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Abstract 51 

In mainland China, most infectious diseases occur once a year, except for 52 

scarlet fever, which has been steadily breaking out twice a year in recent years. 53 

Over the years, the recurrence of scarlet fever, a contagious disease 54 

characterized by a distinctive red rash, has been a focus of attention. However, 55 

the oscillatory mechanism of scarlet fever remains unclear. This study aimed to 56 

uncover how meteorological factors contribute to the recrudescence of scarlet 57 

fever in mainland China. The study used a longitudinal public dataset covering 58 

31 provinces in mainland China, containing 14 years of monthly scarlet fever 59 

infections, along with available local meteorological data. Power spectrum 60 

analysis was conducted on time series data, and correlation analyses were 61 

performed to assess the relationship between the oscillatory nature of 62 

epidemics and meteorological factors. We found that the scarlet fever 63 

epidemics generally occur twice a year in various provinces of China, and the 64 

timing of these outbreaks’ peaks progressively from southern to northern 65 

regions. Furthermore, we established an atlas that shows the relationship 66 

between scarlet fever oscillation and meteorological factors. Our findings 67 

indicated a significant correlation between the oscillation characteristics of 68 

scarlet fever in 50% of provinces and each natural meteorological factor. Our 69 

study presents a detailed description of the temporal and spatial changes in the 70 

oscillatory characteristics of scarlet fever for the first time and explores the 71 

oscillatory characteristics of natural meteorological conditions and their 72 

correlation with the number of scarlet fever infections. These findings could 73 

serve as a valuable guide for government prevention and control measures for 74 

the scarlet fever epidemic. 75 

  76 
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Introduction  77 

Scarlet fever, also known as scarlatina, is an acute respiratory infectious 78 

disease caused by group A hemolytic streptococcal bacteria [1]. The disease is 79 

spread through direct person-to-person transmission via airborne droplets, 80 

saliva, and wounds. Patients and carriers are the main sources of infection. 81 

Crowded places, such as schools and daycare centers can facilitate 82 

transmission. Scarlet fever can affect individuals of all age groups worldwide, 83 

although it is most prevalent among children aged 5 to 15 years. Children under 84 

the age of 3 are less likely to contract this condition [2–5].  85 

 86 

An important feature of infectious diseases is their recurrent nature [6–8], which 87 

shows significant periodic oscillations over time [9–14]. In mainland China, most 88 

infectious diseases have annual outbreaks, with specific diseases having their 89 

own distinct outbreaks  [9,10]. Scarlet fever, in particular, displays distinct 90 

oscillatory or recurring outbreak characteristics. Unlike other infectious 91 

diseases, such as influenza, which typically break out once a year, scarlet fever 92 

breaks out twice a year. The underlying mechanism driving its oscillatory 93 

infection remains unclear. The repeated outbreaks of scarlet fever have 94 

become a public health concern [15]. There have been some preliminary 95 

studies on the temporal dynamics of scarlet fever in various countries and 96 

regions around the world, including the United Kingdom [16–19], the 97 

Netherlands [20], South Korea [21], and Chinese Hong Kong[22–24]. In 98 

mainland China [25,26], previous studies have also delved into more precise 99 

geographical locations at a provincial-level [27–29], or city-level [4,28,30–33]. 100 

However, a systematic examination of scarlet fever’s oscillatory characteristics 101 

is still lacking. 102 

 103 

The occurrence of scarlet fever's epidemic form is determined by multiple 104 

factors, including environmental conditions, the nature and prevalence of the 105 
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microorganism, distribution factors, and host population resistance. Among the 106 

environmental factors, climate and seasons are particularly significant. Notably, 107 

scarlet fever is observed in both tropical and temperate regions, and its 108 

incidence roughly correlates with the geographical location of a given 109 

country[30].  This correlation can be attributed to meteorological factors. Natural 110 

meteorological factors play an important role, affecting the transmission of 111 

infectious diseases[7,34,35]. Specifically, temperature (°C), precipitation (mm), 112 

humidity (%), and sunshine hours (h) are commonly studied meteorological 113 

factors that have been associated with many diseases, such as epidemic 114 

hemorrhagic fever [36–41], malaria [34,42–54], rabies [55], plague [56,57], and 115 

cholera [12,58]. These meteorological factors are frequently available in public 116 

data, allowing for the examination of their relationship with diseases. Some 117 

initial research has investigated the relationship between scarlet fever and 118 

meteorological factors in Chinese Mainland[4,28,59,60], even delving into 119 

possible connections between scarlet fever and pollution[61,62]. For example, 120 

a study focusing on the Beijing region of China revealed that the incidence of 121 

scarlet fever peaks between May and June (spring to early summer), 122 

accompanied by minor surges in incidence from November to early January 123 

(mid-autumn to mid-winter) [63]. Although these previous studies have explored 124 

the relationship between meteorological factors, environmental factors, and 125 

scarlet fever, the contribution of these natural factors to the oscillation of scarlet 126 

