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Leveraging Pretrained Models for Multimodal Medical Image Interpretation:                           

An Exhaustive Experimental Analysis 

 

 

Abstract 

Artificial intelligence (AI) in radiology, particularly pretrained machine learning models, holds promise for 

overcoming image interpretation complexities and improving diagnostic accuracy. Although extensive 

research highlights their potential, challenges remain in adapting these models for generalizability across 

diverse medical image modalities, such as Magnetic Resonance Imaging (MRI), Computed Tomography 

(CT), and X-rays. Most importantly, limited generalizability across image modalities hinders their real-

world application in diverse medical settings. This study addresses this gap by investigating the 

effectiveness of pretrained models in interpreting diverse medical images. We evaluated ten state-of-the-art 

convolutional neural network (CNN) models, including ConvNeXtBase, EfficientNetB7, VGG 

architectures (VGG16, VGG19), and InceptionResNetV2, for their ability to classify multimodal medical 

images from brain MRI, kidney CT, and chest X-ray (CXR) scans. Our evaluation reveals VGG16's superior 

generalizability across diverse modalities, achieving accuracies of 96% for brain MRI, 100% for kidney 

CT, and 95% for CXR. Conversely, EfficientNetB7 excelled in brain MRI with 96% accuracy but showed 

limited generalizability to kidney CT (56% accuracy) and CXR (33% accuracy), suggesting its potential 

specialization for MRI tasks. Future research should enhance the generalizability of pretrained models 

across diverse medical image modalities. This includes exploring hybrid models, advanced training 

techniques, and utilizing larger, more diverse datasets. Integrating multimodal information, such as 

combining imaging data with patient history, can further improve diagnostic accuracy. These efforts are 

crucial for deploying robust AI systems in real-world medical settings, ultimately improving patient 

outcomes. 

Keywords: Pretrained models; medical image synthesis; image modalities; image interpretation; domain 

adaptation; imaging diagnostics; multimodal image classification; domain generalisation, transfer learning, 

multi-label classification. 

 

1. Introduction 

In modern healthcare, medical imaging is an indispensable cornerstone, providing profound insights into 

the intricate structures and potential anomalies within the human body. The successful interpretation of 

medical images across varied modalities—such as CT, MRI, and X-rays—traditionally falls under the 

expertise of experienced radiologists. However, this interpretative process is multifaceted, marked by 

complexities inherent in analyzing medical images, from detecting subtle cues to providing comprehensive 

clinical evaluations due to increased image analysis demands (Pesapane et al., 2018; Balabanova et al., 

2005). Each imaging modality has unique strengths and limitations, adding intricacies to its analysis. For 

instance, while CT scans offer detailed information, X-rays, especially chest X-rays (CXRs), are more cost-

effective, expose patients to less radiation, and are more accessible (Power et al., 2016). These factors make 

CXRs particularly practical in resource-limited settings. Additionally, MRI can sometimes be a more 

suitable alternative for specific medical images, showcasing its potential to complement or substitute other 

modalities. In some cases, combining multiple imaging modalities improves accuracy and outcomes, 
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recognizing the limitations of relying solely on a single modality (Puderbach et al., 2007; Abhisheka et al., 

2023). This convergence exemplifies the evolving complexity of medical image interpretation. 

Moreover, the increasing demand for radiological investigations is juxtaposed against a diminishing number 

of radiologists, creating an imbalance that underscores the urgent need for innovative solutions to augment 

diagnostic capacities. In this context, the evolving role of artificial intelligence (AI) in healthcare has 

emerged as a beacon of promise (Biswas et al., 2019). AI applications, from image analysis to diagnostic 

assistance and predictive modelling, hold the potential to significantly enhance outcomes across diverse 

domains, including patient care (Ben-Israel et al., 2020). Particularly noteworthy is the concept of pre-

trained models within AI. Pre-trained models represent a paradigm shift in machine learning, wherein 

models are initially trained on large and diverse datasets to learn generalized features. This learned 

knowledge is subsequently repurposed, fine-tuned, and adapted to specific tasks or domains.  

