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ABSTRACT  9 

The emergence of the SARS-CoV-2 and continuous spread of its descendent 10 

lineages have posed unprecedented challenges to the global public healthcare 11 

system. Here we present an inclusive approach integrating genomic sequencing and 12 

qPCR-based protocols to increment monitoring of variant Omicron sublineages. Viral 13 

RNA samples were fast tracked for genomic surveillance following the detection of 14 

SARS-CoV-2 by diagnostic laboratories or public health network units in Ceara 15 

(Brazil) and analyzed using paired-end sequencing and integrative genomic analysis. 16 

Validation of a key structural variation was conducted with gel electrophoresis for the 17 

presence of a specific ORF7a deletion within the "BE.9" lineages. A simple 18 

intercalating dye-based qPCR assay protocol was tested and optimized through the 19 

repositioning primers from the ARTIC v.4.1 amplicon panel, which was able to 20 

distinguish between "BE.9" and "non-BE.9" lineages, particularly BQ.1. Three ML 21 

models were trained with the melting curve of the intercalating dye-based qPCR that 22 

enabled lineage assignment with elevated accuracy. Amongst them, the Support 23 

Vector Machine (SVM) model had the best performance and after fine-tuning 24 

showed ~96.52% (333/345) accuracy in comparison to the test dataset. The 25 

integration of these methods may allow rapid assessment of emerging variants and 26 

increment molecular surveillance strategies, especially in resource-limited settings. 27 

Our approach not only provides a cost-effective alternative to complement traditional 28 

sequencing methods but also offers a scalable analytical solution for enhanced 29 

monitoring of SARS-CoV-2 variants for other laboratories through easy-to-train ML 30 

algorithms, thus contributing to global efforts in pandemic control. 31 
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 35 

Figure 1 Intercalating dye-based qPCR protocol devised for surveillance of SARS-CoV-2 BE.9 36 
lineages. The schematic illustrates the step-by-step process employed for the precise detection of 37 
the targeted deletion within the ORF7a gene (27,508-27,751) by analysis of amplification curves. 38 
Synapomorphy was identified by NGS, confirmed through electrophoresis of a subset of high-quality 39 
sequencing samples and compared with the amplification results. The protocol was automated using 40 
refined machine learning models for an extended set of 1,724 samples, trained through manual 41 
classification. 42 

INTRODUCTION 43 

The adaptability of viruses like SARS-CoV-2 through cumulative mutations denotes the 44 
dynamic interaction between pathogens and their environment. Mutations leading to 45 
structural modifications, such as insertions or deletions, are more likely to account for 46 
significant alterations in the biological behavior of the virus, ultimately fueling the emergence 47 
of variants with potential selective advantage and pathogenic profiles 1–3. This adaptive 48 
mechanism has been illustrated by the emergence of SARS-CoV-2 variants, which is known 49 
for its increased infectivity due to specific amino acid substitutions 4,5. The genetic diversity 50 
observed in RNA viruses, underscored by the continuous emergence of new mutations, 51 
highlights the evolving nature of these pathogens and the critical role of genomic 52 

surveillance in tracking these changes 3,6,7. The swift emergence and global proliferation of 53 
the Omicron variant (B.1.1.529) of SARS-CoV-2, along with its descendant subvariants, 54 
have heightened global apprehensions because of their extensive repertoire of distinctive 55 
genetic configurations and unprecedented transmission capabilities 8,9. Studies have 56 
illuminated the variant’s ability to outpace previous strains, such as the Delta variant, in 57 
terms of spread, leading to a considerable uptick in reinfection rates, affecting even those 58 
previously vaccinated or infected 10–13. The situation is compounded by the variant’s elusive 59 
severity profile compared with its predecessors, necessitating rigorous public health 60 
interventions 14–16 . Given the dynamic nature of the virus, heightened emphasis on genomic 61 
surveillance is imperative to track and understand the emergence of new strains, enabling 62 
proactive measures to mitigate their spread and impact. 63 
The global effort to monitor and control the spread of SARS-CoV-2 faces numerous 64 
challenges, including the economic and infrastructural disparities among countries. The 65 
challenges posed by NGS analyses, including high costs, lengthy response times, and its 66 
inaccessibility in economically disadvantaged regions, have spurred the scientific community 67 

