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Abstract: The development of Artificial Intelligence (AI) in the healthcare sector is generating a 

great impact. However, one of the primary challenges for the implementation of this technology 

is the access to high-quality data due to issues in data collection and regulatory constraints, for 

which synthetic data is an emerging alternative. This Scoping review analyses reviews from the 

past 10 years from three different databases (i.e., PubMed, Scopus, and Web of Science) to 

identify the healthcare domains where synthetic data are currently generated, the motivations 

behind their creation, their future uses, limitations, and types of data. A total of 13 main domains 

were identified, with Oncology, Neurology, and Cardiology being the most frequently mentioned. 

Five types of motivations and three principal future uses were also identified. Furthermore, it was 

found that the predominant type of data generated is unstructured, particularly images. Finally, 

several future work directions were suggested, including exploring new domains and less 

commonly used data types (e.g., video and text), and developing an evaluation benchmark and 

standard generative models for specific domains. 
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1. Introduction 
The development and application of Artificial Intelligence (AI) in contemporary society is 

growing rapidly [1]. This technology has proven its capacity to revolutionize and influence the 

progress of various industries, including agriculture, transportation, and education [2]. 

Nevertheless, one of the most impactful areas for AI is the healthcare sector. In recent years, AI 

has demonstrated the potential to assist healthcare professionals in enhancing the diagnosis, 

treatment, and monitoring of different diseases [3]. The expected impact of AI extends beyond 

clinical improvements to significant economic benefits, with projected savings between 200 and 

300 billion dollars only in the United States [4]. 

The implementation of AI in healthcare faces numerous constraints and barriers, including ethical, 

technological, regulatory, liability, personnel, patient safety and social issues [5]. A crucial factor 

in this context is the availability and quality of data, which can accelerate the implementation 

process by addressing some of these barriers and encouraging open scientific research. This 

emphasis on data aligns with a broader shift within the AI paradigm from a model-centric to a 

data-centric approach, where improving data access and quality is paramount to developing better 

AI systems [6]. 

In healthcare, access to high-quality data is particularly challenging due to the difficulties 

involved in data collection, such as the low prevalence of rare diseases, the critical conditions of 

some patients and the added burden for medical professionals [7]. In addition, privacy issues pose 

major obstacles due to the sensitive nature of health data and their potential misuse. Various 

techniques, such as federated learning and advanced encryption methods, are used to address these 

privacy concerns. However, an increasingly popular alternative is the generation of synthetic data, 
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which can mitigate some privacy, access, intellectual property and regulatory issues while still 

providing valuable information [8]. 

Synthetic data can be defined as an artificial re-expression of real data through statistical 

processes, designed to mitigate privacy concerns and promote broad dissemination and open 

science [9]. The main goal of synthetic data is to provide a data resource that can be used for a 

variety of applications, such as testing and training machine learning models, while avoiding some 

of the risks and limitations associated with real data. Another advantage of synthetic data is its 

potential to improve fairness in artificial intelligence models. Synthetic datasets can be 

manipulated to better represent populations rather than simply reflecting the current state of the 

world. This means they can be designed to avoid racial or gender discrimination, helping to 

mitigate biases that might otherwise be present in real-world data. 

Despite their advantages, synthetic data also present some challenges, particularly in terms of 

monitoring the results. Ensuring the accuracy and consistency of results from synthetic data can 

be complex, especially with complex datasets. The quality of synthetic data also depends heavily 

on the quality of the original data and the data generation model used. If the original data contain 

biases, these biases may be reflected in the synthetic data, potentially compromising its 

unbiasedness and usefulness. In addition, efforts to manipulate datasets to create fair synthetic 

data may inadvertently lead to inaccuracies, as overly sanitised data may not accurately reflect 

real-world conditions. These challenges indicate the importance of scrutiny and rigorous 

validation of synthetic data quality, also assuring the explainability for AI applications. In 

addition, all these considerations must be in line with compliance with emerging regulations such 

as the EU AI Act, first-ever legal framework on AI, which includes provisions for the use of 

synthetic data under Art.10 (Data and data governance), especially for training, validation and 

testing data sets in a high-risk sector such as healthcare. 

As the field continues to evolve, there is a need to explore and understand the specific health 

domains in which synthetic data are generated and use cases addressing underrepresented data 

types like device, image, and genomic data. This comprehension may help to identify best 

practices, address potential bottlenecks and maximise the benefits of synthetic data in advancing 

health innovations. 

1.1. Related work 

Gonzales et al. [6] conducted a narrative review exploring the potential applications of synthetic 

data in healthcare. This review highlights the importance of synthetic data in bridging the gap in 

data accessibility, addressing privacy concerns, and enabling innovative applications. The authors 

identified seven potential use cases for synthetic data in healthcare, including simulation and 

prediction research, hypothesis and algorithm testing, epidemiology, health IT development, 

education and training, public release of datasets, and data linking. They also discussed the 

limitations and challenges of using synthetic data (e.g., data leakage risks).  

