
 1 

Molecular Feature-Based Classification of Retroperitoneal Liposarcoma:  1 

A Prospective Cohort Study 2 

 3 

Mengmeng Xiao
1,3†

, Xiangji Li
2,3†

, Fanqin Bu
2†

, Shixiang Ma
3
, Xiaohan Yang

2
, Jun Chen

3
, Yu 4 

Zhao
2
, Ferdinando Cananzi

4
, Chenghua Luo

1,3*
, Li Min

2*
 5 

 6 

1
Department of General Surgery, Peking University People’s Hospital, 100044 Beijing, P. R. 7 

China 8 

2
Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, 9 

State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive 10 

Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of 11 

Digestive Disease, 100050 Beijing, P. R. China 12 

3
Department of Retroperitoneal Tumor Surgery, Peking University International Hospital, 13 

102206 Beijing, P. R. China 14 

4
Department of Biomedical Sciences, Humanitas University, 20089, Milan, Italy 15 

†
These authors contributed equally to this work 16 

Running title: Molecular feature-based classification of RPLS 17 

Corresponding author: 18 

Prof. Li Min, PhD, Email: minli@ccmu.edu.cn 19 

Prof. Chenghua Luo, MD, PhD, Email: pkuihlch@163.com  20 

 21 

  22 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.09.24311657doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:minli@ccmu.edu.cn
mailto:pkuihlch@163.com
https://doi.org/10.1101/2024.08.09.24311657
http://creativecommons.org/licenses/by-nd/4.0/


 2 

ABSTRACT 23 

Background: Retroperitoneal liposarcoma (RPLS) is a critical malignant disease with various 24 

clinical outcomes. However, the molecular heterogeneity of RPLS was poorly elucidated, and 25 

few biomarkers were proposed to monitor its progression.  26 

Methods: RNA sequencing was performed on a training cohort of 88 RPLS patients to identify 27 

dysregulated genes and pathways using clusterprofiler. The GSVA algorithm was utilized to 28 

assess signaling pathways levels in each sample, and unsupervised clustering was employed to 29 

distinguish RPLS subtypes. Differentially expressed genes (DEGs) between RPLS subtypes were 30 

identified to construct a simplified dichotomous clustering via nonnegative matrix factorization. 31 

The feasibility of this classification was validated in a separate validation cohort (n=241) using 32 

immunohistochemistry (IHC) from the Retroperitoneal SArcoma Registry (RESAR). The study 33 

is registered with ClinicalTrials.gov under number NCT03838718. 34 

Results: Cell cycle, DNA damage & repair, and Metabolism were identified as the most aberrant 35 

biological processes in RPLS, enabling the division of RPLS patients into two distinct subtypes 36 

with unique molecular signatures, tumor microenvironment, clinical features and outcomes 37 

(overall survival, OS and disease-free survival, DFS). A simplified RPLS classification based on 38 

representative biomarkers (LEP and PTTG1) demonstrated high accuracy (AUC>0.99), with 39 

patients classified as LEP+ and PTTG1- showing lower aggressive pathological composition 40 

ratio and fewer surgery times, along with better  OS (HR=0.41, P<0.001) and DFS (HR=0.60, 41 

P=0.005).  42 

Conclusions: Our study provided an ever-largest gene expression landscape of RPLS and 43 

established an IHC-based molecular classification that was clinically relevant and cost-effective 44 

for guiding treatment decisions. 45 
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INTRODUCTION 48 

Retroperitoneal liposarcoma (RPLS) is a soft tissue sarcoma (STS) originating in the 49 

retroperitoneum with an insidious onset. Traditional surgical resection has been regarded as a 50 

primary and curable treatment strategy of RPLS for the past fifty years (Ecker et al., 2016). 51 

However, the anatomical complexity and biological properties of sarcoma brought great 52 

difficulty to achieve microscopically margin-negative resection, leading to a high postoperative 53 

recurrence rate in RPLS patients. During the past decade, scientists tried to improve the 54 

postoperative survival of RPLS patients by personalized surgical resection and 55 

neoadjuvant/adjuvant therapies, but the effect was not satisfactory (Littau et al., 2020; Gronchi 56 

et al., 2015; Gronchi et al., 2009; Gronchi et al., 2013; Pisters et al., 2009).  57 

Recently, precision medicine greatly enriched the therapeutic approaches and reformed the 58 

clinical decision-making chain of tumor diagnosis and treatment, prolonging the median survival 59 

of main tumor types 2-10 times (Kam et al., 2021; Zeng et al., 2022; Alifrangis et al., 2019; 60 

Frese et al., 2021). Biomarker-based patient stratification and targeted therapy together make up 61 

the kernel of precision medicine, which is intrinsically based on the molecular profiling of 62 

cancers. However, our knowledge of the molecular features of RPLS is limited, and few 63 

clinically applicable molecular biomarkers and targeted drugs are available for RPLS treatment. 64 

Only sporadic molecules such as CDK4 (Pilotti et al., 2000), MDM2 (Binh et al., 2005), 65 

AURK4 (Yen et al., 2019) and CCNDBP1 (Yang et al., 2021) have been reported as prognostic 66 

and diagnostic biomarkers, but these biomarkers were poorly represented and verified. Therefore, 67 

it is crucial to reveal the molecular landscape of RPLS and explore a feasible classification for its 68 

diagnosis and treatment. 69 
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Here, we conducted a comprehensive inbestigation into the molecular characteristics of 70 

