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Abstract  

Federated Learning (FL) has emerged as a promising solution to address the limitations 

of centralised machine learning (ML) in oncology, particularly in overcoming privacy 

concerns and harnessing the power of diverse, multi-center data. This systematic review 

synthesises current knowledge on the state-of-the-art FL in oncology, focusing on breast, 

lung, and prostate cancer. Distinct from previous surveys, our comprehensive review 

critically evaluates the real-world implementation and impact of FL on cancer care, 

demonstrating its effectiveness in enhancing ML generalisability, performance and data 

privacy in clinical settings and data. We evaluated state-of-the-art advances in FL, 

demonstrating its growing adoption amid tightening data privacy regulations. FL 

outperformed centralised ML in 15 out of the 25 studies reviewed, spanning diverse ML 

models and clinical applications, and facilitating integration of multi-modal information for 

precision medicine. Despite the current challenges identified in reproducibility, 

standardisation and methodology across studies, the demonstrable benefits of FL in 

harnessing real-world data and addressing clinical needs highlight its significant potential 

for advancing cancer research. We propose that future research should focus on 

addressing these limitations and investigating further advanced FL methods, to fully 

harness data diversity and realise the transformative power of cutting-edge FL in cancer 

care. 
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Introduction 

Oncology is undergoing rapid transformation due to the integration of machine learning 

(ML), which can enrich clinical evidence from large-scale datasets, surpassing traditional 

analytics [1-4]. However, as of today, ML models have predominantly been centralised 

within data silos [1, 2]. While centralised ML models have substantially advanced cancer 

research [3], the exponential growth and diversification of clinical data such as imaging, 

health records and molecular profiles now pose considerable challenges [4]. This surge 

in data, coupled with a trend toward international collaboration and standardised datasets, 

highlights the limitations of single-centre studies confined by local data acquisition 

practices and demographics. Multi-centre studies, drawing from diverse regions, offer a 

more comprehensive ML modelling approach. However, centralised models struggle to 

effectively exploit this increasingly complex data landscape, potentially compromising ML 

generalisability, performance, global applicability and trustworthiness [5]. While 

aggregating data from various sources in centralised data lakes potentially offers an 

alternative, it is susceptible to privacy breaches, complex data-sharing agreements and 

legal restrictions on data transfers [1].  

Federated learning (FL) has emerged as a potential solution to these limitations. With FL, 

ML algorithms can be trained simultaneously on local datasets without data leaving their 

environment [6]. This decentralised approach allows hospitals and institutes to retain 

control over their data, addressing privacy concerns and regulatory restrictions, while 

benefiting from collective insights [7]. FL is particularly promising in oncology, where the 

data pertains to sensitive patient information and where timely collaborative analysis can 

have a significant impact on patient outcomes [8]. However, the adoption of FL is not 

without its challenges. Balancing effective model training with patient privacy techniques 

that can add computational overheads and may affect data contents, ensuring data 

quality and consistency across multiple centres, and maintaining robust model 

performance and trustworthiness are pressing concerns [9].  

Given the rapid evolution and potential of FL in oncology, we conducted a systematic 

review to synthesise current knowledge, identify best practices, and highlight gaps in the 

existing literature. This review will provide researchers and clinicians with a 
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comprehensive understanding of how state-of-the-art FL can be effectively implemented 

to overcome the limitations of centralised ML. We analyse key FL/ML architectural and 

implementation designs, critically evaluate the effectiveness and scope of FL in breast, 

lung, and prostate cancer, and discuss best practices and considerations for future work. 

Further, we assess FL rigour using 2 objective criteria: a) inclusion of a comparative 

framework to evaluate the proposed FL/ML model against centralised ML baselines 

developed on the same datasets (either through direct evaluation in the study or by 

referencing reported literature values), and/or b) whether the proposed FL/ML model 

surpasses or demonstrates comparable performance to these baselines.  

We evaluated state-of-the-art advances in FL, demonstrating its growing adoption amid 

tightening data privacy regulations. We perform this review analysis in the framework of 

the OPTIMA IMI2 project (OPTIMA | IMI Innovative Medicines Initiative ), which focuses 

on combining ML and FL to enhance personalised diagnosis and treatment in breast, 

lung, and prostate cancer, and forms a systematic initiative to address global clinical 

challenges and unmet needs in cancer research. We aim to provide a comprehensive 

review of the current state of cutting-edge FL in these 3 oncology areas, to inform future 

research and clinical practices in the framework of the OPTIMA consortium and beyond.    
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Methods 

Literature review strategy 

A comprehensive literature search was conducted following the Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Figure 1) [10]. 

We systematically reviewed the literature published on FL techniques in breast, lung, and 

prostate cancer ML analysis, from January 1, 2020 to September 1, 2023. This period 

captures recent developments in FL, reflecting its transition to an established practice 

amid tightening data privacy regulations [6-9]. Despite initiating our literature review in 

early 2020, we found no publications matching our criteria until 2021 (Figures 2-3). 

Database searches included PubMed, Scopus, and Web of Science, utilising a 

combination of keywords and medical subject headings (MeSH) terms related to 

oncology, FL and ML. An expert librarian from the University of Oxford specified the 

keyword space.     