fever is currently unclear. China has notably diverse climate conditions, with a 127 

distinctive feature being the stark variation between regions. The northern part 128 

of the country has a “subarctic” climate, characterized by colder temperatures, 129 

while the southern regions are predominantly influenced by tropical weather 130 

patterns. This stark contrast makes China an excellent region for investigating 131 

the impact of meteorological factors on scarlet fever outbreaks.  132 

 133 

If meteorological factors predominantly influence scarlet fever, it is reasonable 134 

to propose a hypothesis: the characteristics of infectious disease oscillations 135 
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will exhibit significant shifts with changes in regional location. This shift is likely 136 

to be related to latitude or longitude, and the geographical location of a region 137 

on Earth is closely related to its corresponding climatic conditions, thereby 138 

affecting the number of infections of related infectious diseases, such as scarlet 139 

fever. 140 

 141 

Therefore, in this study, we used public data from the China Public Health 142 

Science Data Center on scarlet fever in 31 provinces of China and the 143 

meteorological data of 31 provinces published in the China Statistical Yearbook 144 

spanning over 14 years to provide a detailed account of the temporal and 145 

spatial changes of the periodic characteristics of scarlet fever infections in 146 

mainland China, and to explore the oscillatory characteristics of natural 147 

meteorological conditions and their relationship with the number of people 148 

infected with scarlet fever. A research paradigm for analyzing oscillations will 149 

also be established to explore the relationship between the characteristics of 150 

scarlet fever oscillations and natural meteorological factors. 151 

 152 

  153 
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Methods 154 

Data and Sources 155 

Time series data on all available monthly reported and confirmed cases of 156 

scarlet fever in 31 administrative regions (23 provinces, 5 autonomous regions, 157 

4 municipalities, and 2 special administrative regions, excluding Taiwan, Hong 158 

Kong, and Macau due to unavailable data) of mainland China from 2005 to 2018 159 

were obtained from the Data Center of the China Public Health Science 160 

(Chinese Center for Disease Control and Prevention). We did not include recent 161 

years’ data due to the impact of COVID-19 and the resulting lockdowns in China, 162 

which have significantly affected the natural property of the temporal dynamics 163 

of scarlet fever. 164 

 165 

Monthly reported data of meteorological elements, including temperature, 166 

precipitation, humidity and sunshine hours, were obtained for 31 provinces in 167 

mainland China from January 2005 to December 2018 were obtained from the 168 

China Statistical Yearbook 2006–2019. The meteorological data included in this 169 

study are continuous values that vary with time, which directly reflect the actual 170 

natural conditions each month. This dataset is publicly available worldwide and 171 

is reported annually. 172 

 173 

Ethical Considerations 174 

This study used public data from the China Public Health Science Data Center 175 

and the China Statistical Yearbook. Our study did not involve any interventions 176 

with human participants. This study was approved by the Ethics Committee of 177 

Beijing Sport University (2022142H), China. 178 

 179 

Power Spectrum Analysis 180 

Data processing was performed using custom scripts in MATLAB 181 

(www.mathworks.com). Spectrum analysis was utilized to quantify fluctuations 182 
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and the recurrence of epidemics for scarlet fever (Fig 1C) and the natural 183 

factors (Fig 2). Similar methods have been applied in various biomedical fields, 184 

such as life sciences [64–66], neuropsychological disorders [67–69], infectious 185 

diseases [11,70–73], etc. The power spectral density (PSD) for each infectious 186 

disease was computed using the multi-taper method with the Chronux 187 

toolbox[74], an open-source, data analysis toolbox (Chronux) available at 188 

http://chronux.org.  189 

 190 

Tuning curves 191 

The tuning curve of the monthly infected cases illustrates an essential profile of 192 

the outbreak of scarlet fever in mainland China (Fig 1B), which gives a direct 193 

monthly snapshot of the situation based on historical data. We assumed that all 194 

infectious diseases included in this study follow a similar annual trend each year 195 

considered in this study, as previously researched [9,11]. Thus, we took the 196 

monthly average number of infected cases and computed them into a tuning 197 

curve (Eq 1). Each infectious disease in this study has a tuning curve, revealing 198 

a clear oscillatory pattern within a year. This method is also employed to 199 

measure the tuning curve of meteorological elements (Fig 2).  200 

𝑇𝑢𝑛𝑖𝑛𝑔 𝑐𝑢𝑟𝑣𝑒 (𝑀𝑜𝑛𝑡ℎ) =
𝑠𝑢𝑚(𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑎𝑠𝑒𝑠(𝑀𝑜𝑛𝑡ℎ))

𝑁
   (1) 201 

, where N is the number of the year. 202 

 203 

Preferred month and selectivity of the epidemic outbreak 204 

Two disease indices were defined: preferred month and infection selectivity (Fig 205 