In medical image analysis, leveraging these pre-trained models offers a spectrum of potential benefits 

(Litjens et al., 2017). These models have showcased remarkable performance across various medical image 

modalities, excelling in both binary and multiclass classification tasks. Models like ResNet, VGG, and 

DenseNet, initially trained on large-scale natural image datasets, have demonstrated transferability and 

robustness in classifying medical images. Their ability to extract hierarchical features underscores their 

adaptability and effectiveness. Notably, these models have achieved high accuracies, sensitivities, and 

specificities in diagnosing conditions like tumors, fractures, and abnormalities, thus proving their efficacy 

in diverse medical imaging scenarios. However, continual validation across varied datasets and clinical 

scenarios is pivotal to ensure consistent and reliable performance across different modalities and 

classification tasks. The widespread use and effectiveness of pre-trained models in analyzing medical 

images have sparked interest in understanding how well these models can adapt to different scenarios. In 

response to this interest, we have developed an evaluation framework designed to assess the performance 

and adaptability of pre-trained models—including some proposed in previous research studies—

particularly in the context of interpreting medical images. 

The contribution of this study is as follows: 

i. We evaluate the diagnostic accuracy of ten pretrained models across diverse medical imaging 

modalities, using three datasets containing MRI scans, CT scans, and X-rays. This assessment 

provides insights into the models' ability to generalize and adapt to different types of medical 

images. 

ii. We explore two distinct classification scenarios to enhance the effectiveness of multi-label 

diagnosis in medical images. First, we implement a four-category classification approach for 

two datasets, each corresponding to a different modality. Second, we employ a three-category 

classification approach, resulting in more accurate and efficient diagnoses in medical settings. 

iii. We evaluate the robustness and reliability of the pretrained models, ensuring consistent 

performance across diverse datasets and imaging modalities. This consistency is crucial for 

dependable clinical decision-making. 

iv. We identify and address biases present in pretrained models, ensuring unbiased and equitable 

diagnoses across multiple imaging types. This contributes to fairness in medical imaging. 

The rest of this paper is structurally organized as follows: Section 2 presents the relevant background and 

related works; Section 3 elaborates on the materials and methods employed, encompassing aspects such as 

data acquisition, preprocessing, algorithm selection, and evaluation metrics. Section 4 presents the 

outcomes of the study, unveiling the results obtained from the proposed framework. Following this, Section 
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5 engages in discussion, analysing and contextualizing the findings within the broader scope of research. 

Finally, Section 6 offers a conclusion, summarizing the key insights gleaned from the study. 

 

2. Related Works  

Over the years, researchers have shown an increased interest in leveraging machine learning 

algorithms for medical imaging analysis, particularly in diagnosing and assessing treatment responses. In 

this context, a notable study Abirami A. (2023) introduces EfficientNetB7 as a pre-trained deep learning 

model aimed at enhancing accuracy while reducing complexity. Utilizing a dataset comprising 3674 MRI 

images, the research focuses on evaluating the model's efficacy in classifying tumors as glioma, 

meningioma, pituitary tumors, or non-tumorous. Leveraging transfer learning, the strategy implemented 

with EfficientNetB7 yielded a remarkable 98.4% accuracy. However, it's important to note that this high 

accuracy was achieved without evaluation against other datasets or modalities, raising questions about the 

model's generalizability beyond the specific dataset used in the study. The study by Abdelaziz Ismael et al. 

(2020a) introduces an improved deep learning model designed for brain tumor classification using MRI 

images. The model was tested on a benchmarked dataset comprising 3064 MRI images across three tumor 

types. It achieved a remarkable accuracy of 99%, surpassing previous benchmarks on the same dataset.  

Ramadhan & Baykara (2022) introduced an updated VGG16-CNN model of reduced parameters from 

approximately 138 million parameters to around 40 million parameters for multiple classifications of 

COVID-19, two of which classification comprised of three classes: COVID-19, normal, and pneumonia, 

and binary classification of COVID-19 and normal class. The research utilized three datasets: Db1 

containing 21,165 images, Db2 with 5,226 images, and Db3 comprising 6,432 images. Results were 

promising, with high accuracy achieved across the datasets. Specifically, the model attained 99% accuracy 

for triple classification and 100% for binary classification on Db3, 98% and 99% on Db2, and 96% and 

92% on Db1 for triple and binary classifications, respectively. In another study, a novel model named 

DarkCovidNet Ozturk et al. (2020) is introduced for the automatic detection of COVID-19 using raw chest 

X-ray images. The model is specifically designed for accurate diagnostics in both binary classification 

(COVID vs. No-Findings) and multi-class classification (COVID vs. No-Findings vs. Pneumonia) 

scenarios. The development phase utilized a dataset comprising 1125 images, categorized into 125 COVID-

19 positive, 500 Pneumonia, and 500 No-Findings cases.  