Initial searches using broad keywords in abstracts, titles, and manuscript keywords 

related to oncology and ML yielded 5,766 papers. These keywords were: Oncology OR 

Cancer OR Carcinoma OR Malignant OR Neoplasm OR Tumor OR Tumour; Machine 

Learning OR Deep Learning OR Convolutional Neural Network OR CNN OR Generative 

Adversarial Network OR GAN OR Variational Autoencoder OR VAE OR Diffusion OR 

Transformer.  

Subsequently, to focus the search, we mined only publications relevant to the 3 oncology 

areas of interest, FL and all possible patient-level data types involved in oncology. 

Specifically, we added the following keywords in the abstract, title, and manuscript 

keywords: Breast OR Mammary OR Prostate OR Lung Oncology OR Cancer OR 

Carcinoma OR Malignant OR Neoplasm OR Tumor OR Tumour; Federated Learning; 

Real World Evidence OR Real World Data OR Medical Imaging OR Magnetic Resonance 

Imaging OR Computed Tomography OR Positron Emission Tomography OR Ultrasound 

OR Echo OR Digital Breast Tomography OR Digital Pathology OR Genetic OR Genomics 

OR Transcriptomics OR Electronic Health Records OR Clinical Data OR Hospital Data 

OR Primary Care Data OR Secondary Care Data OR Computational Biology. By adding 
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these terms, we removed all irrelevant publications to the 3 oncology areas, FL and 

patient-level data types, leaving 81 papers for screening (Figure 1).  

Non-journal publications and duplicates were removed by 6 authors (AA, MA, EG, SB, 

SAH, GP), resulting in 40 papers. These authors screened further for relevance focusing 

on FL methods in the specified cancer types using ML for analysis. We excluded non-

English publications, studies outside the specified data types and oncology areas, and 

studies not focusing on FL applications, leaving 31 papers for full-text review. Following 

full-text review by the same 6 authors (in groups of 2 researchers per publication) and 

inclusion/exclusion criteria, we removed 6 more papers. Conflicts between authors were 

resolved through consensus with the rest of the review team. In total, 25 journal papers 

were included in our review analysis.  

Review aspects  

During full paper review, we considered the following aspects: (1) year of publication; (2) 

central ML technical task addressed; (3) clinical application addressed; (4) central ML 

model architecture used; (5) FL method; (6) aggregation strategies for FL; (7) device 

types; (8) datasets used for analysis (imaging, electronic health records, and other); (9) 

privacy method; (10) FL evaluation; (11) scope of FL; (12) oncology area. We also 

evaluated data diversity by (13) patient size and (14) data size. Furthermore, to assess 

whether it is possible to reproduce these FL techniques, we considered (15) data type 

per publication (private, public or both).  

For clinical applications (3), we categorised: disease type differentiation, tumour 

identification, treatment response prediction, severity assessment, side effect prediction, 

survival analysis, and assessment of tumour recurrence. To improve clarity, we 

categorise all published work on cancer diagnosis against benign tumours and diseases 

other than cancer as “disease type differentiation”, on tumour classification, segmentation 

or detection from (bio-)medical imaging data as “tumour identification” and on staging as 

“severity assessment”. For ML models (4), we categorised: Classic ML: logistic 

regression, support vector machine, extremely randomised tree, random survival forest, 

random forest; Convolutional Neural Network (other than UNets and pre-trained models) 

(CNN ALL): CNN (Encoder-Decoder, E-D), 2D CNN (E-D), 3D CNN (E-D), CNN (E-D) 
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with multiple instance learning; Large Pre-trained (ALL): 2D ResNet, 3D ResNet, ResNet-

201, ResNet-18, Mobilenet-v3, Xception-v3; GAN (ALL): GAN, WGAN, CycleGAN; UNet 

(ALL): 2D UNet, nnUNet, 3D UNet; Other: capsule neural network, recurrent neural 

network and region-based CNN.   

In (5), we considered the 2 major FL methods: model-centric and data-centric [1]. In (6), 

aggregation strategy refers to the method by which updates or model parameters from 

participating devices are combined to generate a global FL model [1, 6-9]. This process 

involves aggregating local model updates or parameters, to balance the contributions of 

individual devices while preserving the privacy of the local data. Aggregation strategies 

play a pivotal role in FL by ensuring that the global model accurately represents the 

collective knowledge of all participating devices [1, 6]. For (7), the term “device types” 

refers to different categorisations of “central” devices based on their data distribution and 

functionality within the FL framework [1, 6]. In our reviewed work, we identified 2 device 

types: cross-device and cross-silo. In (11), the “scope of FL” encompasses all major end 

goals of scientific and clinical impact identified in our review: ML model generalisability 

(to unseen data instances from various local devices), ML model prediction improvement 

(by potentially learning from a broad range of data patterns and insights across devices), 

data privacy, disease understanding improvement (through the analysis of multiple device 

data), domain adaptation and training time reduction. Note that apart from data privacy, 

all other scopes benefit from increased data heterogeneity and patterns provided by 

FL/ML.   

We assessed FL rigour based on 2 objective criteria across all FL scopes: a) whether a 

comparison framework was involved to evaluate the proposed FL technique against 

central ML baselines developed on the same datasets (either directly evaluated in the 

study or by reporting literature values); and b) if they outperformed or showed comparable 

results to these baselines. 
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Results 

Research trends 

Our review of FL publications in breast, lung, and prostate cancer research from 2020 to 

2023 reveals a growing interest, with none, 4, 8 and 13 papers identified respectively.  