Hernandez et al. [9] performed a systematic review focusing on the technological aspects of 

tabular data generation, with special emphasis on privacy-preserving techniques. This review 

analyses the different approaches for generating tabular synthetic data, especially utilizing 

generative adversarial networks (GANs) (e.g., Medical GAN or Supervised GAN), and for 

evaluating key aspects, including resemblance, utility, and privacy. They also discuss the 

challenges associated with maintaining data privacy while ensuring utility. 

Murtaza et al. [10] presented a state-of-the-art overview of synthetic data generation in healthcare, 

categorising the approaches into three main types: Knowledge-Driven, Data-Driven, and Hybrid. 

This review defined the essential attributes of synthetic data, including realism and privacy, and 

examined different methods and metrics used for generating and evaluating synthetic data. The 
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authors provided insights into the current technologies used for synthetic data generation, along 

with a discussion on the potential future directions of synthetic data in healthcare. 

While these reviews focus on the techniques and strategies for generating synthetic data and 

evaluating these models, there is a gap in the literature regarding the specific healthcare domains 

and subdomains where synthetic data is being generated. Additionally, the motivations driving 

the creation of synthetic data and its intended future applications within these areas have not been 

explored. Understanding these aspects is important for identifying trends, challenges, and 

opportunities in the application of synthetic data in healthcare. 

As this is a relatively new area where research is being conducted to understand how synthetic 

data in health is generated and under what assumptions and domains, we propose that there is 

value in specifically examining the reviews already published in this area as it robustly aggregates 

existing knowledge to date. In doing so, we hope to identify domains of health where synthetic 

data are already being applied, the motivations underlying the creation of these synthetic data, 

and the applications. In this regard, a scoping review approach is suited for this purpose, as it 

provides a comprehensive mapping of the existing literature, identifying these characteristics and 

emerging trends. Therefore, by analysing reviews from the last decade that focus on specific 

health domains (e.g., cardiology, oncology), this scoping review aims to provide an overview of 

the existing reviews in the literature. The primary research question guiding this review is: "In 

which main healthcare domains and subdomains is synthetic data being generated, what 

motivations drive its creation within these areas, and what are the envisioned future applications 

of this data?". In this scoping review of reviews, we mapped the existing literature describing the 

approaches under which synthetic data in healthcare is being generated and applied. 

2. Materials and Methods 
The methodology employed for this Scoping review adheres to the guidelines established in the 

"Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping 

Reviews (PRISMA-ScR)" [11]. The strategy followed included defining the research question, 

identifying and selecting relevant studies, and charting and reporting the findings.  

 

2.1. Search strategy 

The literature search was performed on April 25, 2024, across PubMed, Web of Science, and 

Scopus, utilizing key terms associated with synthetic data and healthcare (e.g., "synthe*", 

"record" or "health*"). The queries were further refined by applying various filters available 

within each search engine. The complete search strategy is detailed in Table 1. 

TABLE 1. Search strategy 

Database Query Filters 

PubMed 

(synthe* OR generat* OR simulat*) AND (record OR 

sample OR data OR image) AND (clinic* OR patient* 

OR medic* OR health*) AND ("synthetic data") 

Article Language: English 

Article Type: Review or Systematic Review 

Publication date: In the last 10 years 

Species: Humans 

Text Availability: Full text 

Scopus 

Document Type: Review 

Language: English 

Subject Area: Medicine or Biochemistry, Genetics and Molecular Biology 

Year: Range [2014-2024] 

Web of 

Science 

Document Types: Review 

Languages: English 

Publication Years: In the last 10 years 

 

2.2. Inclusion and exclusion criteria 

The inclusion and exclusion criteria were established following the JBI methods for a Scoping 

Review [12]. Articles were included in the review if they met the following conditions: (1) the 
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study involved human subjects; (2) the publication was a review or systematic review because 

they already analyse the limitations and gaps in the primary literature so that by including only 

reviews, less researched areas and opportunities for future research can be easily identified; and 

(3) the study was published between 2014 and 2024. Articles were excluded based on the 

following criteria: (1) the study was not published in English; (2) the focus of the article was not 

related to health; (3) the study did not fall within the scope of the research questions; (4) the study 

involved animal subjects; (5) the article was later than 10 years; and (6) the publication type was 

a book, paper, clinical trial, meta-analysis, or randomized controlled trial. 

2.3. Search and screening process 

Following the article search and extraction process, duplicate articles were removed. Initially, two 

independent authors (M.R. and B.M.) reviewed the titles and abstracts to identify articles suitable 

for inclusion in the study. Any disagreements regarding the inclusion or exclusion of an article 

were resolved by a third reviewer (R.M.G.). Subsequently, the full-text articles were retrieved for 

a second review conducted by two reviewers (M.R. and R.M.G.). Data were then extracted from 

the articles that met the review criteria, including: authors, main healthcare domain and 

subdomain, motivations for creating synthetic data, future uses of the synthetic data, type of data 

generated, limitations identified by the authors related to the generation of synthetic data, and 

type of review. If there were any uncertainties during the data extraction process, the referenced 

article within the review study was thoroughly examined to extract the necessary information.  