1D-G), which are important indicators that show the infectious property of the 206 

epidemics caused by the disease in a year. The preferred month index 207 

represents the month with the highest number of infection cases in a year. The 208 

selectivity index for infection is defined as 1 minus the ratio of the minimum and 209 

the maximum number of infected cases in a year. A higher selectivity index 210 

(closer to 1) indicates that outbreaks are concentrated within specific months, 211 
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while a lower index (closer to 0) implies a more year-round occurrence. 212 

 213 

Data Filtering  214 

To preserve the most obvious periodic information, the original continuous data 215 

were high-pass filtered 2.5 times per year and low-pass at 1.5 times per year 216 

(Fig 4A). Both the high-pass and low-pass filters were zero-phased FIR filters 217 

(third-order Butterworth filter), which filter the data in both forward and 218 

backward directions to nullify any phase delays introduced by each filter. 219 

 220 

Correlation Analysis 221 

The Pearson correlation was used to measure the relationship between 222 

properties of the tuning curve and the locations of each province (Fig 1H). 223 

Additionally, Pearson correlations were used to evaluate the relationship 224 

between infected cases (Fig 3; also for filtered data in Fig 4) and meteorological 225 

elements, respectively.  226 

 227 

Statistical Methods 228 

Multiple t-tests with Bonferroni correction were used to compare the oscillation 229 

characteristics before and after 2011 (Fig 5).  230 

 231 

 232 

Results 233 

Spaciotemporal patterns of scarlet fever incidences in mainland China 234 

This study examined monthly data of confirmed cases of scarlet fever in31 235 

provinces in China spanning from January 2005 to December 2018 (Fig 1). 236 

Figure 1A shows the time series data of scarlet fever in 10 representative 237 

provinces, with the topographic map displayed above. Evidently, each province 238 

displays distinct oscillatory patterns in its scarlet fever outbreaks as depicted by 239 

their tuning curves (Fig 1B) and power spectrum (Fig 1C). These oscillations 240 
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manifest with different peaks, occurring once, twice, or even three times a year. 241 

Notably, the power spectrum prominently highlights the occurrence of a 242 

biannual peak as the most significant pattern.  243 

 244 

Through an in-depth analysis of oscillation characteristics, we observed a 245 

decreasing trend in the selectivity of scarlet fever from northwest to southeast 246 

(Fig 1D). Scarlet fever has biannual outbreaks, with peaks occurring during both 247 

the warm (April to September) and cold seasons (October to March). Then, the 248 

dominance level was calculated as the ratio of the number of cases in the warm 249 

peak and cold peak. The results indicate that in the southwest region, more 250 

infections occur during the warm season, while in the northeast region, more 251 

infections occur during the cold season (Fig 1E). Further, we compute the 252 

preferred month during both the warm and cold seasons (Fig 1FG). Intriguingly, 253 

our analysis revealed that the timing of scarlet fever’s peak in the southeast 254 

consistently precedes that in the northwest region. Furthermore, to verify the 255 

statistical significance of the shift, we conducted Pearson correlations between 256 

the properties (Fig 1D-F) and the provinces’ locations (latitudes and longitudes, 257 

Fig 1H). The selectivity is positively correlated with the latitude but not longitude, 258 

while the dominance level does not correlate with the locations. The preferred 259 

month in warm seasons is positively correlated with the latitude but not with the 260 

longitude, but the preferred month in cold seasons is positively correlated with 261 

both latitude and longitude.  262 

 263 

Periodic phenomena of meteorological elements in 31 provinces in China 264 

Through the display of the oscillation characteristics, especially the temporal 265 

characteristics of scarlet fever, our findings reveal a gradual change from south 266 

to north or vice versa among various provincial capitals in China. This indicates 267 

that natural meteorological factors can potentially influence the incidence of 268 

scarlet fever, due to the substantial climate variations between northern and 269 

southern China. Therefore, we further explored the oscillatory characteristics of 270 
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various climate factors (Fig 2) and then conducted a power spectrum analysis 271 

of the time series data encompassing temperature, precipitation, humidity, and 272 

sunshine hours across 31 provinces in China (Fig 2A-D). Notably, all four 273 

meteorological elements in most provinces in China exhibit evident oscillatory 274 

patterns over time. Temperature and precipitation follow a yearly cyclical pattern, 275 

while humidity and sunshine hours may exhibit either strong or weak biannual 276 

periodicity. These outcomes suggest a potential correlation between epidemics 277 

in certain provinces and these meteorological elements.  278 

 279 

Relationship between the scarlet fever infection and meteorological 280 

elements in China 281 

From the observation of the average infected cases of the scarlet fever 282 

epidemic and the average meteorological elements, scarlet fever infections 283 

may be influenced by several natural factors. Therefore, we then investigated 284 

the relationship between the scarlet fever outbreaks and meteorological 285 

elements in each province in China based on correlation analyses.  286 

 287 

Several scatter plots are shown in Figure 3A. For different provinces, we found 288 

that there are different associations between the number of people infected with 289 

scarlet fever and natural factors, indicating that distinct regions may require 290 

tailored strategies to address the same disease. This diversity is further 291 

illustrated in Figure 3B. In China, 27% of provinces exhibit a correlation 292 

between scarlet fever outbreaks and temperature (with 20% positive correlation 293 

and 7% negative correlation), while 23% of provinces exhibit a correlation 294 

between scarlet fever outbreaks and precipitation (with 13% positive correlation 295 

and 10% negative correlation). Furthermore, 45% of provinces show a 296 

correlation between scarlet fever outbreaks and humidity (with 19% positive 297 

correlation and 26% negative correlation), and 42% of provinces display a 298 

correlation between scarlet fever outbreaks and sunshine hours (with 32% 299 

positive correlation and 10% negative correlation).   300 
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 301 

