and 10 were regarded as providing insufficient 405 

evidence either way, indicating that no conclusions could be drawn about the difference between a 406 

pair of variables. 407 

 408 

To evaluate the evidence for the null and alternative hypotheses regarding at-chance and above-409 

chance classification, respectively, we compared the classification rates in each analysis with those 410 

obtained from null distributions of the same analysis. For this purpose, we conducted an unpaired 411 

Bayes factor t-test for the alternative (i.e., difference from chance; H1) and the null (i.e., no 412 

difference from chance; H0) hypotheses. 413 

 414 
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To assess the evidence for the null and alternative hypotheses regarding the difference between 415 

contributions across measures and metrics, we compared the contributions obtained from each of 416 

these conditions using paired Bayes factor t-tests. 417 

 418 

For evaluating the main effects of surgery outcome (Engel I/Engel II-IV), region of resection 419 

(FRT/TPRMTL), pathology (lesional/non-lesional), and recording modality (SEEG/ECoG), we employed 420 

a Bayes factor ANOVA. In this analysis, these four factors served as independent variables, with 421 

classification/generalization AUC as the dependent variable.  422 

 423 

To ensure statistical power in ANOVA, we excluded patients with insular, frontoparietal, parietal, and 424 

mesiofrontal resections, where the sample size was less than 3. Priors for all Bayes factor analyses 425 

were determined based on Jeffrey-Zellner-Siow priors (Jeffreys, 1998; Zellner & Siow, 1980), which 426 

are derived from the Cauchy distribution based on the effect size initially calculated in the algorithm 427 

using t-tests (Rouder et al., 2012). 428 

 429 

Data and code availability  430 

The dataset used in this study was from previous studies and is available at 431 

https://openneuro.org/datasets/ds004100/versions/1.1.3. The code developed for this project is 432 

available at https://github.com/HamidKarimi-Rouzbahani/Intracranial_epilepsy_connectivity. 433 

 434 

Results 435 

We analysed directed connectivity measures of intracranial neural signals in epileptic patients 436 

towards two goals. First, we tested the sink-source hypotheses which suggest that SOZ areas 437 

dominantly receive neural activities during the interictal period (i.e., confirming “sink SOZ” 438 

hypothesis; Figure 1A). This direction was hypothesised to reverse in the ictal period (i.e., confirming 439 

“source SOZ” hypothesis; Figure 1A). Second, we tested to see if directed connectivity measures 440 

could localise the SOZ (Figure 1D). Importantly, to address these goals in a data-driven and objective 441 

manner, we used a large set of 13 distinct measures of directed connectivity to analyse the data 442 

which can clarify if the difference between connectivity methods used could explain the discrepancy 443 

in the literature. 444 

 445 
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 446 

 

Figure 1 Hypotheses and the proposed localisation pipeline. (A) Sample implanted electrodes where 

seizure onset zone (SOZ, red nodes) shows dominantly outgoing activities compared to non-SOZ (blue 

nodes), with arrows indicating the strength of activity flows/connectivity (thicker arrows representing 

stronger connections) predominantly from non-SOZ to SOZ between seizures (interictal period). The “SOZ 

sink” hypothesis suggests a higher in strength for SOZ than non-SOZ contacts in the interictal period and 

the “SOZ source” hypothesis suggests a higher out strength in SOZ than non-SOZ contacts in the ictal 

period. (B) Recorded signals are pre-processed, and three 2-second epochs of data are used in analyses. (C) 

An inter-contact directed connectivity matrix reflecting connectivity strengths (colour-coded) and direction 

(columns and rows represent source and destination areas, respectively), with red squares indicating SOZ 

contacts. (D) Several node metrics are extracted from the connectivity matrices to assess each node’s 

behaviour in the network. (E) Machine learning classifiers are trained to distinguish contacts within and 

outside the SOZ in a 10-fold cross-validation process. 
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Strength of neural activity flow in and out of the SOZ 447 

We evaluated the strength of neural activity towards and away from every node (electrode contact) 448 

using in and out strength node metrics, respectively. Accordingly, nodes with higher in strength have 449 

stronger inward connectivity than nodes with lower in strength, and nodes with higher out strength 450 

have stronger outward connectivity than nodes with lower out strength (see methods). 451 

 452 

In the interictal period, across the 13 directed connectivity measures tested, there was evidence (BF 453 