Remarkably, the model achieved an accuracy of 98.08% for binary classification and 87.02% for multi-

class classification. The DarkNet model employed in the study served as a classifier for the you only look 

once (YOLO) real-time object detection system. Limitations of these studies, such as the relatively small 

dataset and the need to expand their research by exploring larger datasets and other medical image types, 

are acknowledged, they also address the imperative of evaluating competitive models across varied medical 

images, highlighting their focus on ensuring the model's robustness and accuracy—a pivotal aspect that 

aligns with the overarching aim and contribution of this study. Leveraging pretrained models may herald 

advancements in diagnostic accuracy and efficiency, hinting at a transformative paradigm for medical 

imaging interpretation and augmenting clinical decision-making processes. Table 1 showcases the 

instrumental role of pretrained models in advancing technological capabilities, as demonstrated by several 

related studies across diverse domains. 
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Table 1. Related Works in the application of pretrained model for medical image classification. 

Methodology Number of  

Dataset 

& Modality 

Classification Model 

Narin et al. (2021) CXR datasets (3) Multi – 3 classes ResNet50 

Kassania et al. (2021) CXR & CT images Binary DenseNet121 + Bagging Tree 

classifier 

Monowar et al. (2020) CXR Multi – 3 classes Xception 

Xue et al. (2023) CXR & CT images Multi – 3 classes Ensemble: VGG16, DenseNet, 

ResNet50, ResNet102 

Alshmrani et al. (2023) CXR Multi – 6 classes VGG19 + CNN 

Alshmrani et al. (2023) CXR Binary & Multi – 3 classes Modified ResNet50 

Raza et al. (2023) CT images Multi – 3 classes Lung-EffNet 

Humayun et al. (2022) CT images Multi – 3 classes VGG16, VGG19, & Xception 

Zhou et al. (2023) CT images Multi – 3 classes Ensemble 

Ibrahim et al. (2023) CT images (2) Binary COV-CAF 

Jangam et al. (2022) CXR (2) & CT images (3) Binary Stacked Ensemble 

Abdelaziz Ismael et al. (2020) MRI Multi – 3 classes Residual Networks 

Nayak et al. (2020) MRI datasets (2) Multi – 5 classes Custom CNN 

 

 

3. Materials and Method 
 

A systematic selection process identified a cohort of leading pretrained models alongside 

benchmarked architectures for comparative evaluation. These models encompass a spectrum of ten 

Convolutional Neural Network (CNN) architectures, including DenseNet201, NasNetMobile, 

NasNetLarge, Xception, ResNet50, EfficientNetB7, VGG16, VGG19, InceptionResNetV2, 

ConvNeXtBase and four benchmarked models namely; VGG19+CNN, Modified ResNet50, Custom CNN 

and Ensemble stacked models. The adaptability of these fourteen models across diverse medical imaging 

modalities was rigorously assessed for their capacity to interpret CT scans, MRIs, and X-rays effectively. 

The evaluation framework employed a diverse set of metrics, gauging model performance across specific 

medical imaging tasks, emphasizing diagnostic accuracy, precision, and sensitivity. In Figure 1, the 

workflow for the experimental analyses is presented. 

3.1 Datasets 
1. The Brain MRI dataset (Nickparvar, 2021), used for this study encompasses 7023 images sourced 

from publicly available datasets like figshare, Br35H, and SARTAJ. These images are categorized 

into glioma, meningioma, no tumor, and pituitary classes. The dataset was split into train and test 

set with the 80:20 ratio and a separate set of images was used for validation. Various researchers 

have utilized this dataset for medical image classification tasks. For example, Özkaraca et al. (2023) 

developed a new deep learning model for MR image classification, leveraging strengths of 
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DenseNet, VGG16, and basic CNNs. Similarly, Islam et al. (2023) explores deep transfer learning 

architectures for brain tumour diagnosis using MRI. 

 

2. The Kidney CT Scan dataset includes 12,446 images representing tumor, cyst, normal, and stone 

classes. The dataset underwent preprocessing that involved identifying and removing duplicates 

using a robust hashing method, resulting in a refined set of 11,929 images. These images were split 

into ratio of 70:20:10 for training, testing, and validation. The original 512x512x3 pixel images 

were resized to 224x224x3 pixels to balance model accuracy and computational complexity for 

efficient model training. 

 

3. The Chest X-ray Dataset for analysis consisted of samples from nine different sources, including 

augmented images to compensate for the limited availability of a single extensive dataset. It 

comprises three primary classes: covid, pneumonia, and normal cases, totaling 6,939 samples. This 

diverse dataset enabled a comprehensive analysis of chest X-ray instances. The dataset underwent 

preprocessing, transitioning into a structured dataframe. It was then divided into 80% for the 

training set and 20% for the testing set. The images were standardized to a 224x224x3 dimension 

using rescaling and resizing techniques. This resizing aimed to enhance the model's focus by 

reducing irrelevant information assimilation from larger images, promoting a more pertinent 

learning process. Table 2 illustrates the breakdown of image proportions utilized for model 

evaluation.  