to explore supplementary techniques 17–19. There has been a notable change toward 68 
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integrating polymerase chain reaction (PCR) and computational algorithms into the genomic 69 
surveillance toolkit. These methods offer a more immediate and cost-effective capability for 70 
detecting specific genetic markers, thereby enhancing the efficiency and scope of pathogen 71 
surveillance efforts 20,21 . 72 
Among this landscape of innovation, the intercalating dye-based qPCR protocol has 73 
emerged as an important technique in the field of genetic surveillance. Distinguished by its 74 
capacity for real-time DNA amplification monitoring and low cost, this protocol has shown 75 
remarkable efficacy in pinpointing specific genetic markers. Its use not only marks a 76 
significant advanced strategy in the rapid identification of variants of concern (VOCs) but 77 
also in understanding the intricate dynamics of viral adaptations 22,23. The protocols’ insights 78 
into the ORF7a gene, particularly its role in immune modulation and interaction with host 79 
cells, underscore the complex interplay between viral genetics and host defenses, 80 
highlighting the importance of nuanced genetic surveillance in preparedness to the 81 

challenges of the COVID-19 pandemic and beyond 3,24,25. 82 
The intercalating dye-based qPCR protocol is a low-cost assay technique, highly adaptable 83 
to near real time tool in the field of genomic surveillance, due to its steadfast deployment. 84 
This strategy can significantly improve both the speed and precision for target detections, 85 
proving reliable for the confirmation of key molecular signatures used for tracking the 86 
population dynamics and evolution of pathogens, such as SARS-CoV-2. Our work has 87 
highlighted the applicability of a lineage-defining genetic marker, a 244-base deletion within 88 
the ORF7a gene (27508 – 27751) characteristic marker of the Brazilian BE.9 lineage. We 89 
proposed this specific deletion could be informative and able to track in the spread of this 90 
lineage from September 2022 to May 2023 (https://gisaid.org/), underscoring the utility of a 91 
qPCR-based protocol in pinpointing the expansion of emerging variants and sublineages 92 
that pose new challenges to public health and vaccine efficacy. This seamless integration of 93 
computational analyses and a straightforward intercalating dye-based qPCR protocol 94 
represents a more direct and inclusive approach to monitoring viral evolution. It embodies 95 
the scientific community’s and public health policies in engaging in rapid response measures 96 
to monitor evolving pathogen variants, ensuring that public health strategies remain robust 97 
and responsive in the ongoing battle against immune escape and SARS-CoV-2 adaptability. 98 

RESULTS AND DISCUSSION 99 

Integrative Genomic Analysis and Categorization. SARS-CoV-2 genomic 100 
sequences with high-quality samples (horizontal coverage exceeding 90% and vertical 101 
coverage surpassing 100x) revealed a low depth region at position 27,508 – 27,751 of the 102 
ORF7a gene for previously classified as "BE.9" (Figure 2A), when compared with classified 103 
as "non-BE.9", particularly BQ.1 (Figure 2B). 104 
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 105 

Figure 2 Genomic vertical coverage profile of SARS-CoV-2 highlighting variations. The 106 
coverage distribution across the genome shows the difference between BE.9 (A) and non-BE.9 (B) 107 
lineages in the ORF7a gene region, showing the low coverage region due to the presence of the 244-108 
base deletion in the BE.9 samples. 109 