> 10) for higher in strength in SOZ than non-SOZ areas for 5 connectivity measures (ANM, DI, DTF, 454 

DCOH and PDCOH) and there was evidence (BF > 10) for higher in strength in non-SOZ than SOZ 455 

areas only for the CDS connectivity measure. There was insufficient evidence (0.1 < BF < 10) either 456 

way for the rest of the connectivity measures (Figure 2A). In the ictal period, there was evidence (BF 457 

> 10) for higher out strength in SOZ than non-SOZ areas for ANM and SGC connectivity measures, 458 

respectively. There was insufficient evidence (0.1 < BF < 10) either way for the rest of the 459 

connectivity measures (Figure 2B).  460 

 461 

The results above were obtained by averaging the results from early, mid and late epochs (time 462 

windows) of the interictal and ictal periods (Figure 1B). To evaluate potential temporal variability in 463 

connectivity, we also evaluated in strength and out strength for each individual 2-second epoch 464 

(Supplementary Figure 1). The patterns of in strength were relatively similar across the three 465 

interictal windows (c.f., Figure 2A). The patterns of out strength were also similar across the three 466 

ictal windows and resembled the averaged results (c.f., Figure 2B).  467 

 468 

While higher in strength in SOZ than non-SOZ areas (e.g., in the interictal period; c.f., Figure 2A) does 469 

not necessarily correspond to higher out strength in non-SOZ than SOZ areas, we tested this opposite 470 

non-hypothesised effect as well to ensure we are not overlooking a relevant effect (Supplementary 471 

Figure 2). In the interictal period, there was evidence (BF > 10) for higher out strength in non-SOZ 472 

than SOZ areas for the CDS connectivity measure only. However, there was evidence (BF > 10) 473 

respectively for higher out strength in SOZ than non-SOZ areas for ANM and SGC, respectively. In the 474 

ictal period, there was evidence (BF > 10) for higher in strength in non-SOZ than SOZ areas for the 475 

CDS only, but also evidence (BF > 10) for higher in strength in SOZ than non-SOZ areas. Therefore, the 476 

out strength during interictal period and the in strength during the ictal period provided inconsistent 477 

results across connectivity measures to support clear directions of activity flows. 478 
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 479 

Together, these results show that distinct measures of connectivity show variable results. 480 

Nonetheless, 5 out of 13 connectivity measures consistently supported the “sink SOZ” hypothesis in 481 

the interictal period. Similarly, but less strongly than in the interictal period, two connectivity 482 

measures supported the “source SOZ” hypothesis in the ictal period. These results were relatively 483 

stable within the interictal and ictal periods. Among the 13 connectivity measures evaluated, only 484 

the ANM measure supported both hypotheses. 485 

 486 

Switching of activity direction from the interictal to ictal period 487 

The above results suggested that SOZ areas tend to be the receivers (i.e., sinks) in the interictal 488 

period and the transmitters (i.e., sources) of neural activity in the ictal period. However, it remains 489 

unclear if this tendency of switching roles between being a sink or source is consistent across 490 

 

Figure 2 In strength in the interictal (A) and out strength in the ictal (B) period across connectivity 

measures. Connectivity measures are categorised into information theory, frequency-domain, and time-

domain measures. Results are separated for the SOZ (red) and non-SOZ (blue) contacts with each dot 

showing data for one patient. Box plots show the distribution of data, its quartiles and median and 

whiskers indicate the maximum and minimum of the data across patients. Each dot indicates the data from 

one patient. Numbers below the bars indicate Bayesian evidence (BF > 10 indicated in green) for the 

difference between SOZ and non-SOZ data. 
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patients (Doss et al., 2024). Specifically, the higher interictal in strength in SOZ compared to non-SOZ 491 

and the higher ictal out strength in non-SOZ compared to SOZ could have come from distinct subset 492 

of patients. To rule this out, we evaluated the correlation between effect sizes in the interictal and 493 

ictal periods: effects sizes were calculated as ∆ = 𝑖𝑛 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑆𝑂𝑍 − 𝑖𝑛 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑛𝑜𝑛−𝑆𝑂𝑍 during 494 

interictal and ∆ = 𝑜𝑢𝑡 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑆𝑂𝑍 − 𝑜𝑢𝑡 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑛𝑜𝑛−𝑆𝑂𝑍 during ictal period (Figure 3A). Majority 495 