 

 

Figure 1: Overall Architecture of the Proposed Framework 
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Table 2. Proportional Distribution of Images for Model Evaluation 

Datasets Train set Test set Validation set 

Brain MRI 4570 1142 1311 

Kidney CT  8352 2385 1192 

Chest X-ray  5518 1384 - 

 

 

(a) 

 

      (b) 

 

(c) 

Figure 2: Dataset Snippet Arranged by Modalities a, b, and c -Brain MRI, Kidney CT, and CXR 

Images respectively 

 

2.2 Algorithm Background 
1. DenseNet201: DenseNet-201, (Huang et al., 2022), a specific variant of the DenseNet architecture. 

DenseNet-201 is renowned for its unique structure, characterized by dense connectivity patterns 
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among layers. In a DenseNet, each layer receives inputs from all preceding layers, promoting 

extensive feature reuse and propagation. This dense connectivity enhances gradient flow during 

training, mitigating issues like vanishing gradients and enabling more efficient learning. Due to its 

densely connected layers, DenseNet-201 can effectively capture intricate dependencies between 

features within the data. 

 

 

Figure 3: The Architecture of DenseNet201 (Chahar et al., 2020). 

 

2. NasNetLarge and NasNetMobile: NasNet (Neural Architecture Search Network), models are 

designed using neural architecture search techniques, resulting in architectures optimized for 

performance and efficiency. the creation of a novel search space, referred to as the "NASNet 

search space," refers to a predefined set of possible neural network architectures or architectural 

components that are explored during the process of neural architecture search (NAS) , (Zoph et 

al., 2018). 
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Figure 4: The Architecture of NasNet (Tsang, 2021). 

 

3. Xception: Xception derived from the combination of "Extreme Inception" signifies an extreme 

iteration of the Inception architecture, a well-known convolutional neural network design 

employing "Inception modules" for feature extraction. In Xception, these Inception modules are 

replaced with "depthwise separable convolutions," a variant of convolutions that separates spatial 

and channel-wise information processing. This alteration in convolutional operation distinguishes 

Xception from Inception. The Xception architecture is characterized by its 36 convolutional 

layers, serving as the foundational feature extraction component of the network (Chollet, 2017a). 
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Figure 5: The Architecture of Xception (Chollet, 2017b). 

 

4. Vgg16 & Vgg19: VGG (Visual Geometry Group) networks are characterized by their simple and 

uniform architecture, comprising multiple convolutional layers followed by max-pooling and 

fully connected layers. The authors (Simonyan & Zisserman, 2015) evaluated convolutional 

neural networks (CNNs) of increasing depth, up to 16–19 weight layers, using a specific 

architecture with small (3x3) convolution filters, which positively impacts classification accuracy. 

VGG16 and VGG19 differ in depth, with VGG19 having more layers. These models are chosen 

for their simplicity, ease of interpretation, and strong performance. 
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Figure 6: The Architecture of VggNet (El-Rahiem & Hammad, 2021). 

 

5. EfficientNetB7: EfficientNet employs a compound scaling method to balance model depth, 

width, and resolution, resulting in highly efficient yet powerful architectures. EfficientNetB7 is 

the largest variant in the EfficientNet family, offering superior performance on various computer 

vision tasks while maintaining high efficiency. Thanks to this compound scaling method, a 

mobile-sized EfficientNet model can be scaled up very effectively, achieving state-of-the-art 

accuracy with significantly fewer parameters (Tan & Le, 2019).  

 

Figure 7: EfficientNetB7 Model Architecture (Tan & Le, 2019). 

 

6. InceptionResNetV2: InceptionResNetV2, a combination of Inception architectures with residual 

connections, leverages the benefits of both approaches. It is a costlier hybrid Inception version 

but despite the increased computational cost, the model demonstrates better accuracy or 

effectiveness in recognizing and classifying objects in images compared to previous versions or 

other architectures (Szegedy et al., 2017). 
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Figure 8: The Architecture of InceptionResNetV2 (Gao et al., 2020). 
 

7. Resnet50: ResNet (Residual Network) introduced residual connections to address the vanishing 

gradient problem in deep neural networks. The ResNet architecture consists of multiple "blocks" 

of layers, each containing two convolutional layers followed by batch normalization and a ReLU 

activation function. ResNet50 is a specific variant with 50 layers, each 2-layer block in the 34-

layer net was replaced with this 3-layer bottleneck block, resulting in a 50-layer ResNet, striking 

a balance between depth and computational complexity (He et al., 2015). 