The presence of extensive low-depth sequenced regions presents significant challenges to 110 
bioinformatics analyses and interpretation, undermining potentially the accurate identification 111 
of genuine evolutionary events, such as deletions. The detection of this particular structural 112 
mutation (a deletion of 244 bp) within the ORF7a gene was corroborated by routine 113 
inspection of amplified targets separated by gel electrophoresis, which endorsed it as a 114 
synapomorphic signature of the BE.9 subvariants. The detection of a characteristic band in 115 
the range of 170-200 bp (S01 to S08) was found across all BE-9 samples phylogenetically 116 
assigned by whole genome sequencing. Amongst the 'non-BE.9' samples (S09 to S16), 117 
ORF7a bands between 400-430 bp were consistently present, thus denoting the absence of 118 
deletion (Figure 3). These distinct band patterns offer compelling evidence for the existence 119 
of genuine structural alterations between two major SARS-CoV-2 subvariants, of 120 
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independent origins, and reinforce findings from previous studies concerning the loss of 121 
genetic elements during the natural evolution of SARS-CoV-23. Additionally, it also 122 
contributed to obtaining evidence regarding the applicability of a PCR amplification protocol 123 
that makes use of intercalating dye-based strategies, aiming to increase speediness and 124 
robustness of the investigations. 125 

 126 

Figure 3 Agarose gel electrophoresis of amplified DNA fragments to validate the ORF7a 127 
deletion. The 'BE.9' groups (S01 to S08) show the absence of part of the band corresponding to 128 
ORF7a, located around 244 base pairs (bp), while the 'non-BE.9' groups (S09 to S16) show bands 129 
intact sections of ORF7a, between 400 and 430 bp. 130 
 131 

Initial intercalating dye-based qPCR amplification protocol. Building upon these 132 

insights, a qPCR protocol enhanced by the integration of the intercalating dye-based assay 133 
(BRYT® Green GoTaq mastermix, Promega inc.) aimed into amplifying the region 134 
encompassing the identified 244-base pair deletion, thus providing a targeted and high-135 
throughput method for distinguishing between ‘BE.9’ and ‘non-BE.9’ lineages, as well as a 136 
reliable, flexible and cost-effective approach 26,27. 137 

The results obtained from the first derivative melt curves of the sixteen samples are clarity in 138 
Figure 4, illustrating the melt curves corresponding to the BE.9 group and the non-BE.9 139 
group. All melt curves for the BE.9 group exhibited amplification at an average melting 140 
temperature (TM) of 76.78 ± 0.18°C, accompanied by fluorescence levels ranging between 141 
200k and 300k at its peak. In contrast, the non-BE.9 group displayed an average melting 142 
temperature of 80.76 ± 0.24°C, with a wider range of fluorescence intensity, spanning from 143 
200k to 400k. This confirmation, highlighted by the lower Tm for BE.9 and higher Tm for non-144 
BE.9, aligns with prior research suggesting that longer amplicons exhibit higher melting 145 
temperatures (TM) compared to shorter ones 28. Notably, it was observed during manual 146 
analysis and categorization of the samples that the melting curves with fluorescence levels 147 
below 100k were challenging to visualize and classify accurately. This challenge was 148 
significantly alleviated when the range was filtered to values greater than 100k, enhancing 149 
the clarity and precision of group classification.  150 
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Figure 4 Dissociation curve generated from the ORF7a_244del assay, designed for BE.9 152 
detection via RT-qPCR protocol. This assay targets the 244-base deletion in the ORF7a region of 153 
the SARS-CoV-2 genome, a defining characteristic of the BE.9 lineages. Samples attributed to the 154 
'BE.9' designation are highlighted in red, consistently exhibiting lower Tm values (76.78 ± 0.18°C), 155 
while 'non-BE.9' samples, depicted in blue, demonstrate higher Tm values (80.76 ± 0.24°C). Notably, 156 
the negative control displayed no amplification. 157 