RPLS through the delineation of the largest gene expression landscape ever assembled for this 71 

rare disease entity. By identifying both RPLS-specific genes and prognostic biomarkers, we 72 

unveiled their intricate relationships with clinical parameters. Our findings revealed the existence 73 

of two distinct molecular subtypes within all RPLS patients, characterized by diverse 74 

pathological compositions, enriched signaling pathways, and varying clinical outcomes. This 75 

highlights the limitations of relying solely on traditional pathological classification for surgical 76 

decision-making in certain cases where patients exhibit favorable histological features but poor 77 

prognoses. Emphasizing the pivotal role of molecular subtyping in guiding individualized 78 

treatment strategies and enhancing patient management. To facilitate practical application in 79 

clinical settings, we developed a simplified RPLS classification system based on key biomarkers 80 

(LEP and PTTG1) representative of each subtype. Notably, this classification scheme was 81 

validated in a larger cohort of RPLS patients through immunohistochemistry assays (Figure 1), 82 

laying the groundwork for precise surgical interventions guided by molecular insights in the 83 

realm of RPLS treatment. 84 
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 85 

Figure 1. Flow diagram of exploring RPLS dichotomous classification  86 

 87 

MATERIALS AND METHODS  88 

Patients and tissue specimens 89 

Patients who diagnosed with RPLS amenable to surgical resection were eligible for the 90 

study. The RPLS histology was confirmed according to the WHO criteria done on biopsy or 91 

surgical specimen by dedicated sarcoma pathologist. The exclusion criteria included the age<18 92 

years; serious psychiatric disease that precludes informed consent or limits compliance; 93 

impossibility to ensure adequate follow-up. Tumor specimens from 88 RPLS patients (Training 94 

cohort 1, Table S1; Training cohort 2, Table S2) and another cohort of 241 RPLS patients 95 

(Validation cohort, Table S3) were obtained from our local Hospital. These cohorts are sourced 96 

from Retroperitoneal SArcoma Registry (RESAR, NCT03838718). All the patients underwent 97 
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curative resection from January 2015 to May 2019. RPLS tissue specimens were snap-frozen in 98 

liquid nitrogen within 1 h and then stored in a -80 ℃ refrigerator before use. Clinical information 99 

was collected from the medical records, and no patient had undergone previous chemotherapy or 100 

radiotherapy. Overall survival (OS) was defined as the interval between the latest surgery and 101 

death from tumors or between the latest surgery and the last observation taken for surviving 102 

patients. Disease-free survival (DFS) was defined as the interval between the latest surgery and 103 

diagnosis of relapse or death. Informed consent for surgical procedures and specimen collection 104 

were obtained from each patient. This study has been reported in line with the REMARK criteria 105 

(McShane et al., 2005). 106 

RNA sequencing, primary data processing, and analysis 107 

Total RNA was extracted from Training cohort 1 (Table S4) and Training cohort 2 (Table 108 

S2) using TRIzol Reagent (Invitrogen). RNA degradation and contamination were monitored 109 

with 1% agarose gel. RNA purity was checked by the NanoPhotometer spectrophotometer 110 

(IMPLEN, Los Angeles, CA, USA). RNA concentration was measured using the Qubit RNA 111 

Assay Kit with the Qubit 2.0 Fluorometer (Life Technologies, CA, USA). RNA integrity was 112 

assessed using the RNA Nano 6000 Assay Kit of the Agilent Bioanalyzer 2100 System (Agilent 113 

Technologies, CA, USA). 114 

A total amount of 3-5 ug RNA per sample was used as input material for the RNA library. 115 

Sequencing libraries were generated using NEBNext® Multiplex Small RNA Library Prep Set 116 

for Illumina® (NEB, USA) following the manufacturer’s recommendations and index codes 117 

were added to attribute sequences to each sample. The clustering of the index-coded samples was 118 

performed on a cBot Cluster Generation System using TruSeq SR Cluster Kit v3-cBot-HS 119 

(Illumia). After cluster generation, the strand-specific cDNA were sequenced on an Illumina 120 
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NovaSeq 6000 platform, and single-end reads were generated (Novogene Bioinformatic 121 

Technology, Beijing, China).  122 

FPKMs of mRNAs and non-coding RNAs in each sample were calculated by Cuffdiff 123 

(v2.1.1). FPKMs were calculated based on the length of the fragments and read counts mapped 124 

to this fragment. These sequencing data have been deposited at the Open Archive for 125 

Miscellaneous Data (OMIX) database of China National Center for Bioinformation (CNCB) 126 

under the accession number OMIX002786. 127 

Identification of differential genes 128 

Gene difference analysis was performed to determine the differential genes (DEGs). An 129 

adjusted FDR<0.05 and |log2FC|>0.585 was considered significant. This process was conducted 130 

with the R package “limma”. 131 

Identification of prognostic genes 132 

Cox univariate regression analysis was used to screen the prognostic genes of RPLS. 133 

Results of  P<0.05 was considered significant. This process was conducted with the R package 134 

“survival”. 135 

Gene set enrichment analysis (GSEA) and immune infiltrate analysis 136 

GSEA was performed in the tumor and normal groups to explore the biological signaling 137 

pathways. Pathway annotation files were downloaded from the msigdb (www.gsea-msigdb.org) 138 

platform. This process was conducted by the GSEA R package to elucidate the representative 139 

