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Abstract

The number of prediction models proposed in the biomedical literature has been growing
year on year. In the last few years there has been an increasing attention to the changes
occurring in the prediction modeling landscape. It is suggested that machine learning
techniques are becoming more popular to develop prediction models to exploit complex
data structures, higher-dimensional predictor spaces, very large number of participants,
heterogeneous subgroups, with the ability to capture higher-order interactions.

We examine these changes in modelling practices by investigating a selection of
systematic reviews on prediction models published in the biomedical literature. We
selected systematic reviews published since 2020 which included at least 50 prediction
models. Information was extracted guided by the CHARMS checklist. Time trends were
explored using the models published since 2005.

We identified 8 reviews, which included 1448 prediction models published in 887
papers. The average number of study participants and outcome events increased
considerably between 2015 and 2019, but remained stable afterwards. The number of
candidate and final predictors did not noticeably increase over the study period, with a
few recent studies using very large numbers of predictors. Internal validation and
reporting of discrimination measures became more common, but assessing calibration
and carrying out external validation were less common. Information about missing
values was not reported in about half of the papers, however the use of imputation
methods increased. There was no sign of an increase in using of machine learning
methods. Overall, most of the findings were heterogeneous across reviews.

Our findings indicate that changes in the prediction modeling landscape in
biomedicine are less dramatic than expected and that poor reporting is still common;
adherence to well established best practice recommendations from the traditional
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biostatistics literature is still needed. For machine learning best practice
recommendations are still missing, whereas such recommendations are available in the
traditional biostatistics literature, but adherence is still inadequate.

1 Introduction 1

Models that provide predictions are an important tool in diagnosis, prognosis and 2

treatment selection for human diseases. Clinical prediction models estimate an 3

individual’s risk of a specific health outcome, using known characteristics, typically 4

demographic and medical information. The interest in prediction models in medicine is 5

growing: in 2023, for example, about one of 25 papers indexed in PubMed could be 6

retrieved searching for “predictive model” or “prediction model”, a number that is more 7

than 2 times larger compared to twenty years earlier 8

(https://esperr.github.io/pubmed-by-year/). 9

Despite the increase in prediction model studies, few of the developed models are 10

implemented in clinical practice [1, 2]. Contibuting to the poor uptake is likely the poor 11

adherence to methodological recommendations in the development of the models [1, 3, 4], 12

which was also the main finding of the review of prediction models published in 13

high-impact journals in 2008 [5]. Editorials and review papers relate the poor 14

applicability to the increase in the number of publications that use large datasets (often 15

derived from routinely collected data) and the widespread use of machine learning (ML) 16

methods [6–15]. ML methods can be particularly complex and thus more prone to 17

overfitting and are rarely validated using independent data [7]; often described as 18

lacking transparency compared to predictions based on regression approaches [7], using 19

limited subject matter expertise and providing models where the contribution of 20

different predictors is difficult to interpret [6]. Particular types of large datasets are 21

often described as commonly lacking sufficient quality and detail to answer clinically 22

relevant questions or guide decision making [16]; the need to address many 23

methodological issues before potentially useful prediction models can be developed using 24

big data or routinely collected data has been stressed; these methodological issues 25

include heterogeneity between populations, changes over time, differences across centers, 26

under-representation of populations, missing data, lack of structure, inaccuracies, lack of 27

calibration and insufficient data sharing [10,11,14]. 28

Because of the changes in the type and availability of data and type of analysis 29

strategies being used, many suggestions from the literature indicate that the existing 30

best practice recommendations for design, conduct, analysis, reporting, impact 31

assessment, and clinical implementation from the biostatistics and medical statistics 32

literature are no longer sufficient alone to guide the use of prediction models when 33

machine learning methods are being used [6, 10,17–21]. Consequently, many initiatives 34

have been launched to propose new guidelines for the development, reporting and 35

critical appraisal of prediction models based on machine learning/artificial intelligence 36

(ML/AI) methods [10]; these include the TRIPOD (for model development/validation), 37

CONSORT (trials of AI interventions), SPIRIT (protocols of trials of AI interventions), 38

and PROBAST (risk of bias assessment) guidelines and tool for ML/AI that were 39

updated or are in development [19,22–25]. 40

The aim of this paper is to explore if and how the prediction modelling landscape is 41

changing. We focus on prognostic models that have been developed for the prediction of 42

a future health outcome event based on a model that uses multiple predictors [26]. 43

Systematic reviews are a valuable tool for obtaining information about existing 44

prognostic models, summarizing their predictive performance and quality, and 45

information about the predictors used [27]. The number of systematic reviews on 46

prognostic models in the biomedical literature in the last years raised at a pace 47
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comparable to the increase observed in the number of publications that develop or apply 48

prognostic models. Systematic reviews are often focused on specific outcomes and target 49

populations, including relatively few prediction models. In exceptional cases, such as the 50

recent Covid review [4], the findings from hundreds of prediction models are described. 51

We explored whether the landscape of prediction model studies is changing by 52

reviewing systematic reviews of prognostic models. We focused on 8 reviews published 53

(or updated) in 2020-22 and examined in detail the characteristics of the prognostic 54

models included in the eligible [27]; the characteristics include (but are not limited to) 55

the number of study participants, number of candidate and final predictors, type and 56

number of prediction models and measures that quantify the performance of the models. 57

We focused only on model development and omitted models where only the results from 58

an external validation of an existing model, without model development, are reported. 59