The first derivative melt graphs of the sixteen samples demonstrated a distinct separation 158 
between the BE.9 and non-BE.9 groups. No instances of BE.9 were observed within the 159 
melting temperature (TM) range of the non-BE.9 groups, and reciprocally, underscoring the 160 
assay's effectiveness in distinguishing between these virus lineages. The behavior of the 161 
negative control (NTC) visualized in Figure 4, representing the absence of the virus, 162 
exhibited no fluorescence, indicating the absence of primer dimers or unintended products in 163 
the assay. This underscores the careful management of primers and ensures the assay's 164 
reliability by minimizing the presence of contaminating artifacts. 165 

Machine learning algorithms and data analysis. The SVM with a linear kernel 166 

emerged as the best-performing model, surpassing Logistic Regression and Gradient 167 
Boosting (Table 2). 168 

Algorithm 
                  Precision                     Recall                   F1-score 

Accuracy BE.9 Non- BE.9 Inconclusive BE.9 Non-BE.9 Inconclusive BE.9 Non- BE.9 Inconclusive

SVM 0.991 0.992 0.936 0.974 0.968 0.981 0.983 0.980 0.960 0.974 

Logistic Regression 1.000 0.976 0.910 0.932 0.984 0.971 0.965 0.980 0.940 0.963 

Gradient Boosting 0.983 0.976 0.961 0.983 0.984 0.952 0.983 0.980 0.957 0.974 

 169 

Table 2 Performance Comparison of Machine Learning Algorithms. This table presents the 170 
performance metrics of machine learning algorithms tested of different groups: "BE.9", "non-BE.9", 171 
and "Inconclusive". 172 

Optimizing the SVM parameters resulted in a tie between various hyperparameters 173 
configurations (Supplementary table 3). This table 3 compares the unoptimized version of 174 
the SVM model with the one using the settings {'C': 100, 'degree': 2, 'kernel': rbf, gamma: 175 
auto} on the evaluate set with the fine-tuned model on the test set. The accuracy 176 
demonstrated a marginal improvement, accompanied by enhanced precision, recall, and F1-177 
score metrics for certain subsets within the BE.9, non-BE.9, or inconclusive groups when 178 
evaluating the impact of fine-tuning on the test set. This uptick in accuracy indicates the 179 
accurate classification of previously mislabeled inconclusive curves as non-BE.9. However, it 180 
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is imperative to assess these metrics on unseen data. While there was a decrease in 181 
metrics, it is probable that these values reflect the true performance on other unseen 182 

datasets. 183 

Algorithm 
Precision Recall F1-score 

Accuracy BE.9 Non- BE.9 Inconclusive BE.9 Non-BE.9 Inconclusive BE.9 Non- BE.9 Inconclusive 

SVM Before Tuning 

(Evaluate set) 
0.991 0.992 0.936 0.974 0.968 0.981 0.983 0.980 0.958 0.974 

SVM After Tuning 

(Evaluate set) 
1.000 0.969 0.980 0.992 0.992 0.962 0.996 0.980 0.971 0.983 

SVM After Tuning 

(Test set) 
0.989 0.957 0.955 0.949 1.000 0.939 0.968 0.978 0.947 0.965 

Table 3 Performance Comparison before and after SVM Parameter Optimization. This table illustrates 184 
the performance comparison between the unoptimized version of the Support Vector Machine (SVM) 185 
model and the version utilizing specific hyperparameter settings {'C': 100, 'degree': 3, 'kernel': 'linear'}. 186 

The high accuracy signifies substantial reliability when utilizing melting curve points for curve 187 
classification, automating the process. Other studies have approached diagnostic 188 
classification using derived metrics, whether through Principal Component Analysis (PCA) 189 
30,31, metrics related to curve shape (skewness, kurtosis etc) 20, or variables associated with 190 
the technique itself (amplicon melting temperature) 32, achieving accuracies ranging from 191 
72% to 100%. In this work, however, we chose to directly use the curve itself, transforming 192 
each point of every curve into a column, or feature, for the model, employing a simple data 193 
normalization step. This approach streamlines the model development process, ensuring 194 
simplicity without compromising accuracy. It is noteworthy that the clear distinction between 195 
curves for BE.9 and non-BE.9 classification enables this approach. By utilizing points from 196 
the curve directly, the model gains the flexibility to discern nuances indicating which 197 