 

 
 

Figure 9: The Architecture of Resnet50  (Rastogi, 2022). 
 

8. ConvNeXtBase: ConvNeXtBase employs grouped convolutions to enhance feature extraction 

while reducing computational cost. ConvNeXts were constructed using standard ConvNet 

modules, and they perform well in comparison to Transformers across various metrics such as 

accuracy, scalability, and robustness on major benchmarks. Despite being based on traditional 

ConvNet modules, ConvNeXts are competitive with Transformers, which represent another type 

of neural network architecture (Liu et al., 2022). 
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Figure 10: The CovNeXt Architecture (Yengec-Tasdemir et al., 2022). 

 

2.3 Experiments 
Computational capabilities -the experiment was carried out by utilizing Google Colab's V100 GPU 

configuration, boasting 40GB of RAM. Additionally, the Dell machine used is equipped with a Core i9 – 

12900 CPU with 32GB of RAM and powered by an NVIDIA GeForce RTX 3090 GPU. 

For implementation, the state-of-the-art CNN models underwent initial training on the ImageNet dataset. 

Following image preprocessing, all layers of these pretrained models were frozen. To ensure uniformity 

and minimize bias among the models, no extra deep neural networks or dense layers were introduced, 

ensuring methodological consistency and fairness in model assessment, the input shape was meticulously 

set to match the size expected by most CNN pretrained models. For the optimization process, we opted for 

the Adam optimizer, a widely acclaimed choice known for its adaptive learning rate properties. This 

optimizer has been extensively used in various domains and is considered a standard choice in the machine 

learning community, also, adaptive nature of the learning rate in Adam ensures robust convergence and 

efficient training (Wang et al., 2022). In determining the appropriate duration for training, our selection of 

the number of epochs was guided by the need to witness the stabilization of model performance. By 

allowing sufficient epochs, we aimed to capture the convergence behaviour and ascertain the models' 

adaptability. In the choice of batch size, we adhered to a parameter commonly employed in the literature. 

This careful selection ensures a balanced trade-off between stochastic updates and computational efficiency, 

aligning our approach with established practices for training deep neural networks. Table 3 provides an 

overview of the hyperparameters employed throughout the training process of the State of the Art pretrained 

models. 

Table 3. Hyperparameters Used for State of Art CNN Models and Respective Values. 

 Input Shape Epochs Batch 

Size 

Optimizer Learning 

Rate 

Loss 

Function 

Activation 

Function 

MRI 224x224 25 32 Adam 0.001 Sparse 

categorical 

crossentropy 

 

Softmax 

CT  224x224 25 32 Adam 0.001 Sparse 

categorical 

crossentropy 

 

Softmax 
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CXR 224x224 25 32 Adam 0.001 Categorical 

crossentropy 

 

Softmax 

 

The hyperparameters of the benchmarked pretrained models from existing work were used for the training 

and evaluation process for the comparative analysis, as depicted in Table 4. This approach enables us to 

assess the performance of our proposed method against existing benchmarks under standardized conditions 

Table 4. Hyperparameters Used for Benchmarked Models according to their specific architectures 

 Input 

Shape 

Epochs Batch 

Size 

Optimizer Learning 

Rate 

Loss 

Function 

Activation 

Function 

VGG19+CNN 

Alshmrani et al. (2023) 

224x224 5000 32 Adam 0.000009 Sparse 

categorical 

crossentropy 

 

Softmax 

MODIFIED RESNET 

Agrawal et al. (2023)  

224x224 25 32 Adam 0.001 Sparse 

categorical 

crossentropy 

 

Softmax 

CUSTOM CNN 

Nayak et al. (2020) 

224x224 10 25 SGD 0.0001 Categorical 

crossentropy 

 

Softmax 

ENSEMBLE STACKED 

MODEL 

Jangam et al. (2022) 

 

224x224 100 16 Adam 0.0001 Categorical 

crossentropy 

 

Softmax 

 

2.4 Evaluation Metrics 
The metrics used for the evaluation of the models in this study are presented as follows: 

TP, TN, FP, FN is True Positive, True Negative, False Positive, False Negative respectively. 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵
 

Accuracy measures how correct the model is in predicting and classifying both the positive and negative 

instance in the dataset.  

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

Precision specifically measures how accurate the model's capability to precisely identify the true positive 

instances among all the positive predictions it made. 