Specifically, the topographic map (Fig 3C) highlights the regional distribution. 302 

Notably, provinces with a significant positive correlation between scarlet fever 303 

epidemics and temperature are clustered in the southwest region, while those 304 

with a significant negative correlation with temperature are found in the 305 

southern region. The influence of precipitation appears to be relatively minimal, 306 

showing the least impact, as indicated by the provinces involved. Positive 307 

correlations with precipitation are mainly found in the central and southern 308 

regions, while sporadic provinces with negative correlation in the southern and 309 

northern regions. Provinces that are positively correlated with humidity are 310 

mainly situated in the southern regions, while those that are negatively 311 

correlated with humidity are mainly in north and northeast areas of China. 312 

Furthermore, the provinces displaying a positive correlation with daylight hours 313 

are primarily found in the southwest and north regions, while those with a 314 

negative correlation are mainly found in the northwest and central southern 315 

regions.  316 

 317 

In sum, scarlet fever outbreaks are affected by various meteorological types 318 

across most provinces in China, and this impact cannot be attributed to a single 319 

factor, but rather a combination of factors (Fig 3D). Further analysis revealed 320 

that only 10 provinces were affected by a single meteorological factor, while 321 

more provinces were affected by multiple factors concurrently. 322 

 323 

Relationship between the periodic characteristics of scarlet fever 324 

infection and meteorological elements in mainland China 325 

In the analysis above, we found that scarlet fever epidemics are closely related 326 

to natural meteorological factors. However, simply analyzing the correlation 327 

between the number of infected cases and meteorological indicators does not 328 

fully explain the role of periodic oscillations in this context. To tackle this problem, 329 

we first filter the original continuous time series data of scarlet fever infections, 330 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 10, 2024. ; https://doi.org/10.1101/2024.08.09.24311775doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.09.24311775
http://creativecommons.org/licenses/by-nc-nd/4.0/


retaining the data with a biannual frequency. Next, we standardize the filtered 331 

data on a yearly basis by calculating the z-score, considering that the amplitude 332 

of outbreaks varies from year to year. This process ensured comparability even 333 

when dealing with data from different scales. Then trend information was 334 

removed, retaining only the periodic information of the original data retained 335 

(Fig. 4A first two rows). We then analyzed the correlation between the z-score 336 

value and various meteorological indicators. Similarly, the results indicate 337 

diverse correlations between the z-score and meteorological factors across 338 

different provinces (Fig 4B).  339 

 340 

When considering the entire country, more provinces display significant 341 

outcomes, especially the influence of temperature, which is more pronounced 342 

(Fig 4C). Specifically, 42% of provinces exhibit a correlation between scarlet 343 

fever oscillations and temperature (with 23% showing positive correlation and 344 

19% showing negative correlation), while another 42% of provinces are 345 

observed to show a correlation between scarlet fever oscillations and 346 

precipitation (with 13% positive correlation and 29% negative correlation). 347 

Additionally, 48% of provinces reveal a correlation between oscillations and 348 

humidity (with 3% positive correlation and 45% negative correlation), and 52% 349 

of provinces display a correlation between scarlet fever oscillations and 350 

sunshine hours (with 39% positive correlation and 13% negative correlation).  351 

 352 

Specifically, regarding regional distribution (Fig 4D), provinces in the southwest 353 

region show significant positive correlations between scarlet fever oscillations 354 

and temperature, while those in the central and southern regions exhibit 355 

significant negative correlations with temperature. The provinces that are 356 

positively correlated with precipitation are mainly located in the central and 357 

southern regions, while the northern region mainly shows a negative correlation 358 

to the precipitation. Provinces that are positively correlated with humidity are 359 

mainly observed in Qinghai in the western region, while those that are 360 
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significantly negatively correlated with temperature are concentrated in 361 

northern China. Finally, provinces that are positively correlated with sunshine 362 

hours are mainly located in the central region, while those that are significantly 363 

negatively correlated with temperature are concentrated in the northeastern 364 

and southern regions. In sum, after removing the trend information and 365 

retaining only the periodic information from the original data, some significant 366 

correlations became insignificant while some others became insignificant. 367 

However, this result does not conflict with the results of Figure 3 or flip polarity. 368 