(8 out of 13) of connectivity measures showed a positive correlation between the direction of effects 496 

across the interictal and ictal periods over patients with 5 reaching significance at p < 0.01 (Pearson 497 

correlation). The rest of the 5 connectivity measures showed non-significant negative correlations. 498 

Significant correlations suggest that patients in whom in strength was higher for SOZ compared to 499 

non-SOZ in the ictal period were the same patients in whom the out strength was also higher for 500 

non-SOZ compared to SOZ in the interictal period. 501 

 502 

To check if this effect was also consistent at the individual contact level, we performed an additional 503 

correlation-based analysis. To that end, we evaluated the correlation between the level of interictal 504 

in strength and ictal out strength across SOZ contacts, within each individual patient (Figure 3B, top 505 

panel). Results looked like the cross-patient analysis (c.f., Figure 3A) and showed positive correlations 506 

for 9 of the connectivity measures while the rest showed negative correlations. This suggests that 507 

changes in signal characteristics and connectivity patterns from the interictal to ictal period impacts 508 

distinct connectivity measures differently. We repeated the same analysis to check the correlation 509 

between the level of interictal out strength and ictal in strength across non-SOZ contacts, which 510 

showed similar results to the SOZ contacts (Figure 3B, bottom panel). The consistent positive 511 

correlations across the nine connectivity measures support that the contacts with higher interictal in 512 

strength also showed a higher ictal out strength. However, the four measures with non-significant 513 

negative correlations, which were all frequency-domain connectivity measures, support a different 514 

transition: the contacts with higher interictal in strength showed a lower ictal out strength. This 515 

might be because of the significant changes in the frequency characteristics of signals when going 516 

from the interictal to the ictal period which continues to evolve during the seizure period (e.g., low 517 

voltage fast activity (Lagarde et al., 2019)) dominantly impacting the frequency-domain connectivity 518 

measures. 519 

 520 

 521 

 522 
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 523 

 524 

 

Figure 3 Correlation between interictal in strength and ictal out strength. (A) Pearson linear 

correlations between interictal and ictal effect sizes across patients with each dot showing data 

from one patient (i.e., effect size = difference between SOZ and non-SOZ contacts in terms of in 

strength in the interictal and out strength in the ictal period). Correlations and the corresponding 

p values are shown on top of each panel (significant results green: P < 0.01) with the slant line 

showing the best linear fit to the data. (B) Pearson linear correlation between interictal and ictal 

effect sizes across contacts with each dot showing cross-contact averaged results for an individual 

patient (i.e., effect size = difference between in strength in the interictal and out strength in the 

ictal period for each contact). Top and bottom panels show the results for the SOZ and non-SOZ 

contacts, respectively. 
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Separation of the SOZ from the rest of the network 525 

Having tested the “sink and source SOZ” hypotheses, we then tested to see if other node metrics 526 

would distinguish between SOZ and non-SOZ areas. These metrics were extracted from our directed 527 

connectivity measures to determine the role of each node in the network. Initially, similar to in 528 

strength and out strength, we compared SOZ and non-SOZ contacts separately for the interictal and 529 

ictal periods using four additional node metrics including first passage time, clustering coefficient, 530 

eccentricity and betweenness. 531 

 532 

In the interictal period (Figure 4A), several node metrics discriminated SOZ from non-SOZ contacts. 533 

For instance, there was evidence (BF > 10) for higher first passage time in SOZ than non-SOZ for five 534 

(ANM, DI, DTF, DCOH, and PDCOH), and higher eccentricity for five (ANM, RECI, DI, SGC, and LMFIT) 535 

connectivity measures. Clustering coefficient and betweenness centrality showed less consistent 536 

results across connectivity measures. There was evidence (BF > 10) for higher clustering coefficient in 537 

SOZ than non-SOZ for three connectivity measures (ANM, DI and DCOH) but also evidence (BF > 10) 538 

for lower clustering coefficient in SOZ than non-SOZ for CDS. There was evidence (BF > 10) for higher 539 

betweenness centrality in SOZ than non-SOZ for three connectivity measures (ANM, RECI and LMFIT) 540 

but also evidence (BF > 10) for lower betweenness centrality in SOZ than non-SOZ for CDS. Relative 541 

consistency and non-opposing results across connectivity measures in first passage time suggest that 542 