HALLMARK and REACTOME pathways enriched in RPLS patients. Immunocyte infiltration 140 

(immune score and stromal score) was measured by the Estimation of STromal and Immune cells 141 

in Malignant Tumor tissues using Expression data (ESTIMATE) algorithm. This process was 142 

completed via the “estimate” R package. 143 
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Functional annotation 144 

Functional enrichment analyses were performed to elucidate the possible biological 145 

processes and signaling pathways of the prognostic genes. Gene ontology (GO) and Kyoto 146 

Encyclopedia of Gene and Genomes (KEGG) analyses were conducted by R package 147 

“clusterprofiler”, and the false discovery rate<0.05 was considered significantly enriched. 148 

Consensus clustering with t-distributed stochastic neighbor embedding (t-SNE) 149 

After evaluated the relative abundance level of related pathways, the Euclidean distance 150 

was calculated between any two samples and condensed into two-dimensional points using t-151 

distributed stochastic neighbor embedding (t-SNE) (Guo et al., 2019) and subsequently 152 

visualized automatically with the density-based spatial clustering of applications with noise 153 

(DBSCAN) algorithm. This consensus clustering was conducted with the R packages “Rtsne” 154 

and “dbscan”. 155 

Consensus clustering with nonnegative matrix factorization (NMF) 156 

Nonnegative matrix factorization (NMF) was used to perform RPLS subtyping. Specifically, 157 

NMF was applied to gene expression matrix A which contained gene sets of major signaling 158 

pathways and prognostic genes. Matrix A was factorized into 2 nonnegative matrices W and H. 159 

Repeated factorization of matrix A was performed and its outputs were aggregated to obtain 160 

consensus clustering of RPLS samples. The optimal number of subtypes was selected according 161 

to cophenetic, dispersion, and silhouette coefficients. This consensus clustering was conducted 162 

with the R package “NMF”.  163 

Construction of machine learning models 164 
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Machine learning models based on biomarkers were constructed by logistic regression (LR), 165 

support vector machine (SVM), and random forest (RF). These models were specifically tailored 166 

to analyze biomarker data in order to predict clinical outcomes in surgical patients. 167 

LR is a statistical method that establishes a relationship between asset of independent 168 

variables and a binary outcome. It calculates the probability of an event occurring based on the 169 

input features derived from biomarkers relevant to surgical patient. SVM is a supervised learning 170 

algorithm that categorizes data points by identifying the optimal hyperplane that separates 171 

distinct classes within a high-dimensional space. This approach effectively maps biomarker data 172 

into a multidimensional space to facilitate accurate classification of patient outcomes. RF is an 173 

ensemble learning technique that generated multiple decision trees during training and 174 

aggregates the results to make predictions. By leveraging this method, we can enhance predictive 175 

accuracy by mitigating overfitting and increasing model robustness when analyzing biomarker-176 

driven patient data. 177 

The performance of these machine learning models was assessed using the area under the 178 

curve (AUC) metric. A higher AUC value indicates superior discriminatory power of model in 179 

distinguishing different clinical outcomes. An AUC value closer to 1.0 signifies strong predictive 180 

capability, while 0.5 indicates no discriminatory ability at all. By evaluating the AUC values 181 

generated by LR, SVM, and RF models, clinicians can identify which algorithm yields the most 182 

reliable predictions based on biomarker profiles for surgical patients. 183 

Immunohistochemistry  184 

The protocol was performed as previously described (Li et al., 2022). In brief, the LEP and 185 

PTTG1 antibodies for immunohistochemistry were purchased from Proteintech (Cat No: bs-186 

0409R and bs-1881R). With deparaffinization for 15min × 3 in dimethylbenzene and routine 187 
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hydration, the tissues were soaked in phosphate buffer saline (PBS) for 10min and then 188 

performed high-pressure antigen retrieval (Tris-EDTA, PH=9.0) for 2.5min. After being treated 189 

with a 3% endogenous catalase blocker (ZSBIO, PV-6000) for 10min, the tissues were incubated 190 

in goat serum (ZSBIO, ZLI-9022) for the blocking of nonspecific reaction and then incubated 191 

with primary antibody (LEP=1:300 and PTTG1=1:300) at 4℃ overnight. The next day, tissues 192 

were washed and incubated with goat anti-rabbit secondary antibody (ZSBIO, PV-9000) for 1h 193 

at room temperature, then washed and stained with DAB reagents (ZSBIO, ZLI-9018). Then 194 

hematoxylin staining, 1% hydrochloric acid alcohol differentiation, ammonia water anti-blue, 195 

and neutral gum sealing. 196 

The IHC results were evaluated by pathologists, the staining extent was scored as 0-100%. 197 

The intensity score was defined as negative, low-expression, medium-expression, and high-198 

expression, which were documented as 0, 1, 2, and 3 respectively. The final scores were 199 

calculated by the formula: IHC score = Staining extent score × Staining intensity score.  200 

Statistical Methods 201 

R software (version 4.1.3) was used in this study. For quantitative variables, differences 202 

between the two groups and among multiple groups were analyzed by Wilcoxon’s test and One-203 

way analysis of variance (ANOVA), respectively. For categoric variables, groups were compared 204 

by use of Chi-square test. Survival curves were determined by Log-rank test. The 205 

clinicopathological features and levels of immune infiltration were conducted by Wilcoxon’s test. 206 