 369 

Periodic characteristics of scarlet fever infection remains consistent 370 

before and after 2011 371 

In 2011, the incidence of scarlet fever in China experienced a significant 372 

increase, marking a turning point. This phenomenon has been reported in 373 

previous studies and is thought to be related to changes in the natural 374 

characteristics of the virus (ref). Our results also demonstrate obvious 375 

phenomena (Fig 4A, Fig 5A, B), but the changes in oscillation characteristics 376 

have not been studied. Using the normalized method shown in Figure 4A, it is 377 

clear that the oscillatory phenomenon is comparable before and after 2011. This 378 

is also evident in the tuning curves (Fig 5C). The two peaking months of 379 

epidemic in warm and cold seasons respectively also did not show a significant 380 

difference (Fig 5D). This indicates that although the number of people infected 381 

with scarlet fever increased in 2011, its natural oscillation characteristics 382 

remained unchanged. 383 

 384 

 385 

Discussion 386 

Principal Findings 387 

This study presents the first endeavor to meticulously examine the temporal 388 

and spatial changes in the oscillation of scarlet fever outbreaks. We explored 389 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 10, 2024. ; https://doi.org/10.1101/2024.08.09.24311775doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.09.24311775
http://creativecommons.org/licenses/by-nc-nd/4.0/


the oscillatory characteristics of natural meteorological conditions and their 390 

correlation with scarlet fever infections. Additionally, we established a research 391 

framework for analyzing oscillations to explore the relationship between the 392 

oscillatory characteristics of scarlet fever and natural meteorological factors. 393 

Our study not only advances our understanding of these oscillatory patterns but 394 

also holds practical implications for effective public health management and 395 

prevention measures, providing a valuable resource for local authorities. 396 

 397 

First and foremost, the temporal patterns observed present a compelling spatial 398 

progression of scarlet fever incidences. Specifically, varied time lags are 399 

observed across different provinces, with the peak of scarlet fever starting from 400 

the south and then spreading northward (Fig 1). This phenomenon has the 401 

potential to serve as a predictive indicator, assisting northern provinces in 402 

preemptively addressing and managing the emerging epidemic. We found a 403 

significant shift in the oscillation characteristics of scarlet fever from north to 404 

south in China (Fig 1H), which validates the hypothesis we proposed in the 405 

introduction. This also confirms that meteorological factors have a tremendous 406 

impact on the epidemic of scarlet fever in China. This research sample can be 407 

expanded to other countries worldwide. 408 

 409 

Moreover, our study shows a correlation between local scarlet fever oscillation 410 

characteristics and meteorological factors in different provinces of China (Fig 3 411 

& 4). Notably, factors such as humidity (45%) and sunshine hours (42%) have 412 

a higher chance of correlation with scarlet fever outbreaks, which that aligns 413 

with previous research. After removing the trend information and retaining  only 414 

the periodic information from the original data, more provinces display 415 

significant outcomes for all four factors, especially the influence of temperature, 416 

which is more salient (27% to 42%).  417 

 418 

Above all, our research reveals the heterogeneous nature of the relationship 419 
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between different provinces and meteorological influences. This revelation 420 

highlights the imperative for a nuanced and individualized approach to epidemic 421 

prevention. Instead of adopting a uniform strategy across all regions, our study 422 

emphasizes the critical importance of discerning and accounting for the unique 423 

factors that characterize each region. By doing so, authorities can ensure that 424 

their preventive measures are not only effective but also tailored to the specific 425 

exigencies of the region in question. In sum, our study extends on current 426 

knowledge regarding scarlet fever dynamics by unraveling the intricate 427 

relationship between temporal and spatial factors and meteorological 428 

conditions. By aligning public health measures with specific meteorological 429 

conditions, local governments can more effectively customize their 430 

interventions to each unique context, or during the colder months when schools 431 

resume.  432 

 433 

Comparison With Prior Work 434 

To our knowledge, our study is the first to illustrate the spatiotemporal dynamics 435 

of scarlet fever from an oscillatory view. Previous studies have provided 436 

valuable insights into the characteristics and spatiotemporal distribution of 437 

scarlet fever and have even included meteorological variables [75]. These 438 

studies have, however, primarily focused on fundamental descriptive analysis 439 

[25] rather than providing a detailed characterization and explanation of periodic 440 

features. Some earlier studies attempted to directly characterize the oscillation 441 

of scarlet fever [9,11], but these often utilized national-level data, lacking the 442 

granularity of provincial refinement. For example, Mahara et al., (2016), found 443 

significant correlations between temperature and relative humidity in Beijing 444 