SOZ areas has more complex and prolonged interactions with other areas than non-SOZ potentially 543 

due to abnormal neural activity, leading to longer first passage times. Higher eccentricity in SOZ than 544 

non-SOZ contacts suggests that the SOZ is positioned distantly from the most central nodes in the 545 

network, indicating a more peripheral position or a more complex and distributed network structure 546 

for the SOZ than the non-SOZ. 547 

 548 

In the ictal period, results were less consistent across connectivity measures in terms of first passage 549 

time and clustering coefficient with two connectivity measures higher for SOZ and one higher for 550 

non-SOZ (Figure 4B). There was evidence (BF > 10) for higher eccentricity in SOZ than non-SOZ for 551 

five connectivity measures (ANM, RECI, PSI, SGC, and LMFIT) similar to the interictal period. There 552 

was evidence (BF > 10) for higher betweenness centrality in SOZ than non-SOZ for three connectivity 553 

measures (RECI, DCOH and SGC) but also evidence (BF > 10) for lower betweenness centrality in SOZ 554 

than non-SOZ for IGCI. These results align with the interictal results supporting that SOZ areas reside 555 

in more peripheral and less central part of the brain network reflecting their separation from the rest 556 

of the network.  557 
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 558 

 559 

 

 

Figure 4 First passage time, clustering coefficient, eccentricity and betweenness centrality in the interictal 

(A) and the ictal (B) periods across connectivity measures. Connectivity measures are categorised into 

information theory, frequency-domain, and time-domain measures. Results are separated for the SOZ (red) 

and non-SOZ (blue) contacts with each dot showing data from one patient. Box plots show the 

distribution of data, its quartiles and median and whiskers indicate the maximum and minimum of the data 

across patients. The numbers below (above for BC) the bars indicate Bayesian evidence (BF > 10 indicated 

in green) for the difference between SOZ and non-SOZ data. 
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Localisation of SOZ using node network metrics 560 

Finally, we used our set of 6 node metrics extracted from the 13 connectivity measures to see how 561 

precisely we could localise the SOZ. Localisation here refers to the discrimination of contacts within 562 

SOZ from those within non-SOZ areas. To this end, we used a decision-tree machine learning 563 

classifier to classify the SOZ and non-SOZ contacts using the 78-dimensional feature set (6 node 564 

metrics per 13 connectivity measures). 565 

 566 

There was evidence (BF > 10) for above-chance (i.e., AUC > 0.5) localisation of the SOZ in both 567 

interictal and ictal periods at the group level (Figure 5A). At the individual level, the performance 568 

varied across patients from around chance level of 0.5 to above 0.9. These results showed that, for 569 

some patients, there was enough information in the directed connectivity measures to predict if a 570 

node was part of the SOZ or not. These results also showed that interictal activity could also provide 571 

as much localisation power as the ictal activity which is dominantly used in clinical practice. 572 

 573 

To see if any of the patient demographic variables (i.e., surgery outcome (Engel I/Engel II-IV), region 574 

of resection (FRT/TPRMTL), pathology (lesional/non-lesional), and recording modality (SEEG/ECoG)) 575 

could explain the localisation performance, we performed a Bayes factor ANOVA t-test with these 576 

four factors as independent variables and the localisation performance (AUC) as the dependent 577 

variable. There was insufficient evidence (0.1 < BF < 10) for an effect of any of the demographic 578 

variables on the localisation performance in either interictal or ictal data (Supplementary Figure 3). 579 

 580 

 581 
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 582 

 

Figure 5 Classification of SOZ and non-SOZ contacts (localisation). (A) AUC of classification 

performance for interictal and ictal data. Box plots show the distribution of data, its quartiles and 

median and whiskers indicate the maximum and minimum of the data over patients. Each dot 

indicates the data from one patient. Numbers below the bars indicate Bayesian evidence for the 

difference between the true and chance performance. Horizontal dashed line refers to theoretical 

chance-level classification (0.5). Contribution of each connectivity measure and node metric to 

the classification performance shown in the interictal (B) and ictal (C) period. Contributions are 

calculated using random permutation in the DT classifier. Green horizontal lines indicate evidence 

(BF > 10) for difference between contributions. 
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We then asked if there was systematic variation across the different recordings (i.e., time windows 583 

when the data was sampled within the interictal data and ictal/seizure data) and analysis epochs 584 