individual points are more crucial for correct result classification. 198 

The confusion matrix reveals correct classification values for the BE.9 lineage at 94.85% (n 199 
= 92), non-BE.9 at 100.00% (n = 134), and inconclusive at 93.86% (n = 107) (Figure 5). 200 
Despite the high classification accuracy for SARS-CoV-2 BE.9 and non-BE.9 lineages, there 201 
is a noticeable decline in classification quality for inconclusive curves, often reflecting the 202 
subjective nature of classification by analysts. It is crucial, therefore, during the 203 
establishment of the gold standard used for model training, to clearly define each of the 204 

curves. 205 
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 206 

Figure 5 Melting Curve Classification Performance. The performance of melting curve classification 207 

shows the high accuracy achieved, indicating substantial reliability in automating the classification 208 

process. 209 

The utilization of free platforms such as Google Colaboratory could contribute to the 210 

democratization and swift investigation of outbreaks of new variants in regions lacking 211 

computational power 33. Simple modeling from minimally processed data represents an 212 

encouraging opportunity for other groups to optimize protocols, demystifying the use of 213 

machine learning algorithms in routine laboratory procedures, allowing for biological 214 

applications as already used for other purposes 34,35. 215 

CONCLUSIONS 216 

In conclusion, our study demonstrates the efficacy of the implemented optimized 217 

intercalating dye-based qPCR protocol combined with machine learning (ML) analysis as a 218 

powerful method for discriminating and classifying independent SARS-CoV-2 sublineages of 219 

high homology. This approach offers automated binary inference of the most probable 220 

circulating SARS-CoV-2 sublineages (BE.9 or non-BE.9), providing a valuable complement 221 

to the more complex NGS-based surveillance methods. The identification of a region of low 222 

vertical coverage in BE.9 samples, confirmed through gel electrophoresis as a genuine 223 

synapomorphy in the form of a 244 bp deletion, underscores the importance of structural 224 

genomic alterations in providing alternatives for monitoring emergence and spread of SARS-225 

CoV-2 variants. 226 
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Moreover, the distinct melting temperature (TM) curves between 'BE.9' and 'non-BE.9' 227 
groups, along with a classification sensibility of 94.85% and 100.00%, respectively, using the 228 
SVM ML algorithm, highlight the robustness of our methodology. Despite initial challenges 229 
with "inconclusive" samples, primarily stemming from characteristics of reused rapid antigen 230 
tests, our method maintained a high classification sensibility of 93.86% for identifying such 231 
samples. These results underscore the potential of qPCR-based protocols for investigating 232 
evolutionary patterns in pathogens, with broad implications for diagnostics, surveillance, and 233 

public health interventions. 234 

Moving forward, further research is warranted to validate and refine our method, extending 235 
its applicability to other infectious diseases and addressing any existing limitations. This will 236 
ensure its continued relevance in the dynamic landscape of infectious disease research and 237 
control. Additionally, the integration of machine learning methodology, as demonstrated in 238 
this study, enhances the analytical capabilities of generated data, ultimately optimizing 239 

lineage diagnosis. 240 

Furthermore, exploring the potential application of non-specific intercalating dye assays for 241 
detecting and identifying various pathogens opens avenues for extending this innovative 242 
methodology of machine learning to other assays. This broader application not only 243 
enhances its utility but also reduces costs and the need for robust equipment, making it 244 
more accessible to diverse research settings. Overall, our study contributes to advancing 245 
methodologies in infectious disease research and underscores the potential of 246 
interdisciplinary approaches in combating emerging pathogens. 247 

METHODS 248 

Origin and acquisition of samples. The viral RNA samples were acquired through a 249 
collaborative initiative focused on genomic monitoring of SARS-CoV-2, conducted by the 250 
Fiocruz Genomic Surveillance Network—an entity under the Brazilian Ministry of Health. 251 
These samples were derived from the repurposing of rapid antigen tests conducted as part 252 
of routine clinical care, screening processes, and active surveillance for variants in hospitals 253 
and health centers in the state of Ceara, Brazil. 254 