𝑹𝒆𝒄𝒂𝒍𝒍 (𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚) =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

Recall, also known as sensitivity, measures how many positive instances the model accurately predicts in 

the dataset.  
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𝑭𝟏 𝒔𝒄𝒐𝒓𝒆 =  𝟐 x 
𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 x 𝒓𝒆𝒄𝒂𝒍𝒍

𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝒓𝒆𝒄𝒂𝒍𝒍
 

F1 Score is the harmonic mean and balance of precision and recall metrics. It takes into account both false 

positives (precision) and false negatives (recall), providing a balanced assessment of the model's 

performance. 

3.0 Results 
This section presents the evaluation of selected models across diverse modalities, employing consistent 

training hyperparameters for reproducibility (outlined in Table 3). Accuracy, Precision, Recall, and F1-

Score were computed for each class and averaged across the dataset, offering a comprehensive performance 

overview. Detailed in the tables below are the experiment results, comparing the reproducibility and 

generalizability of state-of-the-art CNN models. Additionally, our performance is discussed in comparison 

with benchmarked pretrained models done by other researchers, across Brain MRI, Kidney CT, and CXR 

Imaging Modalities. 

Table 4. Classification Result of State of Art Pretrained Models with MRI Image Modality 

Models  BRAIN MRI 

IMAGES 

 

 Acc Pre Rec F1 Score 

DenseNet201 92 92 91 91 

NasNetMobile 87 86 86 86 

NasNetLarge 89 89 89 89 

ResNet50 95 95 95 95 

EfficentNetB7 96 96 96 96 

VGG19 95 95 95 95 

VGG16 96 96 95 96 

Xception 89 90 89 89 

InceptionResNetV

2 

70 71 69 64 

ConvNeXtBase 96 96 95 95 

 

Table 5. Classification Result of State of Art Pretrained Models with CT Image Modality 

Models  KIDNEY CT IMAGES  

 Acc Pre Rec F1 Score 

DenseNet201 100 100 100 100 

NasNetMobile 100 100 100 100 
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NasNetLarge 100 100 100 100 

ResNet50 100 100 100 100 

EfficentNetB7 53 69 36 32 

VGG19 100 100 100 100 

VGG16 100 100 100 100 

Xception 100 100 100 100 

InceptionResNetV2 100 100 100 100 

ConvNeXtBase 100 100 100 100 

 

Table 6. Classification Result of State of Art Pretrained Models with CXR Image Modality 

Models  CXR 

IMAGES 

 

 Acc Pre Rec F1 Score 

DenseNet201 92 92 92 92 

NasNetMobile 89 90 89 89 

NasNetLarge 86 87 86 86 

ResNet50 83 85 83 83 

EfficentNetB7 33 44 33 17 

VGG19 90 92 90 90 

VGG16 95 95 95 95 

Xception 92 92 92 92 

InceptionResNetV2 92 93 92 92 

ConvNeXtBase 75 82 75 75 
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Figure 11: Evaluation Performance of State of Art Pretrained Models on the 3 Imaging Modalities Based 

Accuracy Metrics 

In this experiment, ten state-of-the-art CNN models were utilized for classification across three distinct 

imaging modalities: brain MRI (categorizing glioma, meningioma, no tumor, and pituitary), kidney CT 

(identifying cyst, stone, normal, and tumor), and chest X-ray (distinguishing covid, pneumonia, and normal 

conditions). The results outlined in Tables 4, 5, and 6 present the top-performing models, highlighting their 

respective modalities. Among these models, VGG16 consistently demonstrated notable performance in 

identifying the various diseases in the brain, kidney and chest as provided in the dataset across the 

modalities, achieving 96%, 100%, and 95% accuracy in MRI, CT, and CXR classifications, respectively. 

While EfficientNetB7 exhibited superior recall in MRI (96% compared to VGG16's 95%), its performance 

notably declined for CXR image classification as well classifying the kidney diseases with accuracies of 

33% and 53% respectively. ConvNeXtBase, InceptionResNetV2, NasNetLarge, Xception exhibited 

inconsistent performance. On the other hand, models like DenseNet201, ResNet50, and VGG19 

consistently showed high performance in MRI, CT, and CXR, although not always ranking as the top-

performing models. For instance, DenseNet201 achieved 92%, 100%, and 92%, ResNet50 reached 95%, 

100%, and 83%, and VGG19 attained 95%, 100%, and 90% accuracy across the modalities, respectively. 