(i.e., early, mid and late). To perform this analysis, classifiers were trained and tested within each 585 

individual recording and epoch. Consistently in interictal and ictal data, we observed a higher 586 

localisation performance when localisation was done separately for each individual recording and 587 

epoch (Supplementary Figure 4) than when they were all combined (c.f., Figure 5A). Moreover, in the 588 

ictal data, we generally observed higher localisation performance in the early than mid and late 589 

epochs of data (Supplementary Figure 4B), which can be explained by a stronger separation of SOZ 590 

from non-SOZ areas at the onset of seizures. Please note that while the early epoch of data always 591 

contained the first two seconds of the ictal activity, the mid and late epochs did not match across 592 

patients as the length of seizures differed. 593 

 594 

We then evaluated the contribution of each connectivity measure and node metric to the localisation 595 

performance. When comparing the contribution of each connectivity measure, we concatenated its 596 

node metrics and when evaluating the contribution of each node metric, we concatenated all the 597 

connectivity measures. We concatenated all patients’ data in both analyses. In the interictal period 598 

(Figure 5B), there was evidence (BF > 10) for higher contribution of eccentricity than first passage 599 

time and clustering coefficient and lower contribution from betweenness centrality than the other 5 600 

node metrics. The median contributions of other node metrics varied in the range between the 601 

medians of betweenness centrality and eccentricity. There was evidence (BF >10) for higher 602 

contributions of DI and ANM and lower contribution of SGC than several other node metrics. 603 

 604 

In the ictal period (Figure 5C), we observed relatively similar contributions of node metrics and 605 

connectivity measures. Specifically, node eccentricity and betweenness centrality showed the highest 606 

and lowest contributions among other node metrics. There was also evidence (BF > 10) for higher 607 

contribution of DI and ANM than other connectivity measures.  608 

 609 

Together, these results show that in strength and out strength are informative metrics for localising 610 

the SOZ. Importantly, we observed that the node metric of eccentricity, which reflects how 611 

peripheral a node’s position was in the network, had even higher localisation power. We also 612 

observed that the connectivity metrics of DI and ANM provided the highest localisation power. These 613 

results were consistent across both interictal and ictal periods. We also observed that localisation 614 
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was improved when done separately for each time window and was higher in early than later epochs 615 

of the ictal data. These show that, there are subtle variations in node connectivity patterns which can 616 

change the discriminability of SOZ from non-SOZ over time. 617 

 618 

Discussion 619 

This work was aimed towards two goals. First, this study tested if the SOZ in people with focal 620 

epilepsy dominantly receives broadband neural activities in the interictal (resting baseline state) 621 

period (“sink SOZ” hypothesis) and dominantly transmits the activities in the ictal (seizure) period 622 

(“source SOZ” hypothesis). To that end, we utilised a data-driven approach and recruited a set of 13 623 

directed connectivity measures along with 6 metrics of node behaviour in the network. We found 624 

that not all connectivity measures supported the above hypotheses. Nonetheless, we found evidence 625 

across several connectivity measures supporting these hypotheses. These measures showed that SOZ 626 

dominantly received neural activities in the interictal and transmitted them in the ictal period 627 

supporting the idea of seizure suppression and propagation, respectively. Second, this study 628 

evaluated the predictive power of node metrics extracted from the above-mentioned connectivity 629 

measures in localising the SOZ. To that end, we utilised the power of explainable machine learning 630 

classifiers to successfully discriminate contacts within from those outside the SOZ. This work makes 631 

several contributions to our understanding of epilepsy and how hypothesis-driven biomarkers can 632 

localise the SOZ. 633 

 634 

Earlier studies have evaluated the directionality of signals in the interictal and ictal periods. In 635 

interictal data, some studies have suggested a leading role (higher outgoing signals) for the 636 

epileptogenic zone (EZ) (Bettus et al., 2008; Lagarde, Roehri, Lambert, Trébuchon, et al., 2018; 637 

Varotto et al., 2012) whereas others have suggested the opposite (Gunnarsdottir et al., 2022; Jiang et 638 

al., 2022; Narasimhan et al., 2020; Paulo et al., 2022; Vlachos et al., 2017). Similar discrepancy exists 639 

in studies which used ictal data, with some studies suggesting a leading role for the EZ areas 640 

(Balatskaya et al., 2020b; Courtens et al., 2016; Jung et al., 2011; Yang et al., 2018) and others 641 

providing evidence for the opposite (An et al., 2020; Janca et al., 2021; Mao et al., 2016; Nahvi et al., 642 