In the Methods section we explain how the reviews were selected and describe their 60

characteristics in detail. In the Results section we summarize the findings, focusing on 61

exploring any time trends, and conclude with the Discussion section. 62

2 Methods 63

2.1 Selection of the reviews 64

The initial search of systematic reviews was based on a manually curated list made 65

publicly available by Gary Collins 66

(https://twitter.com/GSCollins/status/1506249323180437507) . The list 67

included about 260 systematic reviews of prediction models published in various medical 68

fields; the number of reviewed models ranged from 3 to 1382, 52 systematic reviews 69

reviewed more than 50 models, about a half included fewer than 20 models. The 70

reviews were published between 2004 and 2022, most of them in the 2010-2020 period. 71

We examined the list of the 260 reviews and screened the content of the 19 72

systematic reviews that were reported to include at least 50 models and were published 73

in 2020-22. We excluded the reviews 74

• that could not be retrieved as full text (1 systematic review) 75

• for which the individual per paper/per model data were not available (or at least 76

not as a table, 6 systematic reviews) 77

• that described less than 30 papers where prognostic models were developed (6 78

systematic reviews, 1 included only validation of models). 79

which led to 6 eligible systematic reviews. 80

Manual screening of the results of a PubMed search for systematic reviews of 81

prognostic models identified two additional systematic reviews that were eligible for 82

inclusion. External validation only studies were excluded from our analyses. Thus, in 83

total 8 reviews paper (6 from the manually curated list, 2 from additional searching) 84

were included in our review of the reviews. The selection process is displayed in 85

Figure 1. 86

The main characteristics of the reviews were summarized using the PICOTS 87

system [28] (Population, Index model, Comparator model, Outcome(s), Timing, 88

Settings), where we omitted the comparator model and reported only the timing related 89

to the moment in time when the models are to be used in clinical practice. 90

We summarized the number of papers/models that were analyzed in each review, the 91

time range of publication of the papers that they included and what type of information 92

was available for each review. 93
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List by
Gary Collins 

(Twitter):
~ 260 reviews

Manual 
PubMed
search

Reviews with ≥50 
models, published in 

2020-22:
19 reviews

2 reviews

Kept after content
screening:
6 reviews

Exclusion criteria:
• No full text

available (1)
• No data available

on paper level (6)
• ≤30 papers

described (6)

Final selection:
8 reviews

Fig 1. Flowchart displaying the process for selecting the reviews.

For each paper/model we extracted information following the CHARMS 94

checklist [29], including the number of study participants, the type of outcomes being 95

predicted, the (candidate) predictors, analytical details (e.g., type of model, handling of 96

missing data, selection of predictors), and evaluation of the model performance 97

(discrimination, calibration, classification). The complete list of extracted data is 98

available in the Supplementary table 1. 99

2.2 Data management 100

We organized the raw extracted data from each review in one table. Data were then 101

processed manually and harmonized, where applicable, summarizing them to the 102

categories considered later in the analysis. Only the information provided in the reviews 103

was considered and we did not check and re-extract the original papers. 104

Some papers included in the reviews described more than one model. Our analyses 105

were performed on a ‘per-paper’ basis, if not otherwise noted; this was done to avoid 106

giving excessive weight to the papers that developed many different prediction models. 107

Numerical data from different models described in the same paper were summarized 108

using mean values (omitting missing values). A method or measure was considered as 109

having been used/reported in the paper if it was used/reported for at least one of the 110

models described in the paper. 111

For the type of prediction models, in a first step, we assigned the described methods 112

to one of the following classes: ‘Neural network’, ‘Random Forest’, ‘Other tree-based’, 113

‘SVM’ (Support vector machine), ‘Boosting’, and ‘Other (ML)’, ‘(Penalized) Logistic 114

Regression’, ‘Linear Regression’, ‘Cox Regression’, ‘Other (Stats)’; the 115

categories‘NA/Not reported/Unclear’ and ‘Other‘ (not clear if statistical or ML) were 116

also used. The class ‘Tree-based’ refers to single trees only, not to random forests, 117

tree-based boosting approaches or any other ensemble methods. 118

In the review from Li [30], where the information was given only on a per-paper 119
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basis, a list of used prediction methods was provided. These were classified as ‘Multiple 120

(ML)’ or ‘Multiple (Both)’, as appropriate; statistical models were never used 121

exclusively in this review. 122

Also for the other reviews, we defined for each paper if the models were developed 123

using exclusively statistical methods (‘(Penalized) Logistic Regression’, ‘Linear 124

Regression’, ‘Cox Regression’, ‘Other (Stats)’), exclusively ML methods ( ‘Neural net’, 125

‘Random Forest’, ‘Tree-based’, ‘SVM’ (Support vector machine), ‘Boosting’, and ‘Other 126

(ML)’), or both, or if the information was unclear (‘NA/Not reported/Unclear’ and 127

‘Other). 128

The measures that quantify the predictive performance for internal validation were 129

grouped into the three categories ‘Discrimination’, ‘Calibration’, and ‘Classification’ (as 130

suggested in the CHARMS checklist [29]). The area under the receiver-operator 131

characteristic curve (AUC or AUROC, sometimes also just denoted as ROC) and the 132

C-index (sometimes C-statistic) were considered to be measures for discrimination. 133

Calibration plots (i.e. observed vs expected risks) and calibration slopes, calibration 134

in-the-large, Hosmer-Lemeshow tests, Greenwood-D’Agostino-Nam tests, and Gronnesby 135

and Borgan tests were all categorized as ‘Calibration’ measures. Finally, the group of 136

‘Classification’ measures entailed Accuracy, Sensitivity (or Recall), Specificity, Positive 137

Predictive Value (or Precision), Negative Predictive Value, F1-score, Youden-index, 138

Positive Likelihood Ratio, Negative Likelihood Ratio, and the Diagnostic Odds Ratio. 139

Internal validation methods were grouped in categories: cross-validation, bootstrap 140