Please note that the loss curves obtained for most of the pretrained models evaluated have been included 

under the appendix section of this paper. 
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(b) 
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Figure 12: a, b, and c represent the Loss curve of VGG16 in order of MRI, CT scan and CXR 

modalities 

(a) 

 

(b) 

 

(c) 
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Figure 13: a, b, and c represent the Loss curve of InceptionResNetV2 in order of MRI, CT scan and 

CXR modalities 

Table 7. Classification Result of Evaluating Benchmarked with MRI Image Modality 

Method Models Classes Modality Used 

in article 

Existing 

Accuracy 

  Evaluation 

Results 

     Acc Pre Rec F1 

Score 

Alshmrani et 

al. (2023) 

VGG19+CNN 6 CXR dataset (1) 98 93 94 93 93 

Agrawal et al. 

(2023) 

Modified 

ResNet50 

2 & 3 CXR dataset (2) 99.2, 86.1 96 96 95 96 

Nayak et al. 

(2020) 

Custom CNN 5 MRI dataset (2) 100, 97.5 92 92 91 92 

Jangam et al. 

(2022) 

Ensemble 

stacked models 

2 CXR dataset (2) 

& CT dataset (3) 

84, 93, 99, 

99, 90 

94 94 93 94 

 

Table 8. Classification Result of Evaluating Benchmarked with CT Image Modality 

Method Models Classes Modality Used in 

article 

Existing 

Accuracy 

  Evaluation 

Results 

     Acc Pre Rec F1 

Score 

Alshmrani et 

al. (2023) 

VGG19+CNN 6 CXR dataset (1) 98 100 100 100 100 

Agrawal et 

al. (2023) 

Modified 

ResNet50 

2 & 3 CXR dataset (2) 99.2, 86.1 94 94 91 92 

Nayak et al. 

(2020) 

Custom CNN 5 MRI dataset (2) 100, 97.5 100 100 100 100 
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Jangam et al. 

(2022) 

Ensemble 

stacked 

models 

2 CXR dataset (2) & 

CT dataset (3) 

84, 93, 99, 

99, 90 

98 97 99 98 

 

Table 9. Classification Result of Evaluating Benchmarked with CXR Image Modality 

Method Models Classes Modality Used in 

article 

Existing 

Accuracy 

  Evaluation 

Results 

     Acc Pre Rec F1 

Score 

Alshmrani et 

al. (2023) 

VGG19+CNN 6 CXR dataset (1) 98 76 84 76 75 

Agrawal et 

al. (2023) 

Modified 

ResNet50 

2 & 3 CXR dataset (2) 99.2, 86.1 75 75 75 75 

Nayak et al. 

(2020) 

Custom CNN 5 MRI dataset (2) 100, 97.5 83 85 83 82 

Jangam et al. 

(2022) 

Ensemble 

stacked 

models 

2 CXR dataset (2) & 

CT dataset (3) 

84, 93, 99, 

99, 90 

94 94 94 94 

 

 

Figure 14: Evaluation Performance of Benchmarked Architecture on the 3 Imaging Modalities Based 

Accuracy Metrics 
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The study incorporated model architectures from tables 7, 8, and 9, adapting their distinct hyperparameters 

to suit the dataset. The VGG19+CNN model, as reported by Alshmrani et al. (2023), exhibited promising 

performance with an accuracy of 98% on a CXR dataset. Upon evaluation across a broader spectrum of 

modalities encompassing MRI, CT, and CXR, our study observed accuracies of 93%, 100%, and 76% 

respectively. The modified ResNet50, initially assessed on two CXR datasets with accuracies of 99.2% and 

86.1%, displayed accuracies of 96%, 94%, and 75% across the MRI, CT, and CXR modalities when 

compared against our study's datasets.  

Two MRI datasets were utilized to evaluate the custom CNN, achieving accuracies of 100% and 97.5%. 

The performance evaluation in our study showcased accuracies of 92%, 100%, and 83% across the MRI, 

CT, and CXR modalities. The ensemble methods, scrutinized across five datasets—two belonging to CXR 

and three to CT image modalities—maintained consistent performance with accuracies ranging from 84% 

to 99% for CXR datasets and from 90% to 99% for CT datasets. In contrast to our study, the ensemble 

method exhibited analogous results of 94%, 98%, and 94% across the MRI, CT, and CXR modalities. The 

ensemble method reliably maintained high accuracy across diverse image modalities. This approach utilized 

a fusion of multiple models, leveraging their individual strengths to collectively achieve a sustained, 

exceptional level of accuracy of 94%, 98%, and 94% across the diverse spectrum of medical imaging 

modalities under examination in this study. 