2.4. Data charting, appraisal and synthesis of results 

The various extracted characteristics were documented using an Excel spreadsheet. For the fields 

of motivations, future uses, type of data, and limitations, the data were represented as enumerated 

lists, as multiple items from each category might be present within a single study. Additionally, 

within the data type category, a two-level classification was performed: initially determining 

whether the data was structured or unstructured, and subsequently specifying the exact type of 

data (e.g., images or text). After extraction, the data was analysed field by field using counters 

and groupings to better understand and report the different trends and patterns in this topic. 

3. Results 
The study results are organized as follows: first, the numerical outcomes of the search and 

screening process will be displayed using a PRISMA chart, providing clarity on the process and 

aiding future similar reviews. Next, a table with the information extracted from the articles will 

be presented. Finally, the specific results for each field of extracted information will be detailed. 

3.1. Search and screening results 

The PRISMA chart illustrating the search and screening process is shown in Figure 1. 
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Figure 1. PRISMA Chart of the Scoping review 

Initially, 346 articles were retrieved from three search engines: 271 from Scopus, 39 from Web 

of Science, and 36 from PubMed. After removing duplicates, the titles and abstracts of 294 articles 

were reviewed. Of these, 142 articles passed the initial screening; however, the full text of 7 

articles could not be retrieved. Following the full-text review, 42 articles were included for data 

extraction, while 93 were excluded for the following reasons: they did not address a specific 

healthcare domain (e.g., cardiology or oncology) but rather a broader topic (e.g., medical imaging 

or precision medicine) (n = 32); they discussed the potential for synthetic data generation rather 

than its current application (n = 26); they did not include anything related to synthetic data 

generation (n = 20); they were original research articles (n = 10); they were Method reviews that 

compared different synthetic data generation methods without providing real evidence of 

synthetic data generation in the domain beyond the study itself (n = 3); or they included non-

human subjects (n = 2);  

3.2. Data extraction results 

The information extracted from the various articles is summarized in Table 2. 

TABLE 2. Summary of Extracted Information from Included Articles 

Author 
Main Healthcare 

Domain 
Healthcare subdomain Motivations Future Use Data Types 

Limitations of each 

article 

Review 

Type 

Mirikharaji 

et al. [13] 
Dermatology Skin cancer 

Lack of large annotated 

databases available 

Improving the 

performance of AI 

Models 

Unstructured: 

Images  

No limitations identified 

in this paper 
Survey 

Monachino 

et al. [14] 
Cardiology Electrocardiogram 

1. Data scarcity due to limited 

samples (low disease 

prevalence) 

2. High Unbalanced datasets 

3. Missing data labels 

4. Low data accessibility due 

to regulatory frameworks, 

ethics and privacy (GDPR) 

1. Developing AI 

Models 

2. Enabling 

secondary use of 

data and data 

sharing 

Structured 

data: Time 

Series 

1. Lack of a standard 

evaluation benchmark 

2. If a dataset is too 

small and 

heterogeneous, it may 

not be possible to learn 

the underlying data 

properties effectively 

3. GAN technical 

limitations 

Not defined 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Records identified (n = 346) 
from: 

PubMed (n = 36) 
Scopus (n = 271) 

Web of Science (n = 39) 

Records removed before screening: 
Duplicate records removed (n = 52) 

Records screened (title and 
abstract) 
(n = 294) 

Records excluded (based on title and 
abstract) (n = 152) 

Reports sought for retrieval 
(n = 142) Reports not retrieved (n = 7) 

Reports assessed for eligibility 
(n = 135) 

Reports excluded (based on full text) (n = 93): 
Focus on Potential Rather than Current 
Use (n = 26) 
Includes Non-Human Subjects (n = 2) 
Method Review (n = 3) 
Not include anything related with the 
Generation of Synthetic Data (n = 20) 
Not Specific Health Domain (n = 32)  
Original research (n = 10) 

Reports included in review 
(n = 42) 

Identification of studies via databases and registers 
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Author 
Main Healthcare 

Domain 
Healthcare subdomain Motivations Future Use Data Types 

Limitations of each 

article 

Review 

Type 

Chandrabha

tla et al. 

[15] 

Ophthalmology Intraocular cancers 

Data scarcity due to limited 

samples (low disease 

prevalence) 

Improving the 

performance of AI 

Models 

Unstructured: 

Images 

No limitations identified 

in this paper 

Narrative 

review 

Osuala et al. 