2023). One important reason behind these discrepant results could be the variation in the methods 643 

used to measure directed connectivity (Doss et al., 2024; Lagarde et al., 2022; Lagarde & Bartolomei, 644 

2024). Basically, distinct connectivity methods rely on distinct signal features to quantify connectivity. 645 

As we categorised these methods (c.f., Figure 2), some methods rely on the complexity, randomness, 646 

or the predictability of signal samples (information theory methods), whereas some rely on 647 
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frequency-domain representation of signals (frequency-domain methods) and others simply rely on 648 

one-to-one mapping of time samples across areas (time-domain measures e.g., LMFIT) (Cliff et al., 649 

2023). Even different methods within each category work differently. For example, while ANM 650 

detects causal relationship which are assumed to be additive with independent noise, IGCI can 651 

detect more complex non-additive relationships. Therefore, it is not surprising to be able to detect 652 

the directed connectivity using one method but not the other. 653 

 654 

Building on the recent developments in neural decoding (Karimi-Rouzbahani, 2024; Karimi-655 

Rouzbahani, Shahmohammadi, et al., 2021; Karimi-Rouzbahani & Woolgar, 2022) and connectivity 656 

analyses (Cliff et al., 2023; Karimi-Rouzbahani et al., 2022; Karimi-Rouzbahani, Ramezani, et al., 2021) 657 

and trying to avoid subjective analysis, this study adopts a data-driven and objective approach to test 658 

the direction of neural activity flow towards and away from the SOZ, which has been lacking in 659 

previous studies that tend to select a priori methods of connectivity analysis (Lagarde & Bartolomei, 660 

2024). We showed that several connectivity measures showed higher in strength towards SOZ than 661 

non-SOZ areas in the interictal and higher out strength from SOZ than non-SOZ in the ictal period. 662 

These results supported a switching role for the SOZ which not only supports the hypotheses of “sink 663 

SOZ” in the interictal (Gunnarsdottir et al., 2022) and “source SOZ” in the ictal period (Schindler et 664 

al., 2007), but also serves as a biomarker for localising SOZ. Interestingly, we observed a higher 665 

consistency across connectivity measures in the interictal than ictal period. This might suggest that 666 

while the inflow of activity in the interictal period might be reflected in a wider range of activity 667 

patterns as captured by a higher number of connectivity measures, the outflow of neural activity 668 

might be confined to a limited range of activity patterns (Lagarde et al., 2019). This is supported by 669 

our observation of less cross-patient generalisable epileptogenic patterns in the interictal than ictal 670 

periods (Karimi-Rouzbahani & McGonigal, 2024). 671 

 672 

Only a few studies have evaluated directed connectivity during both interictal and ictal periods in the 673 

same patient population. For example, partial directed coherence (PDCOH) method applied to 674 

patients with type II focal cortical dysplasia showed a higher out density (defined as the ratio 675 

between the sum of node degrees and the total number of connections in the network) in the lesion 676 

and SOZ areas than non-SOZ areas supporting the “source SOZ” hypothesis in the ictal data, but did 677 

not find evidence to support “sink SOZ” in the interictal data (Varotto et al., 2012). On the other 678 

hand, phase transfer entropy along with node metrics applied to a sample of 43 temporal lobe 679 

epilepsy patients showed higher out/in degree ratio in EZ than non-EZ areas consistently through 680 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 11, 2024. ; https://doi.org/10.1101/2024.08.10.24311802doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.10.24311802
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

interictal and ictal data supporting “source SOZ” hypothesis in the ictal period (Wang et al., 2017). A 681 

more recent study used both interictal and ictal data and supported the “sink SOZ” hypothesis in the 682 

interictal and “source SOZ” hypothesis in the ictal data using directed transfer function (DTF) 683 

measure (Jiang et al., 2022). Finally, using a novel source-sink index obtained from both interictal and 684 

ictal activities, both the interictal sinking and ictal sourcing behaviours were observed for SOZ 685 

(Gunnarsdottir et al., 2022). In our work, DTF supported “sink SOZ” in the interictal data but showed 686 

insufficient evidence (0.1 < BF < 10) for “source SOZ” in the ictal data (c.f., Figure 2A). As these 687 

previous studies only used one (Varotto et al., 2012) or a couple (Jiang et al., 2022; Narasimhan et al., 688 