A difference of P<0.05 indicated statistical significance unless specified otherwise.  207 

 208 

RESULTS 209 
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Baseline characteristics were shown in Table 1. Of 329 RPLS patients, 88 in training cohort and 210 

241 in validation cohort. No statistically significant differences were found in the age, sex, 211 

pathology, surgery times, tumor size, and multilocation between the two cohorts (P>0.05).  The 212 

IHC score of LEP and PTTG1 were 1.62 (0.820) and 0.830 (0.75) in validation cohort. 213 

Table 1 Baseline characteristics of training cohort and validation cohort 214 

 Training cohort (N=80)
†
 Validation cohort (N=241) P value 

Age (y) 56.34 (11.14)
‡
 55.11 (10.80)

 ‡
 0.384 

Sex  

Male 37 (46.25) 118 (48.96) 

0.674 

Female 43 (53.75) 123 (51.04) 

Pathology  

WDLS 29 (36.25) 75 (31.12) 

0.078 

DDLS 48 (60.00) 144 (59.75) 

MLS and PLS 3 (3.75) 5 (2.07) 

NR 0 (0) 17 (7.06) 

Surgery times
††

  

0-1 50 (62.50) 143 (59.34) 

0.834 

2-3 21 (26.25) 73 (30.29) 

4-7 9 (11.25) 24 (9.96) 

NR 0 (0) 1 (0.41) 

Tumor size  

All 18.65 (8.70)
‡
 16.90 (7.94)

‡
 0.101 

<18 cm 40 (50.00) 135 (56.02) 

0.095 >18 cm 39 (48.75) 92 (38.17) 

NR 1 (1.25) 14 (5.81) 
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Multilocation  

Yes 52 (65.00) 153 (63.49) 

0.081 No 28 (35.00) 74 (30.71) 

NR 0 (0) 14 (5.80) 

MDM2 score  

0 11 (13.75) NA 

NA 

1 12 (15.00) NA 

2 39 (48.75) NA 

3 5 (6.25) NA 

4 9 (11.25) NA 

NR 4 (5.00) NA 

LEP score NA 1.62 (0.82)
‡
 NA 

LEP strength  

0 NA 10 (4.15) 

NA 

1 NA 39 (16.18) 

2 NA 74 (30.71) 

3 NA 115 (47.72) 

NR NA 3 (1.24) 

PTTG1 score NA 0.83 (0.75)
‡
 NA 

PTTG1 strength  

0 NA 38 (15.77) 

NA 

1 NA 100 (41.49) 

2 NA 61 (25.31) 

3 NA 39 (16.18) 

NR NA 3 (1.25) 

†
Clinical information missing in 8 RPLS patients (Training cohort 2) 215 
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‡
The data is shown as Mean (SD); other data is shown as Number (%) 216 

††
The definition of surgical times is the sum of current admission surgery and previous surgical resection 217 

DDLS, Dedifferentiated liposarcoma; LEP, Leptin; MDM2, Mouse double minute 2; MLS, Myxoid 218 

liposarcoma; NA, Not applicable; NR, Not reported; PLS, Pleomorphic liposarcoma; PTTG1, Pituitary tumor 219 

transforming gene 1; WDLS, Well-differentiated liposarcoma  220 

Cell cycle, DNA damage and repair, and Metabolism are dysregulated in RPLS 221 

To reveal the general molecular features of RPLS compared to noncancerous adipose 222 

tissues, we first recruited 8 RPLS patients and collected paired tumor and normal tissues for 223 

differentially expressed gene (DEG) analysis. A total of 1354 DEGs, 554 upregulated and 800 224 

downregulated, were identified (Figure 2A-B). To assess the underlying pathways of RPLS, 225 

GSEA analyses were performed for those DEGs. We found that proliferation-associated 226 

pathways, such as Mitotic spindle, E2F target, G2/M checkpoint and Separation of sister 227 

chromatids, were mainly enriched in tumors; while metabolism-related pathways, such as Bile 228 

acid metabolism, Heme and fatty acid metabolism and Integration of energy metabolism, were 229 

enriched in normal controls (Figure 2C).  230 
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 231 

Figure 2. Cell cycle, DNA damage and repair, and metabolism are dysregulated in RPLS 232 

A. Volcano plot of the DEGs in 8 normal vs 8 RPLS tissues. B. Venn diagram showed shared genes between 233 

DEGs and prognostic genes. C. GSEA analysis of RPLS tumors, including HALLMARK gene sets and 234 

REACTOME gene sets. D. Circular plots of the prognostic genes in GO, KEGG, and enrichWP. 235 

 236 

Then, we collected another 80 samples to investigate the molecular heterogeneity of RPLS. 237 

Gene expression profiles showed 918 and 3244 genes associated with overall survival (OS) and 238 

disease-free survival (DFS), respectively. Among 497 candidate genes associated with both OS 239 

and DFS, 83 of them also overlapped with DEGs (Figure 2B). Functional annotation (GO, 240 

KEGG, and enrichWP) demonstrated that Cell cycle, DNA damage and repair, and Metabolism-241 
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related pathways were significantly enriched (Figure 2D), suggesting these signaling pathways 242 

were dysregulated in RPLS. 243 

RPLS subgroups based on molecular features show different clinical outcomes 244 

To evaluate heterogeneous molecular clustering characteristics in RPLS, ssGSEA emerged 245 

as a widely adopted method for computing the enrichment level of specific biological signaling 246 

pathways for each sample based on gene expression data. This aids in gaining insights into the 247 

overall activity level of signaling pathways. Here, we scored each sample on the dysregulated 248 

pathways by ssGSEA and divided RPLS patients into two subgroups (Figure 3A). Subgroup 1 249 