[16] 
Oncology Cancer imaging 

1. Data scarcity due to limited 

samples (low disease 

prevalence) 

2. High heterogeneity 

between tumours 

3. Low data quality 

4. Missing data annotation 

5. High Unbalanced datasets 

6. Difficulty in collecting 

large consented datasets of 

highly vulnerable patients 

under demanding care plans 

(Data sharing and privacy) 

7. Improving cancer 

detection, diagnosis, tumour 

profiling, treatment planning 

and monitoring 

1. Conducting 

analysis and studies 

2. Developing AI 

Models 

3. Improving the 

generalizability and 

interpretability of 

AI Models 

Unstructured: 

Images 

1. Synthetic data 

generators reproduce the 

bias present in the 

training data 

2. Variability of the 

synthetic data generators 

is limited to the training 

data 

3. GAN technical 

limitations 

4. Lack of a standard 

evaluation benchmark 

Systematic 

review and 

meta-

analysis 

Skandarani 

et al. [17] 
Cardiology 

Applications of GAN 

in Cardiology 

1. Avoid time consuming data 

collection and labelling 

2. Improving the quality of 

images 

3. Handling missing data 

4. Avoid data privacy 

challenges 

5. Disease simulation and 

surgery planning 

1. Conducting 

analysis and studies 

2. Developing AI 

Models 

3. Enabling 

secondary use of 

data and data 

sharing 

4. Medical 

education 

1. 

Unstructured: 

Images 

2. Structured 

data: Time 

Series 

3. Structured 

data: Cross-

Sectional 

1. GAN technical 

limitations 

2. Lack of a standard 

evaluation benchmark 

3. Synthetic data 

generators reproduce the 

bias present in the 

training data 

Not defined 

Halfpenny 

and Baxter 

[18] 

Ophthalmology 
Medical information 

sharing 

1. Avoid data privacy 

challenges 

2. De-identification 

Developing AI 

Models 

Unstructured: 

Images 

No limitations identified 

in this paper 
Not defined 

Chen et al. 

[19] 
Neurology 

Cerebrovascular 

diseases 

1. Data scarcity due to limited 

samples  

2. High Unbalanced datasets 

Developing AI 

Models 

Structured 

data: Cross-

Sectional 

ADASYN's performance 

is limited with high 

imbalanced datasets 

Systematic 

review 

Metzcar et 

al. [20] 
Oncology 

Mathematical 

Oncology 
Avoid data privacy challenges 

1. Data sharing 

2. Developing 

Large-scale Models 

Unstructured: 

Images 

Synthetic data generators 

reproduce the bias 

present in the training 

data 

Not defined 

Lou et al. 

[21] 
Neurology 

Facial nerve function 

assessment 

Building a benchmark 

database for evaluation 

purposes 

1. Developing AI 

Models 

2. Testing AI 

Models 

Unstructured: 

Images 

No limitations identified 

in this paper 

Systematic 

review 

Mohsen et 

al. [22] 
Endocrinology Diabetes High Unbalanced datasets Not specified 

Structured 

data: Cross-

Sectional 

No limitations identified 

in this paper 

Scoping 

review 

Bai et al. 

[23] 
Oncology 

Breast cancer 

detection 

1. Improving the quality of 

the data 

2. Enable comparison 

between different methods 

3. Improving ML Systems 

Developing AI 

Models 

Unstructured: 

Images 

Synthetic data generators 

reproduce the bias 

present in the training 

data 

Not defined 

Lipkova et 

al. [24] 
Oncology Cancer research Handling missing data 

Improving the 

performance of AI 

Models 

Unstructured: 

Images 

Algorithms can 

"hallucinate" malignant 

features in normal 

synthetic images 

Not defined 

Ali et al. 

[25] 
Gastroenterology 

Gastrointestinal 

endoscopy 

1. Data scarcity due to limited 

samples  

2. Avoid data privacy 

challenges 

Developing AI 

Models 

Unstructured: 

Images 

No limitations identified 

in this paper 
Not defined 

Man et al. 

[26] 
Cardiology 

Blood pressure 

measurement 

Data scarcity due to limited 

samples  

Improving the 

training and 

evaluation of AI 

Models 

Structured 

data: Time 

Series 

No limitations identified 

in this paper 
Not defined 

Ranjbarzade

h et al. [27] 
Neurology 

Brain tumor 

segmentation 
High Unbalanced datasets 

Developing AI 

Models 

Unstructured: 

Images 

GAN technical 

limitations 
Not defined 

Ali and 

Shah [28] 
Epidemiology COVID -19 

Data scarcity due to limited 

samples  

Improving the 

training of AI 

Models 

Unstructured: 

Images 

No limitations identified 

in this paper 

Scoping 

review 
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Author 
Main Healthcare 

Domain 
Healthcare subdomain Motivations Future Use Data Types 

Limitations of each 

article 

Review 

Type 

He et al. 

[29] 
Neurology 

Electroencephalogram 

classification 

1. Data scarcity due to limited 

samples 

2. Avoid overfitting 

3. High Unbalanced datasets  

1. Developing AI 

Models 

2. Improving the 

performance of AI 

Models 

1. 

Unstructured: 

Images 

2. Structured 

data: Time 

Series 

3. Structured 

data: Cross-

Sectional 

No limitations identified 

in this paper 
Not defined 

Liu et al. 