We observed a diverse exploration of ML techniques including Large Pre-trained (10 

papers), UNet (7), CNN (6), Classic ML (6), GAN (2), and Other (3). The majority 

addressed classification (14 papers), followed by segmentation (5), detection (5), and 

regression (1) (Figure 2b). Table 1 details technical tasks, ML algorithms, and evaluation 

metrics across studies.  

In terms of clinical application, most studies focused on tumour identification (8 papers) 

and disease type differentiation (7), followed by severity assessment (4), treatment 

response prediction (2), survival analysis (2), and Other (2) (Figure 3a). Five studies did 

not mention their clinical application. On FL scope, the majority of FL techniques focused 

on improving ML model generalisability (14 papers), followed by ML prediction 

improvement (13), data privacy (8), disease understanding improvement (2), and Other 

(2) (Figure 3b). Table 2 details FL scopes and oncology areas.  

Federated machine learning  

We analysed combinations of datasets, central ML models, technical tasks, and FL 

methods (Figure 4). The Large Pre-trained models were used for (bio-)medical imaging 

data: magnetic resonance imaging (MRI), computed tomography (CT), whole-slide 

imaging (WSI), and X-ray. The UNet models were developed for MRI, CT, hybrid positron 

emission tomography-CT (PET-CT), and X-ray. The CNN models analysed diverse 

datasets including WSI, digital mammography, MRI, CT, and electronic health records 

(EHR). The Classic ML models were primarily used for EHR and imaging features 

extracted from CT [11, 13, 22] and MRI [22]. GAN models were only developed for MRI 

and CT [19, 22] and Other models for EHR, CT, and digital mammography [18, 31].  

All ML model types addressed classification, with Large Pre-trained, Classic ML, and 

CNN (ALL), being the 3 most frequently used models (Figure 4, Table 1). Classification 

tasks were mainly addressed for (bio-)medical imaging data followed by EHR (Figure 4) 
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[11-14, 16, 18-21, 24, 26, 27, 29, 30, 32-35]. Segmentation and detection tasks were 

mainly approached through UNet variants [15, 22, 25, 28, 34] and Large Pre-trained 

models [17, 20], respectively. Some studies addressed multiple tasks (Table 1).   

Federated cancer research  

Subsequently, we analysed combinations of clinical applications, datasets, FL scope, and 

organ areas (Figure 5).  

Tumour identification was addressed using (bio-)medical imaging data: CT [17, 18, 22], 

MRI [22, 34], X-ray [25, 35], PET-CT [15] and WSI [16]. Disease type differentiation was 

addressed using X-ray [35], WSI [16, 30], digital mammography [29, 31] and EHR data 

[14]. Severity assessment (staging) was investigated through (bio-)medical imaging data 

[18-20, 34]. Two pairs of studies explored the combination of tumour identification with 

other clinical applications: 1 pair focused on disease type differentiation (using WSI and 

X-ray respectively) [16, 35], while the other examined severity assessment (CT and MRI 

respectively) [18, 34]. Treatment response prediction (CT, MRI, WSI) [12] and survival 

analysis (clinical data, genomics) [27] were also examined as standalone tasks, and in 

combination (EHR, CT) [13]. Side effect prediction (EHR, CT) [11] and tumour recurrence 

(EHR) [26] were examined in 1 paper each.  

In terms of FL scopes, most articles focused on model generalisability and ML prediction 

improvement (Figures 3b and 5, Table 2). For both ML model generalisability and 

prediction improvement, tumour identification was the predominant task (Figure 5). Breast 

and lung cancer research were the most frequent (8 studies each, Table 2). 

Data diversity  

The size of patient cohorts and data volumes varied considerably (Table 3). Most studies 

had cohorts of 100-1,500 patients, with data sizes (images or samples) in the range 1-

5,000 [12, 19] and 5,000-1,000,000 [17, 27, 28]. Six papers analysed data from ≥1,500 

patients, with 3 of these having explored data from >10,000 [13, 24] and >100,000 [32] 

patients, respectively. Two papers had small patient sizes of ≤100, corresponding to data 

sizes of 5,000-10,000 [16, 30]. Seven papers did not mention their patient size. 
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Datasets across studies were mostly public (18 papers) than private (9 papers), with 5 

studies using a mixture of the 2 (Table 3; [15, 18, 22, 29, 32]).  

FL implementation details   

Most papers did not specify the FL method used (Figure 4). Among those that did, 

horizontal FL was the most frequent (11 papers), with only 2 papers referring to vertical 

FL [25, 27]. The remaining papers did not specify the model-centric technique employed. 

Horizontal FL was used mainly for classification tasks [14, 18-20, 24, 26, 33, 35], followed 

by detection [17, 20, 22], segmentation [22, 23] and regression [26].  

Most papers did not report their aggregation strategy, with only 5 studies explicitly 

mentioning the techniques used: federated averaging [12, 16, 17, 29] and consensus 

model ensemble [11]. Device subtype information was limited, with only 4 papers 

referencing cross-silo FL [31, 32, 34, 35] and 1 referencing cross-device FL [30]. Only 5 

papers explicitly reported their privacy method: differential privacy [26, 29], secure 

aggregation [14], secure multi-party computation [33] and homomorphic encryption [28].   