4.0 Discussion 
The outcome of this study has provided insight into the adaptability of pre-trained models across MRI scans, 

CT scans, and X-rays, spotlighting VGG16 as a standout performer across Brain MRI, Kidney CT, and 

CXR datasets, boasting impressive accuracies of 96%, 100%, and 95% respectively. Insights from 

implementing the ensemble method from existing literature reveals the ensemble method exhibited a 

sustained exceptional accuracy of 94%, 98%, and 94% for Brain MRI, Kidney CT, and CXR images 

respectively, showcasing its potential in achieving adaptability across diverse modalities. In contrast to the 

adaptability of Vgg16, the EfficientNetB7 model demonstrated high performance specifically in Brain MRI 

classification with 96% accuracy, its performance notably dipped when evaluated on the Kidney CT and 

CXR images with accuracy of 53% and 33% respectively. The result of efficientNetB7 based on the findings 

of similar studies by Abirami (2023), where EfficientNetB7 model performed with 98.4% accuracy in 

classifying four classes of brain MRI diagnosis might suggest the potential specialization for MRI 

classification specifically. These results build on existing need of ensuring consistent performance across 

diverse datasets and imaging modalities, crucial for dependable clinical decision-making and mitigating 

bias present in pretrained models which this study uncovers. While the future of AI in medical image 

interpretation holds immense potential, certain limitations merit attention. The rapid evolution of AI models 

may challenge the enduring relevance of findings, emphasizing the need for ongoing assessment and 

adaptation to emerging methodologies. Additionally, the study's focused approach on specific modalities 

might inadvertently overlook emerging ones, potentially limiting the broader applicability of findings to a 

more extensive array of pretrained models not encompassed in the analysis. This study emphasizes the 

importance of validating pretrained models across various modalities to ensure their robustness and 

suitability for medical image interpretation within the healthcare sector. These findings serve as a crucial 

guideline for selecting appropriate models, significantly impacting their successful application in medical 

imaging tasks. 

5.0 Conclusion 
The evolution of pretrained models in medical image classification has significantly impacted radiology, 

offering a reliable means for interpretation. By analyzing these pretrained models for their efficacy across 
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three key imaging modalities: MRI scans, CT scans, and X-rays, focusing on their adaptability, it can be 

concluded that pretrained models are robust in reproducing high performance across diverse datasets and 

imaging modalities. This study underscores the potential widespread application of the VGG16 model in 

interpreting various medical images for its reproducibility and generalizability, while also emphasizing the 

specialized use of certain pretrained models for specific imaging task like the EfficientNetB7 which 

specifically excelled in MRI classification. Additionally, the study highlights that although other high-

performing models might not be optimal initially, fine-tuning could yield more favourable outcomes as seen 

in the benchmarked architectures implemented on. To better understand the implication of these results, 

future studies should consider the validation of the VGG16 model across a wider range of medical imaging 

modalities than those explored in this study. Further investigation into optimizing the EfficientNetB7 model 

for MRI tasks is also recommended. Moreover, validating pretrained models in real-world clinical settings 

remains pivotal to confirm their robustness and practical applicability. This research offers valuable insights 

into the potential of certain pretrained models, emphasizing their suitability for distinct imaging tasks, and 

also leveraging these models effectively in medical imaging, contributing to the ongoing quest for more 

accurate, adaptable, and widely applicable AI-enabled interpretations in healthcare. 
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7.0 Appendix 
Loss curves and classification report of the pretrained models in this study 
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Figure 6: a, b, and c represent the classification report of VGG16 in order of MRI, CT scan and CXR 

modalities. 
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Figure 11: a, b, and c represent the Loss curve of VGG19 in order of MRI, CT scan and CXR 

modalities 
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Figure 12: a, b, and c represent the classification report of VGG19 in order of MRI, CT scan and CXR 

modalities. 
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(c) 

 

Figure 13: a, b, and c represent the Loss curve of ResNet50 in order of MRI, CT scan and CXR 

modalities. 
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Figure 14: a, b, and c represent the classification report of ResNet50 in order of MRI, CT scan and 

CXR modalities. 
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Figure 19: a, b, and c represent the Loss curve of DenseNet201 in order of MRI, CT scan and CXR 

modalities 
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Figure 20: a, b, and c represent the classification report of DenseNet201 in order of MRI, CT scan and 

CXR modalities. 
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Figure 25: a, b, and c represent the Loss curve of CustomCNN in order of MRI, CT scan and CXR 

modalities. 
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Figure 26: a, b, and c represent the classification report of Custom CNN in order of MRI, CT scan, 

and CXR modalities. 
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Figure 29: a, b, and c represent the classification report of Ensemble stacked Models in order of MRI, 

CT scan and CXR modalities. 
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