(including resampling or jacknife), split-sample (random, temporal or other), other (not 141

specified or combinations), or missing information (NA); external validation methods 142

were not further categorized, as the information was very limited. 143

The handling of missing values was evaluated at per-model level and categorized as: 144

predictor omission, missing indicator methods/Dummy, Complete Case, Single 145

imputation, Multiple imputation, Other imputation, Unclear/No information, Other, 146

No Need To Report/None. 147

2.3 Presentation of the results 148

We summarized the characteristics of the papers/models that were reviewed, overall and 149

stratified by systematic review, in order to account for heterogeneity of the reviews into 150

account. 151

Several graphical displays were used. Overall time trends were displayed using 152

scatterplots with an added smoothing line obtained with a loess smoother with 95% 153

confidence bands (using the default settings of the geom smooth() function from the 154

ggplot2 R package). Summaries of numerical variables were displayed with a 155

combination of violin plots and boxplots, to display the summary statistics and the 156

overall distribution of the data. Scatterplots were used to compare the number of 157

candidate and of final predictors, where the sizes of the individual dots reflected the 158

respective underlying frequency. Categorical variables were summarized by stacked 159

barplots (with absolute and relative numbers). The occurrence of the different types of 160

measures was displayed using Sankey plots. 161

In tables the numerical variables were summarized using median (med), arithmetic 162

mean (mean), the interval between minimum and maximum (range), and interquartile 163

range (IQR). Categorical variables were summarized using frequencies and percentages. 164

All analyses were conducted in the statistical programming software R, version 165

4.2.2 [31]. For the display of the results, the R packages ggplot2 [32], ggalluvial [33], 166

ggpubr [34], and ggh4x [35] were used. 167
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2.4 Initial data analysis 168

Decisions about how to present data were based on initial data analysis (IDA), where 169

the distributions of the variables were explored using descriptive statistics [36]. 170

IDA indicated the exclusion of papers published before 2005, due to their small 171

number (n=27). To explore the time trends in some analyses we grouped the year of 172

model publication into intervals with the following intervals 2005-2009, 2010-2014, 173

2015-2019 and 2020-2021. IDA also indicated the removal of the review of Wynants et al. 174

on COVID-19 [4] from the time trend analysis, as this review contains 75% of the papers 175

included in our review in the 2020/21 period and it would have dominated the results in 176

the 2020/21 period. The results of the Wynants review [4] were therefore included in 177

the overall analyses and commented on separately in the time trend analyses. 178

Some information about the type of the outcome (binary, categorical, time to event, 179

numerical) is available indirectly, by examining the type of models used; however, in 180

most reviews the information was not reported explicitly. For this reason we did not 181

exclude numerical outcomes from the analysis of the number of outcome events. We 182

decided not to analyze the time trends of the number of outcome events per predictor, 183

as the information was very sparse and dominated by the information provided in 184

Wynants [4]. 185

We decided not to analyze data on clinical utility of the prognostic modes, as this 186

information was rarely reported in the reviews. 187

3 Results 188

Here we describe the main characteristics of the reviews and the characteristics that 189

were selected for our analyses, analyzing complete data, stratifying the results per 190

review, and summarizing the time trends. 191

The TRIPOD (Transparent Reporting of a multivariable prediction model for 192

Individual Prognosis Or Diagnosis) statement gives a set of recommendations for the 193

reporting of studies involving the development or validation of a prediction model [22]. 194

This statement is referenced in broad terms in three reviews (Wynants [4], Ogink [37], 195

He [38]), and not considered at all in two reviews (Ndjaboue [39], Sun [40]). For the 196

remaining three reviews (Li [30], Haller [41], Gade [42]), the information about 197

adherence to the TRIPOD statement is given on an overall basis in Li [30] and 198

Haller [41], and for each paper individually in Gade [42]. 199

3.1 Main characteristics of the reviews 200

We included 8 systematic reviews that described the prediction models in different 201

medical fields (COVID-19 by Wynants et al. [4], vascular surgery by Li et al. [30], heart 202

failure by Sun et al. [40], diabetes by Ndjaboune et al. [39], orthopaedics by Ogink et 203

al. [37], cervical cancer by He et al. [38], organ transplantation by Haller et al. [41], falls 204

by Gade et al. [42]); the PICOTS elements are described in Table 1. Five reviews 205

(Wynants [4], Ndjaboue [39], Haller [41], He [38], Gade [42]) considered all available 206

prognostic models up to the time of search, two studies focused on machine learning 207

based prediction models (selecting studies that included at least one ML-based 208

prediction, Ogink [37] and Li [30]), and one study considered models published in the 209

previous ten years (Sun [40]). Only one review considered the study design as an 210

inclusion criteria (Gade [42], including only prospective cohort studies); the study 211

design was reported in two additional reviews: Haller [41] reported only cohort studies, 212

observational studies were the majority for Wynants [4], which included also some 213

registry studies. The raw information was provided at per-paper level only in one review 214
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(Li [30]), and per-model in the other reviews. In the Wynants review [4] 116/501 models 215

used some type of imaging techniques (mostly CT scans or X-ray), and one review 216

(Li [30]) included also prediction models for image segmentation (55/215 papers, which 217

were included in the analyses as there was no indication that the aim of the analysis was 218

not prognostic). 219

Table 1. PICOTS elements of the selected reviews - Population, Index model, Comparator model (omitted),
Outome(s), Timing, Settings.