[30].  445 

 446 

Furthermore, it is worth noting that the precision of the data employed primarily 447 

encompasses annual occurrences[61], largely overlooking the potential 448 

influence stemming from meteorological factors that can vary significantly 449 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 10, 2024. ; https://doi.org/10.1101/2024.08.09.24311775doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.09.24311775
http://creativecommons.org/licenses/by-nc-nd/4.0/


within a single year. Thus, there was little discussion regarding the contribution 450 

of natural meteorological factors on the oscillation characteristics of scarlet 451 

fever over multiple geographical areas. Previous research has generally 452 

focused on infectious diseases in a vaguer and less targeted way in terms of 453 

geography and not on oscillations. Our findings underscore the importance of 454 

considering meteorological factors in the context of disease oscillations, 455 

shedding light on potential links between climate variables and scarlet fever 456 

dynamics. The study presents a data analysis paradigm for studying the 457 

oscillation of infectious diseases (Fig 4). This can be used by future researchers 458 

to further explore various in-depth mechanisms of infectious disease 459 

oscillations. 460 

 461 

Limitations 462 

Our study has some limitations that should be addressed in future research. 463 

Firstly, the availability of more detailed spatial-scale data is currently a 464 

challenge. While our analysis covered all 31 provinces in China, the lack of 465 

finer-scale data prevents us from conducting a more in-depth investigation of 466 

scarlet fever outbreaks within individual cities. This limitation underscores the 467 

need for improved data collection and sharing mechanisms. Additionally, the 468 

absence of consideration for population migration between provinces within 469 

China is another limitation. Despite the scarlet fever population is mainly in 470 

children, we assume that their migration is much weaker than that of adults. 471 

However, future research should still take this factor into account. 472 

 473 

Conclusion 474 

In conclusion, our study represents a significant advancement in the 475 

understanding of scarlet fever dynamics, particularly in terms of its 476 

spatiotemporal oscillations. We have highlighted the importance of considering 477 

meteorological factors in disease oscillation studies and introduced a 478 

comprehensive data analysis paradigm that can be applied to investigate 479 
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similar phenomena in other infectious diseases. This work provides a 480 

foundation for future investigations to delve deeper into the intricate 481 

mechanisms steering disease oscillations. It can ultimately contribute to more 482 

effective public health interventions. 483 

 484 

 485 

 486 

 487 
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Figures and the legends 748 

 749 

Figure 1 Periodic phenomena of scarlet fever epidemics with tuning curve, 750 

power spectrum and topographic map of several indices 751 

A. Monthly incidence of scarlet fever infections in 10 representative provinces, 752 

accompanied with topographic maps depicting infected case distribution at 753 

specific intervals. 754 

B. Tuning curves of scarlet fever epidemics in example provinces. 755 

C. Spectrogram of scarlet fever epidemics from January 2005 to December 756 

2018 in the aforementioned example provinces. 757 

D. Geospatial distribution of the selectivity of scarlet fever epidemics across 758 

provinces. 759 

E. Geospatial distribution of the dominance level of scarlet fever epidemics for 760 

each province. 761 

F. Geospatial distribution of the peaking month of scarlet fever epidemics in 762 

warm seasons for each province. 763 

G. Geospatial distribution of the peaking month of scarlet fever epidemics in 764 

cold seasons for each province.  765 
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 766 

Figure 2 Oscillatory patterns (power spectrum and tuning curves) of 767 

various meteorological elements  768 

Panels A–D show the monthly time series of meteorological elements 769 

(temperature, precipitation, humidity, and sunshine hours) and their 770 

spectrogram from January 2005 to December 2018 in China. The geospatial 771 

distribution of the infected cases in 31 provinces was shown in the topographic 772 

map above each panel. The tuning curves and power spectrum of time series 773 

data are shown on the right side in example provinces. 774 

 775 
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 776 

Figure 3 Relationship between infected cases of scarlet fever epidemic 777 

and meteorological elements 778 

A. Scatter plots illustrating the number of cases of scarlet fever in some 779 

example provinces and temperature, precipitation, humidity, and sunshine 780 

hours, respectively (Heilongjiang: northeast region, Guangdong: south region, 781 

Shanxi, central region). 782 

B. Pie chart shows the proportion of different types of correlations between 783 

scarlet fever cases and four meteorological elements (Orange for positive 784 

correlation, blue for negative correlation, green for no significant correlation). 785 

C. Geospatial distribution of scarlet fever epidemics in provinces with significant 786 

correlations to specific meteorological elements. 787 

D. Count of provinces related to different significant numbers (from 1 to 4) of 788 

meteorological factors. 789 

  790 
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 791 

Figure 4 Relationship between oscillation characteristics of scarlet fever 792 

epidemic and meteorological elements 793 

A. The monthly incidences of scarlet fever, associated filtered time series data 794 

and four meteorological elements (shown in different colors) in Shandong (as 795 

an illustrative example).  796 

B. Scatter plots illustrate the number of cases of scarlet fever in some example 797 

provinces and temperature, precipitation, humidity, and sunshine hours, 798 

respectively (Central region: Shanxi, Henan, Hubei; southwest region: Qinghai, 799 

Guizhou; North region: inner Mongolia, Gansu; Southeast region: Fujian).  800 

C. Pie chart shows the proportion of different types of correlations between 801 
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scarlet fever oscillations and four meteorological elements (Orange for positive 802 

correlation, blue for negative correlation, and green for no significant 803 

correlation). 804 

D. Geospatial distribution of scarlet fever oscillations in provinces that have 805 

significant correlations with specific meteorological elements. 806 

 807 

 808 

 809 

Figure 5 Oscillation characteristics before and after 2011 810 

A. The monthly incidences of scarlet fever, associated filtered time series data 811 

in Gansu (as an illustrative example).  812 

B. The monthly incidences of scarlet fever, associated filtered time series data 813 
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in multiple provinces (n=25).  814 