2020; Vlachos et al., 2017) of connectivity measures, there is a possibility that they have missed 689 

some features of connectivity to comprehensively test both hypotheses. Importantly, the above-690 

mentioned studies, which tested the directionality of connectivity did not show opposite directions 691 

to our present work (i.e., opposite directionality would mean higher in strength in the interictal and 692 

higher out strength in the ictal period for non-SOZ than SOZ). In addition to the large set of 693 

connectivity measures and node metrics evaluated in the present work, which evaluates the 694 

connectivity more exhaustively, the larger sample size used here compared to those studies allows 695 

for a more powerful evaluation.  696 

 697 

Our results suggest that rather than being the most central/connected in the network, the SOZ 698 

seems to separate from the rest of the network. It is important to note that our measures of 699 

connectivity were extracted from temporal patterns of activity. Therefore, the separation of the SOZ 700 

from the rest of the network is more in the temporal sense than spatial and may reflect a more 701 

complex and distributed network structure for the SOZ than the non-SOZ. In other words, while 702 

spatial proximity of areas can influence the similarity of their activities, separation here means 703 

dissimilarity in activity patterns rather than spatial location. This underlines the importance of 704 

considering temporal as well spatial features when investigating epileptogenic networks (Bartolomei 705 

et al., 2017). The separation of the SOZ is consistent with previous studies which evaluated the 706 

temporal dynamics of network configurations. For example, it has been shown that, immediately 707 

after the seizure onset, the correlation in the whole-brain network drops significantly (Kerr et al., 708 

2011; Schindler et al., 2007) possibly because of SOZ becoming functionally disconnected from other 709 

areas (Warren et al., 2010), which becomes less pronounced later in the seizure (indeed, hyper-710 

correlation of EEG activity in the latter part of seizures has been postulated to be an emergent 711 

regulatory mechanism to promote seizure termination (Schindler et al., 2007)). This is also probably 712 

why we observed generally higher discrimination of SOZ from non-SOZ immediately after the seizure 713 

compared to later epochs (c.f., Supplementary Figure 4). It is important to note that, while our 714 
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results showed evidence for neural activity dominantly flowing towards the SOZ in the interictal 715 

periods, whether this neural activity is inhibitory remains unclear. This is because connectivity 716 

methods can not determine whether the transmission is excitatory or inhibitory (Doss et al., 2024; 717 

Jiang et al., 2022; Lagarde & Bartolomei, 2024). Low voltage fast activity, the hallmark of focal seizure 718 

onset across species, has been shown to be associated with increased firing in GABA-ergic inhibitory 719 

interneurons  (Gentiletti et al., 2022), triggered by accumulation of extra-cellular potassium. Studies 720 

to further evaluate links between electrophysiologic seizure evolution and associated ionic and 721 

neurotransmitter changes (e.g. using optogenetic and pharmacological approaches in animal models) 722 

have helped advance understanding of the dynamics of focal seizures (Wenzel et al., 2023), but more 723 

investigation is needed, and integrating directed connectivity methods into electrophysiologic 724 

models may be useful. Better understanding of the preictal to ictal transition may be of particular 725 

interest (Capitano et al., 2024) 726 

Following more recent broad-band data-driven approaches (Gunnarsdottir et al., 2022), we used 727 

broad-band rather than narrow-band signals in our analyses. This aligns with studies which evaluated 728 

the connectivity over the broad-band frequency ranges and did not find any differences in 729 

directionality of signals across frequency bands (Doss et al., 2024; Jiang et al., 2022). Also, studies 730 

which suggested an effect of frequency on connectivity have reported inconsistent results. For 731 

example, while some studies have shown significantly higher out/in degree for EZ than non-EZ in the 732 

gamma-band activity (Wang et al., 2017) and higher outward connectivity using single-pulse 733 

electrical stimulation (Johnson et al., 2023), other studies have reported a significant decrease in 734 

outgoing connectivity from the SOZ in the gamma band frequencies during seizures (Janca et al., 735 

2021). 736 

 737 

Previous studies have also shown that the information in the node metrics (i.e., connectomics), 738 

extracted from directed connectivity measures, could discriminate the SOZ from non-SOZ (Sethi et 739 

al., 2016; Van Mierlo et al., 2013; Varotto et al., 2012; Vlachos et al., 2017; Wilke et al., 2011). 740 

Specifically, Wilke et al., (2011) found that the betweenness centrality was correlated with the 741 

location of resected cortical regions in patients with seizure-free outcomes. Van Mierlo et al. (2013) 742 

found that the electrode contacts with the highest out degree always lay within the resected brain 743 

regions and that the patient-specific connectivity patterns were consistent over majority of seizures. 744 