[30] 
Oncology Head and neck cancer 

1. Data scarcity due to limited 

samples 

2. High Unbalanced datasets 

3. Provide complementary 

information on soft and bone 

tissues 

Improving the 

performance of AI 

Models 

Unstructured: 

Images 

No limitations identified 

in this paper 

Systematic 

review and 

meta-

analysis 

Jiang et al. 

[31] 
Oncology 

Computational 

cytology 

1. Data scarcity due to limited 

samples 

2. High Unbalanced datasets  

1. Developing AI 

Models 

2. Improving the 

performance of AI 

Models 

Unstructured: 

Images 

No limitations identified 

in this paper 
Survey 

Zhu et al. 

[32] 
Endocrinology Diabetes 

Generate population-based 

datasets to test algorithms in a 

variety of virtual scenarios, 

taking into account the high 

costs and safety issues 

associated with real clinical 

trials 

Testing AI Models 

1. Structured 

data: Time 

Series 

2. Structured 

data: Cross-

Sectional  

No limitations identified 

in this paper 

Systematic 

review 

Wen et al. 

[33] 
Oncology 

Digital pathology for 

personalized treatment 

plans 

Challenging data collection 
Developing AI 

Models 

Unstructured: 

Images 

No limitations identified 

in this paper 
Not defined 

Tsilivigkos 

et al. [34] 
Otorhinolaryngology 

Application of Deep 

Learning and imaging 

1. Avoid exposure to ionizing 

energy and aiding non-experts 

in diagnosis at the same time 

2. Eliminate the need for 

radioactive tracers 

Aiding non-experts 

in diagnosis 

Unstructured: 

Images 

No limitations identified 

in this paper 

State-of-the-

Art review 

Lakshmipri

ya et al. [35] 
Gastroenterology Liver tumour 

1. Huge datasets are required 

by CNNs 

2. The use of typical data 

augmentation techniques 

(scaling, flipping, rotation, 

translation, ...) in medical 

imaging can create distortion 

of the shape of organs and 

change the relative position of 

organs 

Improving the 

performance of AI 

Models 

Unstructured: 

Images 

No limitations identified 

in this paper 

Systematic 

review 

Dimitriadis 

et al. [36] 
Oncology 

Cancer differentiation 

(Cancer imaging) 

1. Data scarcity due to limited 

samples 

2. High Unbalanced datasets  

3. Challenging data collection 

1. Improving the 

performance of AI 

Models 

2. Developing AI 

Models 

3. Enabling 

secondary use of 

data and data 

sharing 

Unstructured: 

Images 

1. GAN technical 

limitations 

2. Due to high 

heterogeneous, it may 

not be possible to learn 

the underlying data 

properties effectively 

3. Lack of a standard 

evaluation benchmark 

Systematic 

review 

Ben Ali et 

al. [37] 
Cardiology 

Interventional 

Cardiology 

1. Need of improving 

diagnostics performance 

2. Try to learn the distribution 

of the data 

1. Developing AI 

Models 

2. Improving the 

performance of AI 

Models 

1. 

Unstructured: 

Images 

2. Structured 

data: Time 

Series 

No limitations identified 

in this paper 
Not defined 

Ladbury et 

al. [38] 
Oncology Lung cancer High Unbalanced datasets 

Developing AI 

Models 

Structured: 

Cross-

Sectional 

No limitations identified 

in this paper 
Not defined 

Kruse et al. 

[39] 
Neurology 

Diagnose Alzheimer's 

disease 

Improving the performance of 

diagnostic tools 

Developing AI 

Models 

Unstructured: 

Images 

No limitations identified 

in this paper 

Systematic 

review and 

meta-

analysis 

Makroum et 

al. [40] 
Endocrinology Diabetes management 

Training and validating ML 

models 

1. Developing AI 

Models 

2. Testing AI 

Models 

Structured 

data: Time 

Series 

No limitations identified 

in this paper 

Systematic 

review 

Balakrishna

n et al. [41] 
Pneumology 

Tuberculosis 

diagnosis 
High Unbalanced datasets Not specified 

Structured 

data: Cross-

Sectional 

No limitations identified 

in this paper 

Systematic 

review 

Arslan et al. 

[42] 
Oncology Cancer biology 

Testing of different AI 

Models 
Testing AI Models 

Structured 

data: Cross-

Sectional 

No limitations identified 

in this paper 
Not defined 

Du et al. 

[43] 
Gynecology Pregnancy care 

Data scarcity due to limited 

samples  

Developing AI 

Models 

Structured 

data: Cross-

Sectional 

No limitations identified 

in this paper 

Systematic 

review 
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Author 
Main Healthcare 

Domain 
Healthcare subdomain Motivations Future Use Data Types 

Limitations of each 

article 

Review 

Type 

Aslam et al. 

[44] 
Neurology 

Multiple Sclerosis 

diagnosis 

1. Data scarcity due to limited 

samples  

2. High Unbalanced datasets 

Developing AI 

Models 

1. 