(G1) showed better OS and DFS compared to subgroup 2 (G2) (Figure 3B-C), G1 displayed 250 

elevated ssGSEA scores associated with Metabolism, whereas G2 exhibited heightened ssGSEA 251 

scores linked on Cell cycle and DNA damage and repair (Figure 3D). These features suggested 252 

that effective monitoring of the prognosis of RPLS patients can be achieved based on the 253 

activation status of specific pathways. We also evaluated the clinical features and immune 254 

infiltration levels 255 
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 256 

Figure 3. RPLS subgroups (G1 and G2) based on cell cycle, DNA damage and repair, and metabolism 257 

A. tSNE exhibited the subgroups (G1 and G2) of RPLS. B-C. Survival cures of OS (B) and DFS (C) in G1 and 258 

G2. D. The hierarchical clustering heatmap of dysregulated pathways in G1 and G2. E-G. Histograms 259 

revealed the difference of pathological composition ratio (E), surgery times (F), and MDM2 (G) in G1 and G2. 260 

H. Violin plot of the microenvironmental scores in G1 and G2. 261 

of those samples. The results showed that G1 had lower aggressive pathological composition 262 

ratio (Figure 3E), MDM2 (Figure 3G) and Ki67 (Figure S1A) expression, larger tumor size 263 

(Figure S1B), and higher tumor microenvironment (TME) level compared to G2 (Figure 3H). 264 

Surgery times for G1 were also tended to decrease (Figure 3F). Taken together, the above restuls 265 
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indicated that RPLS subgroups based on molecular features showed distinct clinical features and 266 

clinical outcomes. 267 

A simplified RPLS classification strategy derived from RPLS G1/G2 subgroups 268 

To explore representative biomarkers for different RPLS subgroups, we performed a DEG 269 

analysis between G1 and G2. There were 1258 genes downregulated, among which 112 of them 270 

indicated good prognosis (protective genes). Correspondingly, 754 genes were upregulated, and 271 

28 of them indicated poor prognosis (aggressive genes) (Figure S1C-D). Enrichment analysis 272 

suggested that those DEGs were also associated with cell cycle regulation and metabolism 273 

(Figure S1E), which was consistent with previous results (Figure 2C).  274 

To develop a simplified RPLS clustering based on DEGs, we adopted NMF and tSNE for a 275 

re-classification of those patients. The results showed RPLS patients were also divided into two 276 

clusters (Figure 4A and Figure S1F-G). We then annotated the samples of two clusters by 277 

ssGSEA and found Cluster1 (C1) was related to metabolic processes, and Cluster2 (C2) was 278 

mainly related to the processes of Cell cycle and DNA damage and repair (Figure S2A). Also, 279 

C1 showed better OS and DFS, lower pathological composition ratio and MDM2 expression, and 280 

fewer surgery times (Figure 4B-F). Lower Ki67 expression and larger tumor size were observed 281 

in C2 (Figure S2B-C). Interestingly, the biological annotations of the C1/C2 classification were 282 

greatly consistent with G1/G2. Therefore, a simplified RPLS classification strategy derived from 283 

RPLS subgroups was provisionally established. 284 
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 285 

Figure 4. RPLS classification strategy (C1 and C2) derived from RPLS subgroups 286 

A. NMF for a re-classification of training cohort 1 (C1 and C2) (F). B-C. Survival cures of OS (B) and DFS 287 

(C) in C1 and C2. D-F. Histograms revealed the difference in pathological composition ratio (D), MDM2 (E), 288 

and surgery times (F) in C1 and C2. 289 

Development of a dichotomous RPLS classification model 290 

For NMF classification of RPLS patients, LEP and PTTG1 were identified as representative 291 

biomarkers of C1 and C2, respectively (Figure 5A). We aimed to replicate the RPLS 292 

classification of C1 and C2 by integrating these two biomarkers with the assistance of machine 293 

learning algorithms, and this two-gene panel achieved promising results (Logistic, AUC=0.995; 294 

SVM, AUC=0.997; RF, AUC=1.000; Figure 5B). Also, a linear negative correlation between 295 

LEP and PTTG1 expression was detected (Figure 5C). Considering the enhanced interpretability 296 

and generalization of linear models, we adopted the results of Logistic regression for subsequent 297 

analysis (Risk values=2.182×PTTG1-2.204×LEP). The patients marked as high-risk (Cluster_H) 298 

exhibited worse OS and DFS than those marked as low-risk (Cluster_L) (Figure 5D-E). 299 
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Dysregulated pathways, such as DNA repair and Cell cycle regulation, were enriched in 300 

Cluster_H (Figure 5F and Figure S2D), and Cluster_H presented more aggressive pathological 301 

composition ratio, higher MDM2 levels and marginally increased in surgery times than 302 

Cluster_L (Figure 5G-I). Similarly, the Cluster_H showed higher Ki67 level and smaller tumor 303 

sizes (Figure S2E-F). Moreover, a Sankey diagram was drawn to show the correlation among 304 