C. The blue dots indicate the number of infected cases every month in year 815 

from 2005-2011, while orange dots indicate that in year from 2012-2018. 816 

D. The peaking month of scarlet fever epidemics in warm and cold seasons for 817 

each province in year from 2005-2011, while orange dots indicate that in year 818 

from 2012-2018. 819 

 820 

  821 
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Appendix-tables 822 

Table 1 Descriptive statistics of periodic phenomena of scarlet fever 823 

epidemics. 824 

Note. In China, Spring = March, April & May. Summer = June, July & August. 825 

Autumn = September, October & November. Winter = December, January & 826 

February. 827 

828 

City Selectivity 
Dominance 
level 

Peaking month 
(warm season) 

Peaking month 
(cold season) 

Beijing 0.86 0.29 May Dec 
Tianjin 0.89 0.13 May Dec 
Hebei 0.82 0.09 Jun Dec 
Shanxi 0.85 0.49 Jun Dec 
Inner Mongolia  0.88 -0.10 Jun Nov 
Liaoning 0.78 -0.05 Jun Dec 
Jilin 0.84 -0.06 Jun Nov 
Heilongjiang 0.85 0.01 Jun Dec 
Shanghai 0.90 0.10 May Dec 
Jiangsu 0.84 0.25 May Dec 
Zhejiang 0.80 0.39 May Dec 
Anhui 0.81 0.23 May Dec 
Fujian 0.71 0.28 May Dec 
Jiangxi 0.69 -0.24 May Dec 
Shandong 0.80 -0.07 May Dec 
Henan 0.74 -0.18 May Dec 
Hubei 0.78 -0.11 May Dec 
Hunan 0.76 0.18 May Dec 
Guangdong 0.78 0.02 Apr Jan 
Guangxi 0.77 -0.30 May Dec 
Hainan 0.84 0.49 Apr Jan 
Chongqing 0.83 0.70 Jun Nov 
Sichuan 0.76 0.52 May Dec 
Guizhou 0.70 0.32 May Dec 
Yunnan 0.81 0.64 May Dec 
Xizang 0.91 0.26 Apr Oct 
Shaanxi 0.80 0.15 May Dec 
Gansu 0.89 0.36 Jun Nov 
Qinghai 0.89 0.42 Jun Dec 
Ningxia 0.91 0.68 Jun Dec 
Xinjiang 0.86 -0.29 Jun Nov 
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Table 2 Relationship between infected cases of scarlet fever epidemic and 829 