Unstructured: 

Images 

2. Structured 

data: Cross-

Sectional  

No limitations identified 

in this paper 
Not defined 

Zhang and 

Lindsey 

[45] 

Cardiology Fetal circulation 

Non invasive method of 

capturing organ-specific and 

global attributes of fetal 

circulations 

Conducting 

analysis and studies 

1. Structured 

data: Time 

Series 

2. 

Unstructured: 

Videos 

Simulated models often 

assume certain 

conditions and lose part 

of the complexity of 

real-world scenarios 

Not defined 

Ahmed et 

al. [46] 
Endocrinology Diabetes management 

1. Data scarcity due to limited 

samples  

2. High Unbalanced datasets 

Developing AI 

Models 

Structured 

data: Time 

Series 

No limitations identified 

in this paper 

Systematic 

review 

Mostapha 

and Styner 

[47] 

Neurology 

Infant brain magnetic 

resonance imaging for 

tissue segmentation 

and disease prediction 

High Unbalanced datasets 
Developing AI 

Models 

Unstructured: 

Images 

Due to high 

heterogeneous, it may 

not be possible to learn 

the underlying data 

properties effectively 

Not defined 

Pujante-

Otalora et 

al. [48] 

Epidemiology 
Computational models 

for outbreak spread 

1. Simulating realistic 

scenarios 

2. Testing models under 

controlled conditions 

1. Conducting 

analysis and studies 

2. Testing AI 

Models 

1. Structured 

data: Time 

Series 

2. Structured 

data: Cross-

Sectional  

No limitations identified 

in this paper 

Systematic 

review 

El-Achkar 

et al. [49] 
Nephrology Kidney citrometry Missing data labels Not specified 

Unstructured: 

Images 

No limitations identified 

in this paper 
Not defined 

Laubenbach

er et al. [50] 
Immunology 

Mechanistic Digital 

twins applied to 

immunology 

Capturing the complexity of 

individual patients and 

facilitate the development of 

therapeutic interventions 

1. Conducting 

analysis and studies 

2. Optimizating 

therapies 

1. 

Unstructured: 

Images  

2. Structured 

data: Time 

Series  

3. Structured 

data: Cross-

Sectional  

No limitations identified 

in this paper 
Not defined 

Thakur et 

al. [51] 
Ophthalmology Glaucoma progression 

Improving the utility of 

TDOCT scans 

Conducting 

analysis and studies 

Unstructured: 

Images 

1. Lack of a standard 

evaluation benchmark 

2. GAN technical 

limitations 

Narrative 

review 

Gygi et al. 

[52] 
Immunology 

Predicting overfitting 

in immunological 

applications 

Testing of different AI 

Models 

Improving the 

performance of AI 

Models 

Unstructured: 

Text 

No limitations identified 

in this paper 
Not defined 

Magalhaes 

et al. [53] 
Gastroenterology 

Stomach precancerous 

lesions 

1. Data scarcity due to limited 

samples  

2. High Unbalanced datasets 

3. Enhancing dataset's quality 

4. Time-consuming data 

labeling 

5. Data anonymization 

1. Enabling 

secondary use of 

data and data 

sharing 

2. Improving the 

performance of AI 

Models 

Unstructured: 

Images 

1. Limited generalization 

of augmented datasets 

2. GAN technical 

limitations 

3. Synthetic data 

generators reproduce the 

bias present in the 

training data 

Not defined 

Majeed and 

Zhang [54] 
Epidemiology COVID-19 

1. Data sharing 

2. Enhancing dataset's quality 

3. Privacy preservation 

4. Data loss prevention 

5. Improving medical image 

segmentation, object 

detection and surgical 

planning 

1. Developing AI 

Models 

2. Improving the 

performance of AI 

Models 

1. 

Unstructured: 

Text   

2. 

Unstructured: 

Images 

No limitations identified 

in this paper 
Not defined 

 

3.3. Specific results 

The main findings for each specific topic are detailed in the subsequent subsections.  

3.3.1. Main Healthcare Domain and Subdomain 

The analysed articles encompass 13 main healthcare domains. These domains, listed from most 

to least frequently mentioned, are: Oncology (n = 10), Neurology (n = 7), Cardiology (n = 5), 

Endocrinology (n = 4), Epidemiology (n = 3), Gastroenterology (n = 3), Ophthalmology (n = 3), 

Immunology (n = 2), Dermatology (n = 1), Gynecology (n = 1), Nephrology (n = 1), 

Otorhinolaryngology (n = 1), and Pneumology (n = 1). Regarding subdomains, most reviews 

addressed different subdomains. The only subdomains appearing in more than one review were 

Diabetes (n = 4) and COVID-19 (n = 2). 
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3.3.2. Motivations 

The reviewed articles identify 45 different motivations for generating synthetic data, which can 

be consolidated into five main categories: data privacy and security, data scarcity, data quality, 

AI development, and direct medical and clinical applications. Figure 2 illustrates the distribution 

of these motivations within each category and their relative frequencies. A detailed table 

summarising the frequency of these 45 motivations across the articles is provided in Annex 1 of 

the supplementary material. 