Sethi et al., (2016) analysed a network constructed from functional MRI (fMRI) data in patients with 745 

polymicrogyria and refractory epilepsy, and found that the polymicrogyric nodes showed significantly 746 

increased clustering coefficients and characteristic path lengths compared with the normal 747 
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contralateral homologous cortical regions. Varotto et al., (2012) analysed the connectivity pattern in 748 

patients with type II focal cortical dysplasia and found that out density can discriminate SOZ from 749 

non-SOZ. Vlachos et al., (2017) evaluated effective inflow obtained from several connectivity 750 

measures including (DCOH, PDCOH and DTF) in the interictal period to show that EZ has a higher 751 

inflow than non-EZ. Higher Out degree obtained from DTF in the ictal period accurately determined 752 

the EZ nodes in (Yang et al., 2018). The present work is among the few which directly and 753 

quantitatively compared the information in several node metrics. Previously, Mao et al., 2016), who 754 

used PDC, have shown that in degree and betweenness centrality had more localisation information 755 

than in degree in the ictal period. In contrast, another study, which used nonlinear correlation, found 756 

more information in out degree than in degree (Courtens et al., 2016). Current study builds on these 757 

previous studies, combines a set of 6 node metrics extracted from 13 distinct connectivity measures 758 

to show how accurately they can discriminate SOZ from non-SOZ. We found evidence (BF > 10) for 759 

above-chance discrimination performance during both interictal and ictal windows, and the DI was 760 

among the most informative connectivity measures to localise the SOZ. We also found that 761 

eccentricity is even a more powerful biomarker for EZ localisation than in strength suggested in 762 

previous studies (Doss et al., 2024; Johnson et al., 2023). 763 

 764 

It is of note that most of the previous studies have only indicated the discriminability of SOZ from 765 

non-SOZ contacts, rather than testing the generalisability of effects across new unseen contacts. Our 766 

ML-based method learns the connectivity patterns from a set of training contacts and was able to 767 

discriminate the SOZ from non-SOZ in unseen contacts. The lower performance of our node metrics, 768 

compared to our recent multi-featural localisation method on the same dataset (Karimi-Rouzbahani 769 

& McGonigal, 2024), can be explained by a variety of reasons including higher number of time 770 

windows incorporated in the analysis. It is of note that, while the results were above-chance, we did 771 

not optimise our classification/localisation pipeline, instead we focused on showing the plausibility of 772 

the method for localisation. To make the algorithm ready for real-world application, further 773 

optimisations in the pipeline can be made from the machine learning literature such as incorporating 774 

univariate signal features (Karimi-Rouzbahani & McGonigal, 2024), and data augmentation. The 775 

optimisation of the proposed pipeline is the subject of future work. 776 

 777 

Among the 13 connectivity measures tested in this study only ANM supported both hypotheses. It 778 

may suggest that the patterns of activity and in turn connectivity significantly change from the 779 

interictal to the ictal period, which may lead to them being missed using any individual connectivity 780 
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measure. More specifically, while the connectivity between brain areas might be facilitated through 781 

the modulation of signal complexities in the interictal period (as captured by CDS and DI, Figure 2A), 782 

the connectivity between brain areas might be facilitated by frequency-domain modulations in the 783 

ictal period (as captured by SGC, Figure 2B). This makes sense as ictal activities have been shown to 784 

strongly modulate the signal power in several frequency bands (Grinenko et al., 2018). 785 

 786 

This work tested two critical hypotheses in epilepsy research and provided evidence that the SOZ 787 

seems to dominantly receive neural activities from non-SOZ potentially to be suppressed between 788 

seizures, whereas it dominantly transmits neural activities to non-SOZ during seizures. We showed 789 

that not all directed connectivity measures can detect those changes in connectivity direction from 790 

the interictal to ictal period, as probably the nature of connectivity changes with seizure onset. We 791 

also showed that, using a combination of node connectivity metrics extracted from directed 792 

connectivity measures, it is possible to localise the SOZ with above-chance performance. These 793 

results shed new light on the configuration of brain networks in epilepsy and introduces a potential 794 

method for localising the SOZ using explainable machine learning algorithms, as well as providing a 795 

rationalized set of measures for further investigation of seizure dynamics.  796 
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