Evaluating FL scope rigour  

We evaluated articles for FL rigour based on 2 objective evaluation criteria: a) whether a 

comparison framework was used to evaluate FL against with central ML baselines on the 

same datasets, and/or b) whether FL outperformed or showed comparable results to 

these baselines. The following paragraphs are organised as follows: we start by 

describing the most frequent FL scopes identified in our review. When more than 1 FL 

scope is involved across papers, all scopes are explicitly detailed at the time each paper 

is first introduced under the relevant subsection.    

ML model generalisability  

FL can enhance model generalisability by using diverse data sources. For example, 

Agbley et al. used federated averaging with a pre-trained ResNet on histopathology 

images to classify breast tumours [16]. To overcome the challenge of dataset variability, 

the authors integrated various image magnification factors using self-attention. Their FL 

approach achieved 95.95% accuracy, surpassing various baseline models and 

demonstrating improved ML generalisability and prediction while protecting data privacy. 
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In the context of lung cancer, a paper by Zhu et al. presents a novel knowledge-sharing 

model for pulmonary nodule pre-segmentation and detection from CT data [22]. It uses a 

3-stage framework with a) a UNet based mask generator, b) a discriminator with 

knowledge from electronic medical records and c) a random forest-based lung nodule 

detector. The system iteratively shares knowledge between a central server and client 

devices to improve the quality of generated masks and to normalise data distribution, 

addressing the challenge of non-independent and identically distributed (non-IID) data. 

Their FL technique outperformed a number of central ML baselines reaching a mean 

competition performance metric of 89% and a mean Dice score of 76% on non-IID data 

across each client, therefore improving model generalisability. In [24], the authors 

explored EHR for lung cancer classification, by developing single and cyclic weight FL 

using 2 underlying ML models: artificial neural network and logistic regression. By 

comparing their FL models against the same central ML models across 2 institutions, they 

showed that FL improved only the artificial neural network-derived results (accuracy 

ranged from 68-74%). Another collaborative learning method used a federated ResNet 

model for image classification of lung cancer using large data from 5 institutions with 

differing labels [32]. In total, they analysed >695,000 thoracic radiographs. The authors 

proposed a “flexible” FL architecture in which they divide the ResNet model into a 

classification head and a feature extraction backbone. The feature extraction backbone 

was shared across all sites, with weights jointly trained under a single FL scheme. Using 

their “flexible” FL method, the authors showed that model generalisability and 

classification accuracy were improved against locally trained ResNet models and 

conventional FL that used only uniformly annotated images. 

In prostate cancer, Yan et al. developed a variation-aware FL (VAFL) method which 

aimed to assess tumour severity, through MRI classification [19]. The authors introduced 

VAFL to mitigate cross-client image variation. To perform VAFL, the client with the least 

complex data was selected to define the target image common space. A privacy-

preserving GAN model was trained on these data to synthesise target MR images. A 

subset of these synthesised MR images was then shared with all clients and each client 

utilised a modified CycleGAN to map their own images onto this standardised target 

image space. Using synthetic MRI data, the authors improved both model generalisability 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.08.24311681doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.08.24311681
http://creativecommons.org/licenses/by-nc/4.0/


12 

and ML classification accuracy in identifying clinically significant prostate cancer, 

outperforming local classifiers by reaching an accuracy of 98.75%. Data privacy also 

remained secured. In a multi-cancer work, the authors used a pre-trained ResNet-18 

model to perform image detection and a CNN model to classify clinically significant 

against non-significant prostate cancer (from MRI data) and malignant against benign 

skin lesions [20]. They report that their FL model secured data privacy, and enhanced 

both model generalisability and ML classification accuracy, by outperforming locally 

trained classifiers and other FL model techniques. The diagnostic accuracy ranged from 

95.6% to 82.9% on private data and from 88.7% to 73.4% on public data when their FL 

method was evaluated on 2 up to 32 clients, respectively. Another work focused on 

developing a federated 3D Anisotropic Hybrid Network for CT image segmentation in 

prostate cancer [23]. When tested on unseen data, this FL model consistently 

outperformed 3 local (private) models trained at individual institutions, reaching a Dice 

score of 89,5% on private data and 88.9% on public data, demonstrating superior 

generalisability and performance. Gao et al. proposed a novel swarm learning method for 

MRI and CT image segmentation in multi-disease data (cardiac, brain and prostate 

tumours), which could train UNet models using partially labelled images from multiple 

centres [28]. To tackle inhomogeneous label distributions across centres, they introduced 

a label skew-awared loss by consolidating global from local knowledge of partial labels. 

The authors demonstrated Dice scores in the range of 81.1-92.5% on non-IID data 

(across all disease areas), outperforming other FL methods and showing comparable 

results to centralised fully-supervised UNet models. In [34], the authors employed a FL 

approach to train a 3D UNet model with a region-of-interest classification head on diverse 

annotated prostate MRI data. This collaborative training approach led to substantial 

improvements in performance compared to local training, boosting lesion classification 

accuracy by 9.5-14.8% and nearly doubling lesion segmentation accuracy.  