 

Figure 2. Distribution and Relative Frequency of Motivations Categories. Figure 2A: Distribution of Motivations 

Across Categories. Figure 2B: Relative Frequency of Category Occurrences. 

3.3.3. Future Use 

The generated data have been applied in 14 specific use cases, which can be broadly categorized 

into three main areas: AI development, including training and validation of models and enhancing 

the generalizability and interpretability of existing models; enabling secondary use of data, such 

as data sharing and conducting analyses and studies; and enhancing clinical knowledge, serving 

as educational material or support during diagnosis and therapy. Figure 3 depicts the distribution 

of these use cases within each category and their relative frequencies. A comprehensive table 

summarising the occurrences of these use cases in the articles is available in Annex 2 of the 

supplementary material.  

 

Figure 3. Distribution and Relative Frequency of Use Cases Categories. Figure 3A: Distribution of Use Cases 

Across Categories. Figure 3B: Relative Frequency of Category Occurrences. 

3.3.4. Data Types 

Regarding the types of data generated, 30 out of 42 articles (71.43%) refer to the generation of 

unstructured data, while 18 out of 42 articles (42.86%) refer to the generation of structured data. 

Among the unstructured data, images are the most commonly generated type (n = 28), followed 

by text (n = 2) and video (n = 1). For structured data, both time series (n = 11) and cross-sectional 
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data (data collected at a single point in time, providing a snapshot) (n = 12) are similarly 

represented. 

3.3.5. Limitations 

Only 14 of the 42 reviews mentioned limitations. The most frequently cited limitations were 

related to GAN technical issues (n = 7), the absence of a standard evaluation benchmark (n = 5), 

and the transmission of biases from training data to synthetic data (n = 5). Additional limitations 

included the challenges posed by small and heterogeneous datasets, issues with the generalization 

of augmented data, and the loss of complexity inherent in real-world scenarios. 

3.3.6. Review Type 

Among the 42 reviews analysed, 22 do not specify their type. The remaining 20 reviews are 

categorized as follows: 10 Systematic reviews, 3 Systematic reviews and Meta-analyses, 2 

Scoping reviews, 2 Narrative reviews, 2 Surveys, and 1 State of the Art review. 

4. Discussion 
In this section, we emphasize the contributions of this scoping review of reviews. This study has 

systematically analysed all the reviews from the last decade that discuss the generation of 

synthetic data in different domains of healthcare. Specifically, we examined the main domains 

and subdomains where synthetic data are being generated, the motivations behind this generation, 

the potential future applications of these data, the types of data generated, the limitations 

identified by the authors regarding synthetic data generation, and the types of reviews analysed. 

Understanding the current state and potential growth areas for synthetic data in healthcare is 

important to identify how these data can help in addressing key challenges and contribute to 

advancements in healthcare domain. General reflections from the full-text screening process 

suggest that while synthetic data generation is a promising field with significant potential to 

address many current challenges in a multidisciplinary manner, it still needs to be further 

integrated and applied across the different areas of healthcare. This highlights the need for focused 

research on the current generation and applications of synthetic data to fully realize its potential 

and overcome existing barriers to its widespread adoption. 

Our findings towards healthcare domains indicate that synthetic data generation is most prevalent 

in fields such as Oncology, Neurology, and Cardiology, which reflects a high demand for data in 

these areas due to challenges like data scarcity and privacy concerns. Less frequently mentioned 

domains, including Dermatology, Gynecology, and Pneumology, suggest emerging interest and 

potential for further exploration. Regarding subdomains, there is greater variety, as most articles 

do not share common subdomains. The exceptions are the endocrinology articles focusing on 

diabetes [22,32,40,46] and articles addressing COVID-19 [28,54], reflecting the impact of these 

issues on society. This wide range of healthcare domains and subdomains where synthetic data is 

currently generated illustrates the versatility of this technology in the healthcare sector. 

Arising from our analyses, we have found that the motivations for generating synthetic data, while 

diverse, raise several critical concerns that are worthy of further consideration. These motivations 

can be broadly classified into five categories: data privacy and security, data scarcity, data quality, 

AI development, and direct medical and clinical applications. The emphasis on data privacy and 

security, while valid, often oversimplifies the complexities involved in ensuring truly anonymised 

synthetic datasets. The assumption that synthetic data can completely mitigate privacy risks 

overlooks potential vulnerabilities in the data generation process, such as re-identification risks if 

synthetic data are not sufficiently differentiated from real data especially in the health field. The 

issue of data scarcity, especially in cases of rare diseases in patients, highlights an important gap 

in health research that allows synthetic data to provide an answer. However, the reliance on 
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synthetic data to fill these gaps can lead to a false sense of data adequacy and we must consider 

principles mentioned above to ensure a minimum of quality. This limitation is often exacerbated 

by the quality of the available data, which is often unbalanced or incomplete.  