Population Index model Outcome Timing of use Settings
Review
Wynants et
al. [4]

Patient with con-
firmed COVID-19

All available prognostic
models

All outcomes Moment of
COVID diagno-
sis

Inpatients and
outpatients

Li et al. [30] Patients with vascu-
lar conditions

Prediction models that
use ML methods (prog-
nosis, diagnosis and seg-
mentation)

All outcomes Not specified Not specified

Sun et al.
[40]

Patient with heart
failure

All available prognostic
models

All-cause mortality or
all-cause readmission of
heart failure patients

Not specified Inpatients and
outpatients

Ndjaboue et
al. [39]

People of any age
with pre-diabetes and
any type of diabetes,
except gestational di-
abetes

All available models
with reported internal
and/or external valida-
tion

Diabetes-related health
conditions, mortality
and mental health

Not specified All settings

Ogink et al.
[37]

Surgical orthopaedic
population

Prognostic models from
studies that included at
least one ML-based pre-
diction

Orthopaedic surgical
outcomes

Intra-operative
and post-
operative

All settings

He et al. [38] Patients diagnosed
with cervical cancer

All available models
(with at least two pre-
dictors)

Clinical outcome (recur-
rence, metastasis, death,
etc.)

Not specified All settings

Haller et al.
[41]

Recipients or donors
in living organ trans-
plantation

All available models
(with at least two pre-
dictors)

Any outcome occurring
after transplanta-
tion/donation in the
recipient or donor

Counseling All settings

Gade et al.
[42]

Community-dwelling
older adults (60+) of
the general popula-
tion

All available models
(with at least two pre-
dictors)

Falls (defined as unex-
pected event in which
the patients come to rest
on the ground, floor or
lower level)

No restriction General popula-
tion

Some information was systematically missing for some reviews, and there were 220

missing values also when the information was intended to be summarized in the review, 221

indicating that some of the reviewed papers did not provide all the information 222

(Supplementary file 1). For example, the number of outcome events or the number of 223

candidate predictors was often missing, making the analysis of the number of outcome 224

events per variable problematic. Information for both number of outcome events and 225

number of candidate predictors was available for only three reviews, which all also 226

directly provided the number of event per variable, however with many missing values. 227

The heterogeneity across reviews is further addressed in Subsection 3.2. 228

We identified and excluded 363 models that were included in the reviews only for 229
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validation purposes and 51 papers that were published before 2005 (published during 230

1987-2004). Overall, in our analyses we considered 887 papers and 1448 models from the 231

8 systematic reviews; the number of papers included in each review ranged from 28 to 232

368, the number of models from 49 to 501 (Table 2). 233

Table 2. Overall numbers of models and papers included and excluded from the analyses, by review.

Included Excluded
Review Field Time Models Papers Pure valida-

tion models
Papers pub-
lished before
2005

Wynants Covid-19 2020 to 2022 501 368 230 0
Li Vascular Surgery 1991 to 2021 - 202 0 10
Sun Heart Failure 2011 to 2021 176 78 104 0
Ndjaboue Diabetes 2000 to 2020 175 75 0 5
Ogink Orthopaedic 1996 to 2020 218 56 0 16
He Cervical cancer 1987 to 2020 74 52 27 3
Haller Organ Transplantation 2004 to 2021 48 35 0 1
Gade Falls 1994 to 2019 54 21 2 16

3.2 Overall results and time trends 234

In this section we report the overall results (based on all included papers), describe time 235

trends and summarize separately the papers included in the Wynants (COVID) paper. 236

The descriptive statistics are also stratified by review. Unless otherwise noted, the 237

summaries are given at per-paper level. 238

The number of papers included in the systematic reviews was larger in the more 239

recent years (Figure 3 and Supplementary file 1 for additional information by review). 240

The papers published in 2020/21 represented the majority of the papers (40% were from 241

the Wynants review and 14% from the other reviews), while the 2005/09 period was the 242

least represented with 46 papers (5%). The increase in the number of papers was 243

consistent across reviews (Supplementary file 1). 244

3.2.1 Number of study participants 245

The number of study participants was reported in 7 reviews (88% of papers). The 246

overall distribution of the number of study participants (all reviews considered jointly) 247

was strongly right-skewed (med=395, mean=17511); the number was above 200,000 in 248

10 papers/models, all of which were published in 2019 or later. The number of study 249

participants included in the papers/models varied: the median values ranged from 200 250

(Li [30]) to 5460 (Ogink [37]) (Supplementary file 1 for additional overall and per review 251

summaries). 252

Overall, the number of study participants increased over time as did the percentage 253

of papers/models for which the information was available from the reviews (complete 254

data were used in Figure 2, years were grouped in Figure 3 in Supplementary file 1). In 255

the Wynants [4] review the number of study participants was considerably smaller 256

compared to the papers included in the other reviews and published over the same 257

period (2020/21) (med: 365 vs 660, Supplementary file 1). 258
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Fig 2. Time trends for number of study participants, events, candidate
predictors, final predictors and models. The data from Wynants were not included.
Each dot represents one paper; the blue trend lines represent the overall associations
and are obtained using a loess smoother; the gray ribbons are 95% confidence bands.
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Fig 3. Descriptive characteristics by review and grouped by the intervals for
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3.2.2 Number of outcome events 259

The number of outcome events was reported in 6 reviews (62% of all papers); missing 260

number of outcome events were for the reviews that, in principle, reported the 261

information (Figure 3 and Supplementary file 1) and they were present for all types of 262

outcomes. For example, the number of outcome events was missing for 47/326 models 263

that used (penalized) logistic regression and for 50/180 for models that used Cox 264

regression. The distribution of the number of outcome events was strongly right-skewed 265

(med=89, mean=822, range: 5 to 74661), with considerable variability across reviews 266

(from med=53 in Haller [41] to med=298 in Sun [40], Figure 3 and Supplementary file 267