meteorological elements. 830 

 Tempearture Percipitation Humidity 
Sunshine 
hours 

 r p r p r p r p 

Beijing 0.05 0.51 0.08 0.32 0.24 0.00 0.25 0.00 

Tianjin -0.02 0.77 0.17 0.04 0.32 0.00 0.23 0.00 

Hebei 0.09 0.25 0.11 0.16 0.12 0.11 0.11 0.17 

Shanxi 0.16 0.04 0.12 0.14 0.24 0.00 0.37 0.00 

Inner 
Mongolia 

0.01 0.85 0.05 0.54 0.02 0.75 -0.05 0.52 

Liaoning -0.04 0.61 0.13 0.08 0.20 0.01 -0.02 0.77 

Jilin 0.01 0.89 0.09 0.23 0.12 0.11 -0.03 0.66 

Heilongjiang 0.06 0.48 0.02 0.81 0.07 0.39 -0.08 0.32 

Shanghai -0.15 0.05 0.00 0.98 0.06 0.47 -0.06 0.43 

Jiangsu -0.07 0.36 0.02 0.82 0.12 0.11 0.04 0.60 

Zhejiang -0.03 0.69 0.20 0.01 0.08 0.28 -0.10 0.18 

Anhui -0.06 0.48 0.00 1.00 0.05 0.52 -0.04 0.63 

Fujian -0.10 0.21 0.02 0.83 0.21 0.01 -0.13 0.10 

Jiangxi -0.06 0.41 0.01 0.89 0.04 0.57 -0.04 0.63 

Shandong -0.08 0.30 0.15 0.06 0.17 0.02 0.22 0.00 

Henan -0.12 0.12 0.20 0.01 0.27 0.00 0.16 0.04 

Hubei -0.11 0.14 0.03 0.66 0.30 0.00 -0.19 0.02 

Hunan -0.03 0.74 0.17 0.03 0.27 0.00 -0.09 0.23 

Guangdong -0.19 0.01 0.02 0.84 0.28 0.00 -0.09 0.27 

Guangxi -0.29 0.00 0.15 0.05 0.02 0.80 -0.17 0.03 

Hainan -0.11 0.52 0.09 0.62 0.08 0.65 0.03 0.87 

Chongqing 0.15 0.05 0.21 0.01 0.09 0.24 0.17 0.03 

Sichuan 0.17 0.03 0.02 0.79 0.19 0.01 0.24 0.00 

Guizhou 0.11 0.14 0.28 0.00 0.23 0.00 -0.07 0.38 

Yunnan 0.25 0.00 0.15 0.07 0.00 0.95 0.18 0.02 

Xizang 0.13 0.10 0.00 0.99 0.12 0.14 0.08 0.29 

Shaanxi 0.04 0.58 0.09 0.27 0.24 0.00 0.14 0.08 

Gansu 0.20 0.01 0.11 0.16 0.06 0.44 0.22 0.00 

Qinghai 0.25 0.00 0.12 0.14 0.16 0.04 0.06 0.45 

Ningxia 0.33 0.12 0.02 0.92 0.24 0.25 0.55 0.01 

Xinjiang -0.06 0.47 0.16 0.06 0.15 0.07 -0.20 0.02 

Note. r = correlation coefficient (Pearson), p = significance level. 831 
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 833 

Table 3 Relationship between oscillation characteristics of scarlet fever 834 

epidemic and meteorological elements. 835 

 Tempearture 
Percipitatio
n 

Humidity 
Sunshine 
hours 

 r p r p r p r p 

Beijing 0.04 0.62 
-
0.13 

0.0
8 

-0.29 0.00 0.28 0.00 

Tianjin -0.02 0.78 
-
0.19 

0.0
1 

-0.40 0.00 0.29 0.00 

Hebei 0.12 0.12 
-
0.16 

0.0
4 

-0.19 0.01 0.30 0.00 

Shanxi 0.18 0.02 
-
0.15 

0.0
5 

-0.39 0.00 0.39 0.00 

Inner Mongolia 0.05 0.52 
-
0.06 

0.4
7 

-0.05 0.48 -0.03 0.72 

Liaoning -0.05 0.52 
-
0.09 

0.2
6 

-0.15 0.05 -0.05 0.50 

Jilin 0.03 0.67 
-
0.04 

0.6
4 

-0.11 0.16 -0.16 0.04 

Heilongjiang 0.07 0.38 0.10 
0.2
3 

-0.08 0.31 -0.11 0.16 

Shanghai -0.24 0.00 
-
0.17 

0.0
3 

-0.21 0.01 -0.04 0.60 

Jiangsu -0.10 0.19 
-
0.17 

0.0
3 

-0.43 0.00 0.13 0.11 

Zhejiang -0.01 0.88 0.08 
0.2
8 

-0.13 0.08 0.00 0.99 

Anhui -0.12 0.12 
-
0.16 

0.0
4 

-0.34 0.00 0.20 0.01 

Fujian -0.37 0.00 
-
0.05 

0.5
2 

0.08 0.31 -0.28 0.00 

Jiangxi -0.19 0.12 
-
0.13 

0.2
6 

-0.26 0.02 -0.01 0.94 

Shandong -0.13 0.10 
-
0.25 

0.0
0 

-0.38 0.00 0.34 0.00 

Henan -0.26 0.00 
-
0.33 

0.0
0 

-0.47 0.00 0.19 0.01 

Hubei -0.15 0.05 0.04 
0.6
3 

-0.11 0.15 -0.11 0.14 

Hunan -0.05 0.49 0.21 
0.0
1 

-0.07 0.34 -0.06 0.45 

Guangdong -0.40 0.00 
-
0.06 

0.4
4 

-0.08 0.32 -0.28 0.00 

Guangxi -0.46 0.00 
-
0.28 

0.0
0 

-0.17 0.02 -0.30 0.00 

Hainan -0.23 0.12 
-
0.13 

0.3
6 

-0.02 0.87 -0.14 0.34 

Chongqing 0.17 0.03 0.24 
0.0
0 

0.02 0.81 0.12 0.12 

Sichuan 0.19 0.01 - 0.8 -0.32 0.00 0.20 0.01 
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0.02 1 

Guizhou 0.14 0.06 0.31 
0.0
0 

0.03 0.74 -0.09 0.25 

Yunnan 0.33 0.00 0.03 
0.6
9 

-0.14 0.08 0.15 0.06 

Xizang 0.18 0.02 0.06 
0.4
7 

0.14 0.07 0.17 0.03 

Shaanxi 0.14 0.07 
-
0.09 

0.2
8 

-0.37 0.00 0.32 0.00 

Gansu 0.25 0.00 0.11 
0.1
6 

0.00 0.99 0.25 0.00 

Qinghai 0.35 0.00 0.23 
0.0
0 

0.22 0.01 0.14 0.09 

Ningxia 0.32 0.12 0.00 
0.9
9 

-0.24 0.27 0.54 0.01 

Xinjiang -0.05 0.58 0.15 
0.0
7 

0.10 0.24 -0.13 0.11 

Note. r = correlation coefficient (Pearson), p = significance level. 836 
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