The development of AI as a motivation for synthetic data generation is compelling, given the need 

for large datasets to train sophisticated models. However, the quality of the AI models produced 

is intrinsically linked to the quality of the synthetic data. The risk of perpetuating existing biases 

or introducing new ones is a major concern that needs to be rigorously addressed. Potential 

pitfalls, such as privacy risks, data quality issues and biases, make it clear that the recent AI Act 

regulation adopted by the European Commission, and which entered into force on 1 August 2024 

will need to consider address these issues.  

Furthermore, synthetic data are used to promote open science and secondary data use through 

data sharing for analyses and studies, as well as to improve clinical knowledge by assisting in 

various tasks such as diagnostics and personalized therapies or serving as educational material. 

This demonstrates that synthetic data are valuable not only for technological advancements in the 

healthcare sector, such as the development of decision support systems, but also in the scientific 

and academic fields, facilitating open research and the sharing of higher quality information. 

The reviewed articles predominantly discuss the generation of unstructured data, particularly 

images, reflecting the critical role of medical imaging in healthcare. However, there is a notable 

gap in the generation of other types of unstructured data, such as video and text, which are 

increasingly relevant with the advent of more complex generative models. Structured data, 

including time series and cross-sectional data, also play a significant role in capturing 

comprehensive patient information and warrant further investigation to enhance their utility in 

healthcare applications. 

Only one-third of the articles identified limitations related to synthetic data generation. The most 

frequently mentioned limitation was technical issues with GAN models, such as instability during 

training and mode collapse. Additionally, there is a strong emphasis on the need for standard 

evaluation benchmarks, as highlighted in other studies like the one conducted by Murtaza et al. 

[10], and the transmission of biases present in the original data to the synthetic data, which is a 

necessary consideration. These three limitations are not exclusive to the health domain but are 

relevant to any type of synthetic data. This implies that as research on synthetic data generation 

advances, its application across all the different domains will continue to evolve. 

Lastly, it is worth noting that several studies have identified synthetic data generators for specific 

domains that are widely accepted and commonly used within the community. This practice should 

become more widespread in the coming years, fostering scientific progress across various health 

sectors and promoting research in synthetic data. The synthetic data generators referenced in 

several studies include the UVA/PADOVA Type 1 Diabetes Simulator [55], which is cited by 3 

out of the 4 articles concerning diabetes; and the simulator for single-cell RNA sequencing data 

(SPLATTER) [56], which is cited by the article focused on cancer biology. These two synthetic 

data generators serve as an ideal reference for the scientific community, facilitating greater access 

to quality health data without compromising individual privacy. 

4.1. Limitations and Strengths of the study 

This scoping review demonstrates several strengths. Firstly, the exclusive analysis of domain-

specific reviews ensures that the extracted content is reliable and relevant within the specified 

domain. Additionally, a systematic approach was employed, adhering to established guidelines 

and standards, enhancing the rigor of the review. To minimize bias, the extraction and analysis of 

results were conducted by three different researchers. These combined strengths ensure that the 

information provided in this review is aligned with the current knowledge in the literature. 
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However, a notable limitation of this study is the rapid growth of AI and its scientific output, 

which means that this review provides only a baseline snapshot that will continue to evolve in the 

coming years. Furthermore, the exclusion of articles discussing the future potential of synthetic 

data might have limited the scope of insights into emerging trends and anticipated developments 

in this field. Despite these limitations, this Scoping review complements the more technologically 

focused reviews by providing insights into the clinical and practical applications of synthetic data 

generation within healthcare, offering a robust foundation for future research in this field. 

5. Conclusions and Future Work 
Synthetic data generation is a promising technology with high potential to enhance healthcare and 

healthcare research. This study has reviewed 42 articles to provide a comprehensive overview of 

the primary healthcare domains and subdomains where these techniques are applied, their 

motivations, the types of data generated, their future uses, and the limitations encountered. While 

the analysis indicates that synthetic data with various characteristics and typologies are currently 

being generated across many main healthcare domains, the technology’s versatility and relatively 

early stage suggest considerable potential for future applications. 

Firstly, further investigation and application are needed in domains where synthetic data is just 

beginning to be used, such as Immunology, Dermatology, and Gynecology. It is also essential to 

extend their application to new domains and subdomains that have not adopted these techniques 

yet. Additionally, the generation of videos and text, which remains underexplored in the 

healthcare field, has great possibilities, especially with the recent advancements in generative 

models and Large Language Models. Finally, efforts are needed to define a standard evaluation 

benchmark, as previously highlighted in the literature, and to develop reference models for 

specific domains such as the UVA/PADOVA Type 1 Diabetes Simulator to foster open research 

and investigation in the generation of synthetic health data. 

Declaration of generative AI and AI-assisted technologies in 

the writing process 

During the preparation of this work, the authors used ChatGPT 4 in order to proof of read some 

of the text. After using this tool/service, the authors reviewed and edited the content as needed 

and take full responsibility for the content of the published article. 
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