G1/G2, C1/C2, and Cluster_L/H. Cluster_L/H were well-matched to C1/C2 and G1/G2, 305 

suggesting LEP and PTTG1 were promising biomarkers for a dichotomous RPLS classification 306 

(Figure 5J). 307 

 308 

Figure 5. RPLS dichotomous classification (Cluster_C1 and Cluster_C2) derived from RPLS clusters 309 
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A. Heatmap of biomarkers identified (LEP and PTTG1) in C1 and C2. B. ROC curves of the machine learning 310 

models to identify C1 and C2. C. Correlation between LEP and PTTG1 expression. D-E Survival curves of OS 311 

(D) and DFS (E) in Cluster_C1 (low risk) and Cluster_C2 (high risk) groups. F. GSEA of HALLMARK gene 312 

sets in Cluster_C1 and Cluster_C2. G-I. Histograms revealed the difference of pathological composition ratio 313 

(G), MDM2 level (H), and surgery times (I) in Cluster_C1 and Cluster_C2. J. Sankey diagram indicated the 314 

correlation among G1/G2, C1/C2, and Cluster_C1/C2. 315 

Validation of the dichotomous RPLS classification in another 241 RPLS patients 316 

To validate LEP and PTTG1 as biomarkers for a dichotomous RPLS classification, we 317 

performed IHC staining of two biomarkers in validation cohort. The representative images of 318 

LEP and PTTG1 with different expression levels were shown in Figure 6A-B. The IHC scores 319 

were integrated with the previously fitted coefficients to evaluate the prognosis of RPLS patients 320 

(Risk values=2.182×PTTG1IHC-2.204×LEPIHC). The cutoff value of validation cohort is the 321 

median of risk value. The high-risk group had worse OS and DFS (Figure 6C-D), along with 322 

more surgery times and more aggressive pathological composition ratio (Figure 7A-B), but the 323 

difference of tumor size was not observed between the two groups (Figure 7C). Then we 324 

constructed visual nomograms for a precise survival prediction of RPLS patients by combining 325 

the risk score with clinical features. The predictive abilities of the 1-, 2-, and 3-year OS (Figure 326 

7D-F) and DFS (Figure S3A-C) were 0.743-0.788. Together, we proposed a simple and 327 

clinically applicable molecular classification strategy for RPLS patients.  328 

 329 

DISCUSSION 330 

Here we divided RPLS patients into two subgroups based on Cell cycle, DNA damage & 331 

repair, and Metabolism-related pathways. G1 was annotated as Metabolism-active, which 332 

exhibited high ssGSEA scores on Metabolism-associated pathways, while G2 showed high 333 
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ssGSEA scores on Cell cycle and DNA damage and repair with a high Ki67 and MDM2 level. 334 

G2 335 

 336 

Figure 6. Validation of the RPLS dichotomous classification in another 241 RPLS cohort 337 

A-B. Representative IHC staining images of LEP (A) and PTTG1 (B). C-D. Survival curves of OS (C) and DFS 338 

(D) in high-risk and low-risk groups.  339 
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had more aggressive molecular features and worse clinical outcomes compared to G1, in 340 

accordance with previously reported tumor classification (Lindskrog et al., 2021; Yu et al., 2021; 341 

Zhang et al., 2022). In fact, Demicco et al.,
 
2017 has integrated SCNA and DNA methylation 342 

divide dedifferentiated liposarcoma into two subtypes (S1 and S2), the unfavorable cluster was 343 

characterized as JUN amplified (An oncogene that promotes proliferation and metastasis) and 344 

lower inferred fraction of immature dendritic cells. However, the patients in Demicco et al.,
 
2017 345 

were of complex origin (mixed limbs, trunk and retroperitoneum), providing limited guidance for 346 

RPLS molecular classification. Here we reported the first clinically applicable RPLS molecular 347 

classification based on RNA sequencing and IHC validation cohorts. 348 

To facilitate the clinical application, we constructed a simplified RPLS molecular 349 

classification derived from the original Cell cycle/Metabolism subgroups. By NMF algorithm, 350 

we identified LEP and PTTG1 as representative biomarkers for each subtype. A model based on 351 

IHC staining of LEP and PTTG1 successfully approximated the original dichotomous RPLS 352 

classification in biological features and survival outcomes. LEP is an important regulator of basal 353 

metabolism and food intake, which is considered a linkage between metabolism and the immune 354 

system
 
(Jiménez-Cortegana et al., 2021). Although LEP-based targeting therapies have not yet 355 

been fully applied, LEP has already been identified as a potent metabolic reprogramming agent 356 

to support antitumor responses in aggressive melanomas (Waldman et al., 2020; De la et al., 357 

2019; Rivadeneira et al., 2019). In addition, LEP improves the immunotherapeutic effects by 358 

regulating innate and adaptive immune responses via increasing the cytotoxicity of NK cells 359 

(Vera et al., 2018), stimulating the proliferation of T/B cells (Vera et al., 2018; Bernotiene et al., 360 

2006), and activating DC cells (Hu et al., 2019). Those reported roles of LEP provided a good 361 

mechanism explanation on the features of metabolism pathway-enriched, better prognosis, higher 362 
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TME level of Metabolism subgroup (LEP+). In contrast, PTTG1 acts as a regulator of sister 363 

chromatid separation during cell division under physiological conditions (Zou et al., 1999), 364 

which is closely linked to genetic instability, aneuploidy, tumor progression, invasion, and 365 

metastasis (Heaney et al., 2000; Ramaswamy et al., 2003; Kim et al., 2005; Yu et al., 2003; 366 