1). 268

The number of outcome events increased over time (summaries in Figure 2 and 269

Figure 3 and in Supplementary file 1). Within the reviews of Li [30] and Sun [40], where 270

the largest number of models developed in different years were included, the increase 271

during the 2010s was noticeable (Figure 3). Similarly as for the number of study 272

participants, very large numbers of events were used mostly in models that were 273

published more recently (out of the 9 papers that reported more than 10,000 events, one 274

was published each in 2012, 2017, and 2019, and 6 in 2020). The Wynants review [4] 275

described papers with fewer events compared to the other papers from the same period, 276

and reported the information more frequently than the other reviews. 277

3.2.3 Number of predictor variables (candidate and final) 278

The number of candidate predictors was available in 4 reviews (38% of papers) and the 279

number of final predictors (i.e., those in the final model) in 5 reviews (65% of papers); 280

one review provided only the number of candidate predictors (Gade [42]) and two only 281

the number of final predictors. Among the reviews that collected information on the 282

number of predictors, the information about candidate predictors was often missing, 283

while the number of final predictors was reported most of the times (Supplementary file 284

1). 285

The overall median number of candidate predictors was 25 (mean=84, IQR = 14 to 286

40), the median number of final predictors was 6 (mean=21, IQR = 4 to 11); the 287

distribution of the number of candidate predictors was strongly right-skewed, with mean 288

values much larger than medians in the most recent papers. Over time the number of 289

candidate predictors remained rather stable; it increased only in one review 290

(Ndjaboue [39]). 291

The mean number of final predictors increased over time but the median values 292

remained rather stable, two reviews showed a marked increase (Ndjaboue [39] and 293

Sun [40]); most studies with very large number of predictors appeared after 2015 294

(Figure 3 and Supplementary file 1). The papers included in the Wynants review [4] 295

used fewer predictors compared to the papers from the other reviews analysed in this 296

work and published in the same period (2020/21) (med: 4 vs 8, mean: 11 vs 25), in the 297

other reviews the information on candidate predictors in the 2020/21 papers was too 298

scarce (n=7) to make meaningful comparisons. For the Wynants review [4] we 299

compared the number of candidate and final predictors in models that used imaging 300

with the other models, and observed that the number of candidate predictors was larger 301

in models with imaging data (med: 112 vs 34, mean: 80 vs 46) while the number of 302

final predictors was smaller (med: 4 vs 7, mean: 15 vs 23). 303

A subset of studies used all available predictors, but generally the number of final 304

predictors was greatly reduced by some type of predictor selection (Figure 4). 305

Information about the methods for predictor selection before or during modelling 306

was not collected in all the reviews, and even for the reviews that collected this 307

information, there were a lot of missing values. Regarding the pre-selection of 308
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predictors, out of the 586 models for which this information was in principle reported, 309

selection based on univariate analyses was observed most frequently (192 models), 310

followed by the use of all predictors (176 models) and a knowledge-based approach (32 311

models). The information about model selection during the model building was 312

available even less often, with 159 models that used a stepwise approach, 84 times all 313

variables were forced into the model (‘full-model approach’) and 41 models used a 314

LASSO approach. Other methods were reported only for very few models. 315
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Fig 4. Number of candidate and final predictors, by review. The information is
given here on a per-model basis. Note that the first row and the last column denotes
‘NA’, respectively. Note that in few cases the number of reported final predictors
exceeded the number of reported candidate predictors (we speculate that this might be
due to reporting errors, recoding of categorical variables, flexible modeling of numerical
variables). The size of the individual dot (cf the value ‘n’ in the legend) corresponds to
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3.2.4 Number of models per paper 316

Seven reviews reported the number of models developed in each paper (77% of papers). 317

Most papers presented the findings from one model (med=1, mean=1.8, IQR: 1 to 2, 318

range: 1 to 28); one review included papers that reported considerably more models 319

than the others (med=4, IQR: 2 to 5, Ogink [37]), the variability was larger in the most 320

recent papers (Figure 3 and Supplementary file 1). 321
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Fig 5. Methods used for handling missing data. The information was
summarized on a per-model level using four reviews for which the information was
available, overall (left) and stratified across reviews (right). Frequencies (top panels) and
proportions (lower panels) are shown. Furthermore, we give frequencies for Wynants.

3.2.5 Missing values 322

Five reviews collected information on missing values; in 54% of the papers no 323

information about how missing data were handled was reported (Figure 5). Further, the 324

quality of reporting did not increase over time. Complete case analysis was still the 325

most common method, but the use of imputation methods became more frequent in 326

recent years (mostly reported in Haller [41] and Sun [40], while complete case analyses 327

were prevalent also in recent years in He [38] and Gade [42]). The review of Wynants [4] 328

showed very similar results as observed in the papers from the other reviews analysed in 329

this work and published in the same period (2020/21). 330

3.2.6 Measures of predictive performance for internally validate models 331

One review (Ogink et al. [37]) did not collect information on model calibration, and four 332

did not report classification measures (Haller [41], He [38], Ndjaboue [39], Sun [40]) 333

(Table 3 and Figure 6), whereas discrimination was reported in all 8 reviews. 334

Discrimination was reported for 63% of the papers, classification measures for 44%, 335

calibration for 27%. Reporting of all three types of measures was rare (the 336

co-occurrence of different measures is reported in the Supplementary file 1). 337

Reporting of discrimination improved over time (43% in 2005/09 period, 70% in 338

2020/21), but the reporting for classification and calibration did not (Table 3). There 339

was considerable heterogeneity across reviews; for example, reporting of discrimination 340

ranged from 35% (Li, [30]) to 100% (Sun, [40]), classification from 31% (Wynants [4]) to 341
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Table 3. Summary statistics by time of publication and by review. Number and percentage of papers where the model
characteristic was reported. 2020/21*: Note that the papers summarized for the 2020/21 period do not include those from the
Wynants review.