Integrative Genomic Analysis and Categorization. The paired-end sequencing was 255 

conducted during the routine process for genomic surveillance of SARS-CoV-2, employing 256 
the Artic v4.1 primer set (https://github.com/artic-network/artic-257 
ncov2019/blob/master/primer_schemes/nCoV-2019/V4/SARS-CoV-2.primer.bed) in 258 
conjunction with the CovidSeq protocol, used as recommended by the manufacturer, 259 
implemented on the Illumina NextSeq 2000 platform for all samples. The raw sequencing 260 
data underwent a rigorous analysis utilizing the ViralFlow v1.0.0 workflow 261 
(https://viralflow.github.io/), which encompasses quality control, pre-processing, alignment of 262 
high-quality reads to the reference genome and genome assembly. Lineage classification 263 
was executed utilizing the Pangolin v4.3.1 36 and Nextclade v3.0.1 37 softwares, which 264 

facilitated the identification and annotation of genetic variations.   265 

Sixteen high-quality sequencing samples were meticulously chosen for the validation step 266 
based on stringent criteria, ensuring horizontal coverage exceeding 90% and vertical 267 
coverage surpassing 100x. These samples were drawn from two distinct groups: the 'BE.9' 268 
group, comprising S01 to S08, and the 'non-BE.9' group (other lineages), consisting of S09 269 
to S16, based on lineage classification generated by Pangolin. The BAM file was evaluated 270 
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using the Geneious prime software and the coverage variation throughout the genome was 271 
used to predict the 244 bp deletion present in the ORF7a gene of BE.9 group. 272 

To confirm the presence of the anticipated ORF7a deletion, genomic DNA from each 273 
selected sample underwent 2% agarose gel electrophoresis. Electrophoresis was conducted 274 
for 4 hours at 90V, facilitating thorough separation and visualization of DNA fragments, 275 
including the targeted deletion in ORF7a. The bands were viewed using ThermoFisher 276 
iBright equipment, allowing instantaneous image generation. 277 

Machine learning algorithms and data analysis. A total of 1,724 curves of the 278 
optimized protocol were manually analyzed and categorized based on previously established 279 
standards as 'BE.9', 'non-BE.9', or 'Inconclusive', and the curve points were served as input 280 
for model training. The total curves were separated into a matrix X, containing all points from 281 
all curves, and a vector y, containing correct classification values for each curve. The 192nd 282 
point of each curve (last column of matrix X) was removed due to 475 samples having a null 283 
value at this position. Following, the data was split into training sets (60%, n = 1034), 284 
evaluate set (20%, n = 345) and test sets (20%, n = 345).  Subsequently, X values were 285 
normalized to a range of 0 to 1, crucial for unbiased training of two employed models and the 286 
X train was balanced to prevent over representative class bias. 287 

Three machine learning algorithms were employed for data modeling: Gradient Boosting 288 
(GB), Support Vector Machine (SVM), and Logistic Regression (LR). Models were run with 289 
default parameters, except for SVM, where the 'kernel' parameter was changed to 'linear' 290 
instead of 'rbf.' The analysis was conducted using Python 3.10.12 in conjunction with the 291 
Scikit-learn 1.4.0 library (for Support Vector Machine and Logistic Regression) and XGBoost 292 
2.0.3 package (for Gradient Boosting), all implemented within the Google Colaboratory 293 
environment. The code used for training the machine learning models is available in 294 
Supplementary Material 1. 295 

The model, exhibiting the highest accuracy, reflecting overall correctness, underwent a grid 296 
search optimization step, exploring different parameters for fine-tuning, with a particular 297 
focus on optimizing for the accuracy parameter. The supplementary table 3 compiles the 298 

results of the grid search 38. 299 
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