Teveroni et al., 2021; Romero et al., 2001). PTTG1 also regulates the cell cycle and the 367 

transactivation of growth factors as an initiator and promoter of tumorigenesis (Zou et al., 1999; 368 

Mora-Santos et al., 2013; McCabe et al., 2002; Ishikawa et al 2001; Hamid et al., 2005). 369 

Overexpressing PTTG1 was correlated with worse prognosis in tumors, such as ovarian cancer 370 

(Parte et al., 2019), cervical cancer (Guo et al., 2019), renal cell carcinoma (Tian et al., 2022), 371 

and colorectal cancer (Heaney et al., 2000). Therefore, the biological functions of PTTG1 372 

provided a good mechanism explanation of the pathway-enriched of cell cycle/DNA damage & 373 

repair-associated, worse prognosis, and more aggressive pathological composition ratio the Cell 374 

cycle subgroup (PTTG1+). 375 

 376 

CONCLUSION 377 

Our study presented a comprehensive gene expression landscape of RPLS, revealing distinct 378 

molecular features. Through categorizing RPLS into Metabolism and Cell Cycle subtypes and 379 

identifying key biomarkers LEP and PTTG1, we established a dichotomous classification system 380 

verified by IHC assays. This innovative approach enables precise guidance for surgeons in 381 

adjusting treatment strategies for patients with histologically favorable but prognostically 382 

challenging RPLS cases, thereby advancing the implementation of precision medicine in guiding 383 

surgical interventions for RPLS. 384 

 385 
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Figure 7. Survival nomogram of LEP+PTTG1 model in validation cohort 386 

A-C. The difference of surgery times (A), pathological composition (B), and surgery times (C) in high-risk and 387 

low-risk groups. D. Nomograms for OS was developed in REASR cohort with four factors: sex, age, risk score, 388 

and differentiation. E. ROC curves of 1-, 2-, and 3-year OS in validation cohort. F. Calibration curves of 389 

predicting 1-, 2-, and 3-year OS in validation cohort.  390 

  391 
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Abbreviations 392 

RPLS  Retroperitoneal liposarcoma 393 

DEGs  Differentially expressed genes 394 

IHC  Immunohistochemistry 395 

STS  Soft tissue sarcoma 396 

OS  Overall survival 397 

DFS  Disease-free survival 398 

OMIX  Open archive for miscellaneous data 399 

CNCB  China national center for bioinformation 400 

GSEA  Gene set enrichment analysis 401 

GO  Gene ontology 402 

KEGG  Kyoto encyclopedia of gene and genomes 403 

t-SNE  t-distributed stochastic neighbor embedding 404 

DBSCAN  Density-based spatial clustering of applications with noise 405 

NMF  Nonnegative matrix factorization 406 

LR  Logistic regression 407 

SVM  Support vector machine 408 

RF  Random forest 409 

AUC  Area under curve 410 

 411 

  412 
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Table 1. Baseline characteristics of training cohort and validation cohort 595 
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Figure Legend 597 

Figure 1. Flow diagram of exploring RPLS dichotomous classification 598 

 599 

Figure 2. Cell cycle, DNA damage and repair, and metabolism are dysregulated in RPLS 600 

Volcano plot of the DEGs in 8 normal vs 8 RPLS tissues (A). Venn diagram showed shared 601 

genes between DEGs and prognostic genes (B). GSEA analysis of RPLS tumors, including 602 

HALLMARK gene sets and REACTOME gene sets (C). Circular plots of the prognostic genes 603 

in GO, KEGG, and enrichWP (D). 604 

 605 

Figure 3. RPLS subgroups (G1 and G2) based on cell cycle, DNA damage and repair, and 606 

metabolism 607 

tSNE exhibited the subgroups (G1 and G2) of RPLS (A). Survival cures of OS (B) and DFS (C) 608 

in G1 and G2. The hierarchical clustering heatmap of dysregulated pathways in G1 and G2 (D). 609 

Histograms revealed the difference of pathological composition ratio (E), surgery times (F), and 610 

MDM2 (G) in G1 and G2. Violin plot of the microenvironmental scores in G1 and G2 (H). 611 

 612 

Figure 4. RPLS classification strategy (C1 and C2) derived from RPLS subgroups 613 

NMF for a re-classification of training cohort 1 (C1 and C2) (A). Survival cures of OS (B) and 614 

DFS (C) in C1 and C2. Histograms revealed the difference in pathological composition ratio (D), 615 

MDM2 (E), and surgery times (F) in C1 and C2. 616 

 617 

Figure 5. RPLS dichotomous classification (Cluster_C1 and Cluster_C2) derived from 618 

RPLS clusters 619 
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Heatmap of biomarkers identified (LEP and PTTG1) in C1 and C2 (A). ROC curves of the 620 

machine learning models to identify C1 and C2 (B). Correlation between LEP and PTTG1 621 

expression (C). Survival curves of OS (D) and DFS (E) in Cluster_C1 (low risk) and Cluster_C2 622 

(high risk) groups. GSEA of HALLMARK gene sets in Cluster_C1 and Cluster_C2 (F). 623 

Histograms revealed the difference of pathological composition ratio (G), MDM2 level (H), and 624 

surgery times (I) in Cluster_C1 and Cluster_C2. Sankey diagram indicated the correlation among 625 