Internal val. External val. Discrimination Classification Calibration
Overall 575/887 (65%) 170/831 (20%) 563/887 (63%) 285/647 (44%) 221/831 (27%)
Time of publication
2005/09 21/46 (46%) 8/46 (17%) 20/46 (43%) 20/25 (80%) 12/46 (26%)
2010/14 82/148 (55%) 27/141 (19%) 98/148 (66%) 47/72 (65%) 47/141 (33%)
2015/19 142/200 (71%) 26/167 (16%) 149/200 (74%) 62/100 (62%) 50/167 (30%)
2020/21* 82/125 (66%) 14/109 (13%) 87/125 (70%) 42/82 (51%) 30/109 (28%)
Review
Wynants 248/368 (67%) 95/368 (26%) 209/368 (57%) 114/368 (31%) 82/368 (22%)
Li 105/202 (52%) 7/202 (3%) 71/202 (35%) 133/202 (66%) 4/202 (2%)
Sun 65/78 (83%) 10/78 (13%) 78/78 (100%) - 35/78 (45%)
Ndjaboue 55/75 (73%) 40/75 (53%) 72/75 (96%) - 57/75 (76%)
Ogink 47/56 (84%) - 55/56 (98%) 25/56 (45%) -
He 36/52 (69%) 12/52 (23%) 47/52 (90%) - 34/52 (65%)
Haller 12/35 (34%) 5/35 (14%) 18/35 (51%) - 7/35 (20%)
Gade 7/21 (33%) 1/21 (5%) 13/21 (62%) 13/21 (62%) 2/21 (10%)

62% (Gade [42]), and calibration from 2% (Li, [30]) to 76% (Ndjaboue, [39]) (Table 3 342

and Figure 6). In the Wynants review [4], the measures were reported less frequently 343

compared to the papers from the other reviews analysed in this work and published in 344

the same period (2020/21) (Table 3). 345

3.2.7 Internal validation 346

All reviews collected information on internal validation of the included models. Overall, 347

internal validation was performed in 575/887 (65%) of the papers. Findings varied 348

across the reviews (Table 3), ranging from 33% in Gade [42] to 84% in Ogink [37]. 349

Overall and in most reviews the reporting of internal validation increased with time 350

(Figure 7). How internal validation was performed varied widely across reviews: the 351

most commonly used methods for internal validation were cross-validation (very few 352

other methods were observed in the reviews of Li and Ogink), bootstrap (which was 353

common in He [38]) and split-sample methods, which are not recommended (or efficient) 354

for regression based approaches [43], and were less common in the most recent periods 355

and commonly used only in few reviews. 356

3.2.8 External validation 357

One review did not collect information on external validation (Ogink [37]). Overall, 358

external validation was reported for 170/887 (20%) of the papers. Reporting of external 359

validation did not increase markedly with time (Figure 8, Table 3). The Wynants 360

review had higher levels of external validation compared to the papers from the other 361

reviews analysed in this work and published in the same period (2020/21) (26% vs 13% 362

of papers). 363

Reviews were heterogeneous also in terms of external validation, ranging from 5% of 364

Gade [42] to 53% of Ndjaboue [39], in which the percentage was expected to be large 365

due to the inclusion criteria used in that review, which included models with reported 366

evidence of internal and/or external validation. 367
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Fig 6. Summary of the reported measures. The display is stratified by review and
time of publication and is given on a per-model level. The abbreviation ‘NRR’ stands
for ‘not reported by the review’.

3.2.9 Type of prediction model 368

All reviews collected information on the modelling approach to develop the prediction 369

models. Overall, 51% of the papers used exclusively statistical approaches (e.g., 370

regression based), 31% exclusively ML methods, 11% used both, and the information 371

was unclear for 7% of the papers (Figure 9). Overall (excluding the Wynants [4] review), 372

Cox regression was used in 21.6% of the models, (penalized) logistic regression in 16.5%, 373

linear regression in 1.9%, neural networks in 17.9%, random forests in 5.9%, tree-based 374

methods in 4.0%, SVM in 5.3%, and boosting in 4.5%. One review (He [38]) reported 375

an almost exclusive use of the Cox model (Figure 10 from the paper) , which was 376

common also in Ndjaboue [39]. We did not retrieve the use of penalized Cox regression 377

or of Cox regression with boosting. 378

The results across reviews were inconsistent with no clear time trends (Figures 9 379

and 10, Table 4). Two reviews required the use of (at least one) ML method as an 380

inclusion criterion for the selection of the papers (Ogink and Li, [30, 37]). In these two 381

reviews the statistical methods were most rarely used exclusively (14 and 28%, 382

respectively); nevertheless, the use of both ML and statistical methods was common in 383

both reviews, especially in Ogink [37] (Figure 9). Two other reviews identified many 384

papers that used exclusively ML methods (24% in Wynants [4] and 29% in Gade [42]), 385

which was rare in the other four reviews. 386

One review indicated an increase in the use of both types of methods with time 387

(Sun [40]), another an increase of the use of (penalized) logistic regression, but other 388

clear time trends were not noticeable, both within individual reviews and overall. The 389

large(r) percentage of ML methods observed in the 2020/21 period (39% vs 28% in the 390

the 2015-20 period) seems attributable to the large influence of the data from the Li [30] 391

review rather than to an overall increase, which is not observed within reviews. 392

Moreover, the statistical methods were used more commonly in the Wynants review [4] 393

than in the papers from the other reviews analysed in this work and published in the 394

same period (2020/21) (50% vs 40%). 395

Comparisons by type of model 396

Papers that used exclusively statistical models used larger datasets and fewer candidate 397

predictors compared to papers that used exclusively ML methods, which presented 398

higher right-skewness in the distribution of the numerical variables (Table 5). 399