Improving ML prediction 

FL harnesses the collective strength of diverse data sources, mitigating data biases and 

enabling the model to learn intricate patterns, potentially deriving more accurate 

predictions. In the following paragraphs, we detail articles which were designed to 

improve ML predictions through FL. Since there were studies that evaluated both FL/ML 
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model predictions and generalisability, we have already detailed these overlaps in the 

previous subsection [16, 19, 20, 32]. Here below, we highlight the remaining articles that 

satisfied our 2 criteria.  

Breast cancer was the most frequent area in which FL was used for ML performance 

improvements [12, 14, 16, 27, 31, 33]. Study [12] applied federated averaging and 

multiple instance learning to WSI and clinical data, to predict the histological response to 

chemotherapy in early-stage triple-negative breast cancer. The authors aimed to improve 

ML predictions as well as disease understanding and achieved a mean AUC of 66% 

(range: 57-78%), outperforming central ML baselines. Study [14] focused on federating 

extremely randomised trees, to analyse distributed structured health data for disease 

classification, reporting an accuracy of 95.3% and an F1 score of 95.4%. It showed 

comparable results to central ML baselines. Another work expanded the application of 

privacy-preserving FL to survival analysis, assessing its potential in breast cancer 

genomics, with reported accuracies ranging from 81-92.5% across all 4 datasets explored 

[27]. The proposed FL outperformed all central ML baselines. In [31], the authors used a 

DenseNet feature extractor which fed an RNN-based classifier for breast cancer 

classification, from digital mammography data. The authors trained the model using a 

hybrid optimisation algorithm, achieving an accuracy of 94.22%, outperforming 3 central 

ML and 1 FL baselines. Another breast cancer work focused on enhancing model 

prediction and protecting data privacy by using a simple neural network classifier on 

clinical datasets, reaching an accuracy of 99% and outperforming a number of central ML 

baselines [33]. 

In lung cancer, we found 2 papers that applied FL to enhance ML predictions [17, 18]. 

The first study showcased an FL model employing a 3D ResNet18 for lung nodule 

detection, achieving an accuracy of 83.41% [17]. Although the proposed FL model was 

compared against previous FL methods, there was no comparison against central ML 

baselines. Study [18] combined FL with blockchain to create a collaborative, privacy-

preserving model for lung cancer classification, demonstrating a high detection accuracy 

of 99.69% which outperformed central ML methods. The authors also reported that their 

FL method led to reduced training time, compared to central ML models.  
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In a multi-cancer study (including breast cancer) [26], the authors performed differential 

privacy to predict tumour recurrence from clinical data, by using a CNN model. The 

authors focused to improve ML predictions and disease understanding, demonstrating 

high FL accuracy (>90%) and outperforming central ML baselines.   

Data privacy 

Although data privacy is a core aspect of FL, only 8 papers explicitly mentioned it within 

their scope. Most of these papers were covered in the subsections “Model 

generalisability” [16, 19, 20] and “Improving ML prediction” [18, 27, 33], as their data 

privacy considerations were intertwined with those topics. In 2 publications, data privacy 

was addressed as a standalone focus and these are further discussed below [11, 30].  

Peta and Koppu developed an automated breast cancer classification system using FL 

combined with deep learning to enhance diagnostic accuracy from histopathological 

images [30]. The authors compared the performance of their proposed Convolutional 

Capsule Twin Attention Tuna Optimal Network against existing deep learning models (i.e., 

CNN, BiLSTM, DNN, CapsuleNet), using the public BreakHis dataset. The authors 

reported superior performance with an accuracy of 95.68%, outperforming all previous 

centralised ML models.  

In their lung cancer classification work, Field et al. developed a federated consensus 

model ensemble using logistic regression on private clinical data [11]. Their technique 

demonstrated comparable accuracy to their central baselines, reaching a mean AUC of 

70%.    

Improving disease understanding 

Three of the papers reviewed used FL to improve disease understanding: 2 papers were 

about breast cancer [12, 29] and 1 was on multiple cancers [26]. Two of these papers 

have already been detailed in the “Improving ML prediction” subsection [12, 26]. In the 

remaining paper, the authors used federated averaging and a memory-aware CNN to 

refine breast cancer classification from digital mammography data [29]. This approach 

was shown to prioritise challenging instances that often experience prediction 

inconsistencies, thereby contributing to a more refined understanding of disease 

characteristics and diagnostic accuracy. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.08.24311681doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.08.24311681
http://creativecommons.org/licenses/by-nc/4.0/


15 

Other FL scopes  

Two further FL scopes, reduced training time [18] and domain adaptation [21], were each 

the subject of 1 paper in our review. The study by Heidary et al has been previously 

described in the “Model generalisability” and “Improving ML prediction” subsections [11]. 

Although the authors in [21] describe that their FL methods outperformed conventional 

deep learning models, there was no such comparison identified in their study [21]. 

Therefore, their work did not meet our criteria for rigorous FL research and are not further 

described herein.   
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Discussion 

In this systematic review, we examined FL methods in breast, lung and prostate cancer 

from 2020-2023. Distinct from previous surveys that focused on the theoretical and 

technological aspects of FL [1, 6-9, 36], our analysis investigates its practical 

implementation and impact in real-world breast, lung and prostate cancer settings. We 

examined the scope and evaluated the methodological rigour and effectiveness of FL in 

improving major ML domains such as model generalisability, predictive accuracy and data 

privacy, by comparing FL to centralised models and assessing its scientific and clinical 

impact. Most papers (18 out of 25 reviewed) met our objective criteria for FL rigour, 

including extensive comparisons against centralised ML baselines. Notably, FL methods 

outperformed centralised ML in 15 papers and showed comparable results in 3 papers. 