G1/G2, C1/C2, and Cluster_C1/C2 (J). 626 

 627 

Figure 6. Validation of the RPLS dichotomous classification in another 241 RPLS cohort 628 

Representative IHC staining images of LEP (A) and PTTG1 (B). Survival curves of OS (C) and 629 

DFS (D) in high-risk and low-risk groups.  630 

 631 

Figure 7. Survival nomogram of LEP+PTTG1 model in validation cohort 632 

The difference of surgery times (A), pathological composition (B), and surgery times (C) in 633 

high-risk and low-risk groups. Nomograms for OS was developed in REASR cohort with four 634 

factors: sex, age, risk score, and differentiation (D). ROC curves of 1-, 2-, and 3-year OS in 635 

validation cohort (E). Calibration curves of predicting 1-, 2-, and 3-year OS in validation cohort 636 

(F).  637 

  638 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.09.24311657doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.09.24311657
http://creativecommons.org/licenses/by-nd/4.0/


 39 

Supplementary Information 639 

Table S1. The detailed clinicopathological characteristics of the training cohort 1 640 

Table S2. The RNA-seq data of the training cohort 2 641 

Table S3. The detailed clinicopathological characteristics of the validation cohort 642 

Table S4. The RNA-seq data of the training cohort 1 643 

 644 

Figure S1. Clinical features and re-classification of RPLS subgroups (G1 and G2) 645 

The difference of Ki67 (A) and tumor size (B) in G1 and G2. Volcano plot of the DEGs (G1 vs 646 

G2) (C). Venn diagram showed shared genes between DEGs and prognostic genes (D). Bubble 647 

plot of the DEGs enrichment (E). NMF for a re-classification of training cohort 1 (F). tSNE 648 

exhibits the RPLS clusters (C1 and C2) (G). 649 

 650 

Figure S2. Dysregulated pathways and clinical features of RPLS clusters and high-/low-651 

risk groups 652 

The hierarchical clustering heatmap of dysregulated pathways in C1 and C2 (A). The difference 653 

of Ki67 (B) and tumor size (C) in C1 and C2. The hierarchical clustering heatmap of 654 

dysregulated pathways in high- and low-risk groups (D). The difference of tumor size (E) and 655 

Ki67 (F) in high- and low-risk groups. 656 

 657 

Figure S3. Survival nomogram of LEP+PTTG1 model in validation cohort 658 

Nomograms for DFS was developed in REASR cohort with four factors: sex, age, risk score, and 659 

differentiation (A). ROC curves of 1-, 2-, and 3-year DFS in validation cohort (B). Calibration 660 

curves of predicting 1-, 2-, and 3-year DFS (C). 661 
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Table 1 Baseline characteristics of training cohort and validation cohort 

 Training cohort (N=80)
†
 Validation cohort 

(N=241) 

P value 

Age (y) 56.34 (11.14)
‡
 55.11 (10.80)

 ‡
 0.384 

Sex  

Male 37 (46.25) 118 (48.96) 0.674 

Female 43 (53.75) 123 (51.04) 

Pathology  

WDLS 29 (36.25) 75 (31.12) 0.078 

DDLS 48 (60.00) 144 (59.75) 

MLS and PLS 3 (3.75) 5 (2.07) 

NR 0 (0) 17 (7.06) 

Surgery times
††

  

0-1 50 (62.50) 143 (59.34) 0.834 

2-3 21 (26.25) 73 (30.29) 

4-7 9 (11.25) 24 (9.96) 

NR 0 (0) 1 (0.41) 

Tumor size  

All 18.65 (8.70)
‡
 16.90 (7.94)

‡
 0.101 

<18 cm 40 (50.00) 135 (56.02) 0.095 

>18 cm 39 (48.75) 92 (38.17) 

NR 1 (1.25) 14 (5.81) 

Multilocation  

Yes 52 (65.00) 153 (63.49) 0.081 

No 28 (35.00) 74 (30.71) 

NR 0 (0) 14 (5.80) 

MDM2 score  

0 11 (13.75) NA NA 

1 12 (15.00) NA 

2 39 (48.75) NA 

3 5 (6.25) NA 

4 9 (11.25) NA 

NR 4 (5.00) NA 

LEP score NA 1.62 (0.82)
‡
 NA 

LEP strength  

0 NA 10 (4.15) NA 

1 NA 39 (16.18) 

2 NA 74 (30.71) 

3 NA 115 (47.72) 

NR NA 3 (1.24) 

PTTG1 score NA 0.83 (0.75)
‡
 NA 

PTTG1 strength  

0 NA 38 (15.77) NA 
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1 NA 100 (41.49) 

2 NA 61 (25.31) 

3 NA 39 (16.18) 

NR NA 3 (1.25) 
†
Clinical information missing in 8 RPLS patients (Training cohort 2) 
‡
The data is shown as Mean (SD); other data is shown as Number (%) 
††

The definition of surgical times is the sum of current admission surgery and previous surgical 

resection 

DDLS, Dedifferentiated liposarcoma; LEP, Leptin; MDM2, Mouse double minute 2; MLS, 

Myxoid liposarcoma; NA, Not applicable; NR, Not reported; PLS, Pleomorphic liposarcoma; 

PTTG1, Pituitary tumor transforming gene 1; WDLS, Well-differentiated liposarcoma  
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