The reporting of the measures varied widely by type of model, measures of 400

discrimination and calibration were reported much more frequently when statistical 401
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Fig 7. Top: Proportion of models that reported performing internal
validation grouped by year of publication. Overall (left), by review (middle) and
for Wynants (right). Bottom: Methods used for internal validation, grouped by
year of publication. The analysis was restricted to the models for which using
internal validation was reported. Overall (left), by review (middle) and for Wynants
(right); absolute values (upper) and proportions (lower).
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Fig 8. Proportion of models with reported external validation. The
information is shown across all six reviews (left), stratified by review (middle), and for
the Wynants review (right).
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Fig 9. Categorized type of prediction model when counting purely per
paper. This means, for each paper, the different models are considered and it is
checked whether models corresponding to ‘Statistical Methods’ only, ‘Machine Learning’
methods only, or both are used.
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Fig 10. Different types of prediction models. The information is summarized
across all reviews (left) and stratified by review (right). Frequencies are shown in the
top figure, and proportions in the bottom. Counting was performed in a ‘per paper’
way, i.e. if, e.g., for one paper, three tree-based methods and 10 SVMs were reported,
both would be counted only once.
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Table 4. Number (percentage) of papers that used models that were statistical/ML/of
both types/type was unclear, stratified by time of publication of the models and review.
2020/21*: note that the papers reported in the 2020/21 period do not include those
from the Wynants review. ‘:reviewswithinclusioncriteriarelatedtotheuseofMLmethods.

n Statistical ML Both Unclear
Overall 887 449(51%) 277(31%) 99(11%) 62(7%)
Time of publication
2005/09 46 21(46%) 17(37%) 4(9%) 4(9%)
2010/14 148 89(60%) 36(24%) 19(13%) 4(3%)
2015/19 200 105(52%) 55(28%) 34(17%) 6(3%)
2020/21 125 50(40%) 49(39%) 21(17%) 5(4%)
Review
Wynants 368 184(50%) 120(33%) 21(6%) 43(12%)
Li‘ 202 49(24%) 120(59%) 26(13%) 7(3%)
Sun 78 57(73%) 7(9%) 14(18%) 0(0%)
Ndjaboue 75 62(83%) 2(3%) 3(4%) 8(11%)
Ogink‘ 56 8(14%) 16(29%) 30(54%) 2(4%)
He 52 42(81%) 6(12%) 3(6%) 1(2%)
Haller 35 33(94%) 0(0%) 1(3%) 1(3%)
Gade 21 14(67%) 6(29%) 1(5%) 0(0%)

models were used (Table 6), as were the number of candidate and final predictors (Table 402

4). 403

4 Discussion 404

The aim of this paper was to investigate any changes in prognostic model studies in the 405

recent years. We used systematic reviews of prognostic models to evaluate if some 406

important aspects in the development and reporting of models have changed 407

considerably over time. 408

Our study was based on the findings of 8 systematic reviews, selected among those 409

published in 2020-22 that reviewed more than 30 papers reporting development 410

prognostic models, and provided sufficient publicly available information for the 411

re-analysis of most of the information guided by the CHARMS checklist. We 412

re-analyzed the findings from 887 papers and 1448 models. 413

The findings from our study, based on these 8 reviews, show that the changes in 414

prediction modeling are not as substantial as it might have been anticipated. Some of 415

the key findings of our paper are: models did not become substantially bigger over time 416

(with respect to the number of variables); within each review we did not observe an 417

increase of the use of ML methods over time; discrimination assessments are still much 418

more popular than calibration assessments; there is an indication of a trend towards 419

increasingly following guidelines (e.g. with respect to performing/reporting internal 420

validation, and using resampling methods instead of sample splitting). 421

We observed that the number of study participants (and outcome events) increased 422

in time, the substantial increase in the 2015/19 period was followed in 2020/21 by a 423

further increase, due to the presence of extremely large studies (e.g., using registry 424

studies), but the central tendency (median) remained unchanged, indicating that only 425

few studies contribute to the average changes. A similar pattern was observed for the 426

mean number of final predictors, which substantially increased in the 2015/19 period, 427

but for which the median values remained stable over time. These findings are 428

somewhat surprising given that the amount of available data (and thus, the number of 429
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Table 5. Summary statistics by type of models. n (%) is the number (percentage) of papers for which the information was
retrieved in the review

Model(s) n (%) Median Mean Range IQR
Number of study participants
Statistical 381 (85%) 421 11,891 4 to 1,621,149 160 to 1475
ML 260 (94%) 347 19,753 8 to 1,567,636 130 to 1071
Both 94 (95%) 718 9246 20 to 246,405 192 to 5386
Unclear 49 (79%) 360 65,176 20 to

3,041,551
128 to 1603

Number of outcome events
Statistical 292 (65 %) 84 591 7 to 28,140 41 to 288
ML 166 (60 %) 95 689 10 to 46,163 48 to 214
Both 49 (49 %) 75 2572 5 to 74,661 44 to 268
Unclear 39 (63 %) 98 1133 18 to 25,536 40 to 338
Number of candidate predictors
Statistical 225 (57 %) 23 33 1 to 1224 14 to 37
ML 68 (28 %) 33 289 7 to 15,000 24 to 49
Both 18 (18 %) 22 23 2 to 45 12 to 32
Unclear 30 (48 %) 13 33 2 to 166 9 to 43
Number of final predictors
Statistical 370 (82 %) 6 12 1 to 488 4 to 10
ML 113 (41 %) 6 19 2 to 618 3 to 13
Both 56 (57 %) 9 88 2 to 3512 6 to 14
Unclear 39 (63 %) 7 10 2 to 39 5 to 10
Number of models
Statistical 400 (89 %) 1 2 1 to 10 1 to 2
ML 157 (57 %) 1 1 1 to 8 1 to 1
Both 73 (74 %) 4 4 1 to 28 2 to 5
Unclear 55 (89 %) 1 1 1 to 4 1 to 2

Table 6. Summary statistics of predictive performance measures by type of model(s).