A diverse range of FL/ML techniques and their key clinical applications were also 

comprehensively explored and revealed. This review contributes meaningful insights into 

the real-world application of FL in cancer research, supporting the transition from 

promising proof-of-concepts to widespread implementation in clinical settings.  

Among studies meeting our rigorous FL criteria, a diverse range of ML models were 

employed, including Large Pre-trained models, Classic ML, UNets and CNNs. 

Classification was the most common task, followed by segmentation and detection. While 

tumour identification and disease type differentiation were the dominant clinical 

applications, all clinical applications were represented in this group of studies. Improving 

ML generalisability and predictive accuracy were the primary focus of most studies 

meeting our FL criteria. Nevertheless, all FL scopes were represented, except for domain 

adaptation. Breast and lung cancer were the primary areas of focus, but studies on all 

organ areas were observed. Of these studies, 2 involved large patient populations 

(>1,500 patients) [20, 29] and 2 used very large datasets with over 20,000 and 900,000 

patients, respectively (Supplementary Table 1) [24, 32]. The majority (6 papers) used 

moderate to large patient sizes (300-1,500 patients) [11, 12, 15, 19, 23, 26-28]. These FL 

techniques can potentially have merit to be further validated as generalised solutions for 

real-world cancer research.  
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By training models on large, diverse datasets from multiple sources, FL can uncover 

hidden patterns that may not be evident in smaller, isolated datasets. This can lead to the 

development of more precise diagnostic and treatment strategies tailored to specific 

patient groups (precision medicine) [37, 38]. FL can further support precision medicine, 

by potentially integrating multi-modal information from genetic, clinical, and (bio-)medical 

imaging data across institutions [39-46]. In fact, among studies that satisfied our FL rigour 

criteria, there were 7 papers which performed multi-modal ML analysis, combining 

information from various sources such as EHR, (bio-)medical imaging and/or genomics 

[11, 12, 21, 22, 26, 27, 28]. Of these studies, 1 focused on predicting response to 

treatment using WSI and clinical data [12], while the others aimed to develop diagnostic 

or identification methods. Thus, multi-modal FL offers a unique advantage for advancing 

precision medicine by integrating diverse patient-level data types across institutions, 

potentially enhancing patient outcomes.   

Our analysis reveals a strong emphasis on generalisable models within FL frameworks 

across multiple oncology domains. Most of these publications met our FL rigour criteria 

[16, 19, 20, 22-24, 28, 32, 34]. The inclusion of heterogeneous data across institutions 

can potentially enhance the ability of ML models to learn more representative patterns, 

reduce overfitting and perform robustly across various clinical settings [37]. We also 

observed a large variability in data types across studies in this area, spanning from 

histopathological images to MRI, CT and EHR data. This shows that FL has considerable 

scope for developing generalisable ML models with broad applicability. Of note, 2 of these 

publications report results from non-IID data, which is central to ML model generalisability 

[2, 37]. Next to generalisability, learning from broad and heterogeneous data patterns 

across institutions can potentially improve ML performance. We observed a substantial 

focus on improving ML performance across oncology domains and data types. Most of 

these papers satisfied our FL rigour criteria [12, 14-16, 18-20, 26, 27, 31, 32]. The surge 

in publications from 2021 to 2023 underscores a growing awareness of these FL 

opportunities within the cancer research community.  

Our findings highlighted potential advancements in evaluating tumour severity [18-20, 34] 

and enhancing disease understanding and characterisation [12, 26, 29]. These 

advancements can make clinical workflows more efficient by potentially assisting in 
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patient stratification, risk assessment as well as enhancing early diagnosis and treatment 

strategies. FL offers a notable advantage in accelerating ML model training through 

parallel processing, data privacy (eliminating the need for data sharing) and fast 

convergence due to model averaging [1, 6, 9]. A lung cancer study reported shortened 

training times without compromising data integrity [18], but other studies did not evaluate 

this aspect. These benefits may be offset by communication overheads due to sharing 

model updates (especially with large models or frequent updates) and the complexities 

of coordinating heterogeneous devices and privacy preservation techniques [36]. Further 

work is required to potentially demonstrate the benefits of FL in expediting ML model 

training and data-driven decision making.  

Moreover, there are limitations and challenges that must be considered. The major 

limitation identified was the lack of FL implementation details across most publications. 

Specifically, only 13, 5 and 5 out of the 25 papers explicitly described the FL method, 

aggregation strategy and device subtype used, respectively (see Results). Of note, only 

5 papers detailed their privacy method. Although most FL papers involved at least 1 public 

dataset, 4 papers involved only private data (Table 3). Moreover, among the 18 papers 

that met our FL rigour criteria, only 8 provided accessible code [11, 12, 14, 15, 28, 29, 32, 

34]. These limitations hamper reproducibility and wider FL model adoption. We strongly 

advocate for increased transparency and open access practices to foster wider 

exploration and validation of these approaches in future large-scale cancer research. 

Comprehensive documentation of FL methods and code is important to ensure that 

findings can be reliably reproduced and externally validated.  