Discrimination Calibration Classification
Statistical 334/449(74%) 171/441(39%) 96/255(38%)
ML 124/277(45%) 24/261(9%) 129/262(49%)
Both 80/99(81%) 13/69(19%) 41/78(53%)
Unclear 25/62(40%) 13/60(22%) 19/52(37%)
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available predictors) has strongly increased during the past decade. It is debatable as to 430

why this is the case; possible reasons could be that some unreported pre-selection of 431

candidate predictors is being performed, thus diminishing visible increase in the number 432

of predictors, that simpler models that use fewer predictors enable greater usability, 433

interpretability, and transferability, and are thus still preferred, or that there is a time 434

lag that prevents the detection of such increase, yet. Another possible explanation is 435

that our review undersampled prognostic models based on imaging, as only two reviews 436

included some prediction models based on imaging. An interesting finding, based only 437

on the data from the Wynants review [4], was that imaging models had, as expected, 438

more candidate predictors, but ended up using fewer predictors than the other models. 439

This might indicate that the higher complexity of these data might play a crucial role 440

especially in model development, with the dangers related to overfitting, and in the 441

crucial need for proper internal and external validation. 442

Some recommendations contained in methodological guidance are seemingly 443

increasingly being followed more closely. For example, the use of internal validation 444

increased with time (e.g., bootstrapping), whilst relying on split-sample apprpaches 445

became less commonly used. The use of external validation remained rather stable in 446

time; however, our paper investigated only external validation contextually to model 447

development, and therefore underestimates the proportion of models that are eventually 448

externally validated (in subsequent papers). With time, the reporting of discrimination 449

measures improved, while it did not for calibration and classification measures. We 450

decided to report classification measures, as they were reported in 4 reviews and for 451

more than 40% of the papers. However, their usefulness in assessing the performance of 452

predictive models is not generally accepted [44] and we do not advocate that their 453

reporting should be more common. In our data the use of ML learning methods was 454

common and somewhat increased with time; however, generally this was not observed 455

within reviews, where the type of model used remained rather stable in time. The 456

prognostic modeling does not seem to be overwhelmed by ML models, nor by being 457

based on extremely large data sets. Most of the research is still conducted using 458

moderately sized data sets, both in terms of number of study participants and of 459

number of variables. 460

The comparison between ML and statistical models indicated that the median 461

number of study participants was smaller for ML models, similarly as observed in [45], 462

but they had a larger arithmetic mean, and a somehow larger number of outcome 463

events. The number of candidate predictors was larger (both in terms of median and 464

mean), while the median number of used variables was very similar. Statistical and ML 465

studies differed substantially in terms of reporting of model performance measures, 466

especially calibration was very poorly reported for ML models. 467

Overall, we observed a considerable heterogeneity in the results from different 468

reviews, indicating that the different medical fields might present very different 469

characteristics in the development and reporting of prognostic models, and in the data 470

being used. For example, the results from the comprehensive review on COVID-19 [4] 471

differed in several aspects from those based on papers from the same period included in 472

the other reviews. Time pressure to derive models intended to help handling the 473

COVID-19 crisis is one potential explanation, but it may also indicate the need to 474

consider different fields of application for a better understanding of the overall trends 475

and characteristics of prognostic modeling. Moreover, a large group of experienced 476

reviewers were involved in the COVID-19 project. 477

Many of the findings from the review surveying the prediction papers from 2008 [5] 478

are still relevant today: reporting of practices are not consistently followed, external 479

validation is still very uncommon, as is the evaluation of calibration. Some measures are 480

still not reported in the majority of papers, and some reviews do not collect all the 481
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relevant information. The TRIPOD statement [22] was mentioned in 6 out of the 8 482

considered reviews, and three reviews considered the aspects of the TRIPOD statement 483

in detail with respect to the papers they reviewed. 484

Our study had several limitations. The papers included in our study are just a part 485

of the many that are being developed and published, which are not currently included 486

in systematic reviews. The findings of some big reviews were not available as raw data, 487

and some important information was missing (by design) also from the reviews that we 488

included. For example, one review did not report the number of study participants and 489

outcome events, four did not report the number of candidate predictors; consequently, 490

we could not fully explore the number of outcome events per variable, to gauge the risk 491

of overfitting of the included prediction models. For the same reason we did not 492

attempt to compare high and low-dimensional prediction models. 493

The implementation of systematic reviews should be consistent with the guidelines 494

that are available to increase the usefulness of their findings [27], which would be 495

further improved if the raw data were made routinely publicly available. 496

A further limitation consisted in some characteristics of the reviews that we 497

considered. For example, one review included only papers that reported some type of 498

internal or external validation, inflating the number of such papers in our analyses. Two 499

of the selected reviews included only papers that reported the use of at least one 500

machine learning method, which could inflate our estimate of the frequency of the use of 501

ML methods. Nevertheless, our further manual categorization of the methods being 502

used indicated that these reviews included many models that were developed using 503

statistical methods. Similarly, a review of machine learning based clinical prediction 504

models published in 2019 in the field of oncology, found that regression-based models 505

(such as logistic or Cox regression) were categorized as ML methods by the authors very 506

often, and constituted about a third of the prognostic models that they reviewed [45]. 507

The study design of the papers was not reported in most of the reviews; when reported, 508

observational studies where the vast majority; therefore, studies based on registries and 509

on randomized clinical trials might be underrepresented. Also prognostic modeling 510

based on imaging data might be underrepresented in our review. To the best of our 511

knowledge, only two of the selected reviews included at least partly prognostic models 512

based on imaging data, and a direct comparison between models using images and other 513

models was not feasible. 514
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Supporting information 515

Supplementary file 1 Supplementary file The file includes additional description 516

of the methods and results not presented in the main paper. 517

Supplementary table 1 Data table The file includes the raw data used in this 518

paper, where the information about papers/models reviewed in each review were 519

retrieved and harmonized for the analyses presented in this paper. 520
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