Another major limitation was the use of datasets with low or moderate patient diversity in 

some studies (Table 3, Supplementary Table 1), which may be associated with limited 

generalisability, reduced robustness and susceptibility to biases. In addition, 7 papers did 

not meet our FL rigour criteria, which means that FL was not cross-validated against 

central ML baselines. Hence, the presence of systematic biases and the effectiveness of 

these FL methods in achieving their intended scope and clinical application remain 

unclear.  
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The underlying ML models used varied considerably even across the same technical 

tasks (Figure 4, Table 1). For instance, all ML model families were used to address either 

classification or detection tasks. This heterogeneity in both problems (data, oncology 

domains) and scientific solutions (ML models, FL methods) makes establishing best 

practices and method scalability challenging. In addition, many studies did not use a 

consistent set of metrics (Table 1). For example, while some studies report improvements 

over central ML models using accuracy and AUC metrics, others relied on precision, recall 

and F1-scores without clear justification. Another potential hurdle is the lack of universally 

accepted benchmark datasets for evaluating FL. Benchmark data with appropriate ground 

truths and evaluation metrics [47], are essential for unbiased comparison of different FL 

approaches. The lack of such datasets complicates transparent FL evaluations. However, 

most FL papers in our review involved at least 1 public dataset in their evaluation, which 

can help to establish frameworks for thorough benchmark studies.  

Data privacy is crucial in FL, necessitating techniques like differential privacy and secure 

computation [1, 6]. All other FL scopes benefit primarily from increased data 

heterogeneity [48]. In our review, most of the papers reporting implementation details, 

focused on federated averaging [12, 16, 17, 29] which mitigates overfitting and enhances 

model generalisation by aggregating models trained on diverse local datasets [49]. As 

future work, methods like FedProx may be promising for biomedical data, since it 

regularises the local objective function and expedites training across diverse data 

distributions [50]. FedNova further refines this optimisation by normalising contributions 

based on local training steps [51], whilst FedDyn adapts the learning process to the 

unique characteristics of each local dataset [52]. Unlike other FL methods that prioritise 

either global or local model performance, Fed-ROD uniquely addresses fairness by 

optimising for both simultaneously, ensuring equitable outcomes for all clients regardless 

of the data distribution [53]. Furthermore, the FedOpt framework enables the integration 

of various FL optimisation algorithms [54]. Federated transfer learning, where pre-trained 

models are fine-tuned with federated data, can also potentially enhance ML predictions 

and disease understanding by improving adaptation to new oncology data [52]. Future 

work could investigate further advanced FL methods such as the aforementioned to 
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harness data heterogeneity for improved model generalisation, performance and 

fairness.  

In conclusion, this comprehensive review serves as a foundational resource for the 

broader oncology community, demonstrating the burgeoning potential of cutting-edge FL 

to revolutionise breast, lung and prostate cancer research by leveraging diverse, real-

world datasets while maintaining patient privacy. It also aligns perfectly with the 

overarching goals of the OPTIMA IMI2 project and provides crucial insights that will guide 

future research. Despite current challenges in reproducibility, standardisation and 

methodology, the clear advantages of FL in enhancing model generalisability, 

performance and addressing clinical needs across various cancer types, highlight its 

immense promise for harnessing diverse real-world clinical data and transforming cancer 

care. 
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Tables and Figures 

 

Table 1) ML algorithm and evaluation metrics per technical task are presented. 

Publications occurring in multiple cells represent overlapping tasks and/or evaluation 

metrics. In papers where multiple (>1) tasks were involved, we only present the ML model 

for which evaluation metrics are reported. Note that we refer to technical tasks, ML 

algorithms and evaluation metrics, as reported in each publication. The term “Accuracy” 

presents a standalone metric (separate to ROC analysis), as reported by each paper 

authors. The term “Other” represents metrics that occurred once per ML model/technical 

task. ML: machine learning; ROC: receiver operating characteristic curve; MCC: 

Matthew’s correlation coefficient; AUC: area under the curve; IoU: intersection-over-

union.  

Technical task ML algorithm  Evaluation Studies 

Classification Classic ML 

  

 

ROC   [11, 13, 24] 

Accuracy  [14, 26] 

Other (MCC, Precision, Recall, F1)  [14, 27] 

CNN ROC  [12, 29, 33] 

Other (Precision-Recall AUC, F1, 

Accuracy)  

 [29, 33] 

Large Pre-trained 

  

  

  

ROC  [16, 20, 32] 

F1 score  [21, 35] 

Accuracy  [20, 21, 30, 32, 35] 

Other (Confusion matrices, Precision, 

Recall, Kappa coefficient) 

 [21, 30, 32 35] 

GAN ROC  [19, 21] 

Detection Large Pre-trained ROC  [17, 20, 31] 

Other Other (Precision, F1, MCC)  [31]  

Segmentation 

 

UNet Dice coefficient  [15, 22, 28, 34] 

Other (IoU)  [15, 34] 

Regression Other (CNN) Other (Dice coefficient, Accuracy)  [23, 25] 
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Table 2) FL scope and oncology area examined per study. Multi-cancer refers to 

publications that examine more than 1 oncology area. The term “multi-disease” 

corresponds to studies in which data from at least 1 of the oncology areas of interest and 

from other diseases were analysed using FL. FL: federated learning.    

 

  FL Scope Oncology Area Studies 

Data privacy 

  

  

  

Breast  [16, 27, 30, 33] 

Lung  [11, 18] 

Prostate  [19] 

Multi-cancer  [20] 

Domain adaptation Multi-cancer  [21] 

ML prediction improvement 

  

  

  

  

Breast  [12, 14, 16, 27, 31, 33] 

Lung  [17, 18, 32] 

Prostate  [19] 

Multi-cancer  [15, 20, 26] 

Multi-disease  [35] 

Disease understanding 
improvement 

Breast  [12, 29]  

ML model generalisability 

  

  

  

  

Breast  [16] 

Lung  [13, 17, 22, 24, 25, 32] 

Prostate  [19, 23, 34] 

Multi-cancer  [20, 21] 

Multi-disease  [28, 35] 

Training time reduction Lung  [18] 
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Table 3) Data diversity in terms of patient and data size. Patient size corresponds to the 

number of individual patients included in the analysis and data size to the number of 

images or samples analysed. Studies using private and/or public data are also presented 

at the bottom of the table.  

Patient size Data size  Publications 

1-100 5,000-10,000 [16, 30] 

NM [14] 

100-1,500 1-1,000 [12] 

1,000-5,000 [19] 

5,000-10,000 [28] 

10,000-100,000 [27] 

100,000-1,000,000 [17] 

NM [11, 15, 23, 26] 

1,500-5,000 NM [29, 34] 

5,000-10,000 10,000-100,000 [20] 

>10,000 NM [13, 24] 

>100,000 100,000-1,000,000 [32] 

NM 1-1,000 [33] 

1,000-5,000 [31] 

5,000-10,000 [21] 

10,000-100,000 [18, 22, 25, 35] 
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Data type Private  Public  

 [11-13, 15, 18, 22, 29, 32, 34] [14-22, 25, 27-33, 35] 
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Figure 1) PRISMA flow of the systematic review process. The flow presents inclusion and 

exclusion of papers at each review stage.  
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Figure 2) Publication record over time for all machine learning (ML) types (a) and 

technical tasks (b) identified. In a), “Other” included recurrent neural network, capsule 

neural network and region-based CNN. 

 

 

(b) 

(a) 
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Figure 3) Publication record over time for all clinical applications addressed (a) and FL 

scopes (b) identified. In a), “Other” included side effect prediction (1) and tumour 

recurrence assessment (1). In b), “Other” involved domain adaptation (1) and training 

time reduction (1). NM: not mentioned; FL: federated learning.  

(a) 

(b) 
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Figure 4) Sankey diagram depicting relationships (combinations) between the following 

technical aspects extracted across studies (represented as nodes): data, central ML 

model, technical task addressed and FL method. The width of each flow is proportional 

to the quantity being represented: thicker width corresponds to a higher combination 

prevalence across the reviewed papers, and vice versa. EHR: electronic health records; 

CT: computed tomography; MRI: magnetic resonance imaging; PET-CT: hybrid positron 

emission tomography-computed tomography; WSI: whole slide imaging; ML: machine 

learning; FL: federated learning; NM: not mentioned.  
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Figure 5) Sankey diagram illustrating combinations between the following application 

aspects extracted across studies (represented as nodes): data, clinical application, FL 

scope and organ area. EHR: electronic health records; CT: computed tomography; MRI: 

magnetic resonance imaging; PET-CT: hybrid positron emission tomography-computed 

tomography; WSI: whole slide imaging; FL: federated learning; NM: not mentioned. 
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Supplementary Table 1)  

Detailed patient and data size information per study.  

Data type Patient size Data size Reference  

Private  883 patients NM Field et al (2022) [11] 

Private  676 patients 686 images Terrail et al (2023) [12] 

Private  12,047 patients NM Field et al (2021) [13] 

Public  59 patients NM Aminifar et al (2022) [14] 

Private, Public  534 patients NM Wang et al (2022) [15] 

Public  82 patients 9,109 images Agbley et al (2023) [16] 

Public  1,010 patients >300,000 images Liu et al (2023) [17] 

Private, Public  NM >24,000 images Heidari et al (2023) [18] 

Public  323 patients >2,000 images Yan et al (2020) [19] 

Public  7,802 patients >10,000 images Wicaksana et al (2022) [20] 

Public  NM >7,500 images Subramanian et al (2022) [21] 

Private, Public  NM >10,000 images Zhu et al (2022) [22] 

Private  300 patients NM Sarma et al (2021) [23] 

Private  23,000 patients NM Rajendran et al (2021) [24] 

Public  311 patients 434 images Horry et al (2023) [25] 

NM 500 patients  NM Ma et al (2022) [26] 

Public 1,088 patients  15,848 samples Archetti et al (2023) [27] 

Public  1,367 patients 5,384 images Gao et al (2022) [28] 
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Private, Public  2,722 patients NM Jimenez-Sanchez et al (2023) [29] 

Public  82 patients 9,109 images  Peta and Koppu (2023) [30] 

Public  NM 2,620 images Kumbhare et al (2023) [31] 

Private, Public  >100,000 patients 924,907 images Tayebi Arasteh et al (2023) [32] 

Public  NM 569 samples Abou El Houda et al (2022) [33] 

Private  NM NM Rajagopal et al (2023) [34] 

Public NM 17,017 images Malik et al (2023) [35] 
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