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Abstract  

Combined immunodeficiencies (CID) and common variable immunodeficiencies 

(CVID), prevalent yet substantially underdiagnosed primary immunodeficiency 

disorders, necessitate improved early detection strategies. Leveraging large-scale 

electronic health record (EHR) data from four nationwide US cohorts, we developed a 

novel causal Bayesian Network (BN) model to unravel the complex interplay of 

antecedent clinical phenotypes associated with CID/CVID. Consensus directed acyclic 

graphs (DAGs) were constructed, which demonstrated robust predictive performance 

(ROC AUC in unseen data within each cohort ranged from 0.77-0.61) and 

generalizability (ROC AUC across all unseen cohort evaluations ranged from 0.72-

0.56) in identifying CID/CVID across diverse patient populations, created using 

different inclusion criteria. These consensus DAGs elucidate causal relationships 

between comorbidities preceding CID/CVID diagnosis, including autoimmune and 

blood disorders, lymphomas, organ damage or inflammation, respiratory conditions, 

genetic anomalies, recurrent infections, and allergies. Further evaluation through 

causal inference and by expert clinical immunologists substantiates the clinical 

relevance of the identified phenotypic trajectories within the consensus DAGs. These 

findings hold promise for translation into improved clinical practice, potentially leading 

to earlier identification and intervention for adults at risk of CID/CVID.  
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Introduction  

Primary immunodeficiencies (PI) are heterogeneous genetic disorders characterized 

by immune system defects [1]. PI patients are susceptible to life-threatening infections, 

malignancies, organ damage, severe allergies, and autoimmunity [2,3].  As of 2022, 

research has linked 485 PI phenotypes to 511 genetic defects [4,5] and this number is 

expected to increase with ongoing PI research [4-6]. 

PI is more common than originally thought. Recent studies suggest that PI affects 1-

2% of the global population, with 70-90% of patients remaining undiagnosed [7, 8]. 

Early PI diagnosis is important to improve health outcomes but is hampered by the 

heterogeneous clinical presentation and low awareness among primary care 

practitioners leading to a lack of timely referrals [1-7, 9]. Misdiagnosis, underdiagnosis 

or diagnosis delay are therefore common in PI [1,2,7-10]. Undiagnosis is associated 

with increased mortality, morbidity, healthcare visits and costs [8-10]. Therefore, robust 

methods for systematic PI screening are urgently needed [1-5].   

Combined immunodeficiencies (CID) are a subgroup of PI defined by both cellular (T-

cell) and humoral (B-cell) immunity defects [1,8]. Common variable 

immunodeficiencies (CVID) are characterized by humoral immunity and are among the 

most frequent PI [1,2]. Severe CID (SCID), characterized by profound T-cell 

impairment, is life-threatening without early infancy treatment via newborn screening 

and bone marrow (BMT) or hematopoietic stem cell transplantation (HSCT) [1,11]. CID, 

excluding SCID, are marked by partial T-cell dysfunction, are associated with variable 

disease progression and are among the least investigated PI [1-8]. Unlike SCID, CID 

patients typically present with late symptom onset (>1-year of age) due to residual T-

cell function [8]. Beyond SCID, there is no population-based screening method for PI, 

leading to many CVID/CID diagnoses only in adulthood due to delayed disease onset 

and lack of awareness hindering childhood diagnosis [1-9]. Despite the availability of 

definitive treatments like HSCT, BMT, and Ig replacement therapy [1, 8, 9], the lack of 

population-wide screening beyond SCID necessitates a systematic approach to 

identify at-risk adults, facilitating early referral and intervention [8, 9, 12]. 

Our work aimed to unravel the interplay between clinical diagnosis codes linked to 

CID/CVID through the development of a Bayesian Network (BN) model [16, 17]. Our 

recently developed machine learning (ML) model accurately identified CID/CVID from 

large-scale, nationwide (US) electronic health record (EHR) diagnosis codes, the same 

patient populations utilized in the present study [13]. Through descriptive statistical 

analysis, we further elucidated combinations of antecedent phenotypes correlated with 

CID/CVID [13]. Another study used ML on diagnosis codes from small-scale EHR to 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.08.24311672doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.08.24311672
http://creativecommons.org/licenses/by-nc/4.0/


   
 

4 
 

identify PI [14]. However, it is known that typical (non-causal) ML and statistical models 

are unaware of how the existence of causal relationships between variables can affect 

the overall reliability (generalizability, robustness, interpretability) of their outcomes 

[15]. Prior ML research has not prioritized identifying causal relationships and 

confounding variables, potentially limiting the generalizability, robustness, 

interpretability and clinical applicability of PI study outcomes. Addressing these factors 

could improve the early detection of PI, through the identification of causal paths in 

patient clinical history. A BN is a probabilistic graphical model that represents variables 

and their conditional dependencies via a directed acyclic graph (DAG) [16, 17]. A DAG 

can be learned from the data: its nodes represent data variables (e.g., diagnosis 

codes) with arcs indicating probabilistic dependencies [16]. Judea Pearl imbued BNs 

with causal semantics by interpreting them as causal networks [16]. By positing certain 

assumptions such as the absence of unobserved confounders, he established that 

arcs within a BN can be construed as representing direct causal relationships, enabling 

the identification and estimation of causal effects. In the context of PI diagnosis codes, 

a DAG can be used to identify clinical history traits: causal trajectories of clinical 

phenotypes associated with CID/CVID diagnosis. Since BN is a generative model, a 

DAG can subsequently be used to predict CID/CVID [16, 17]. Causal modeling can 

potentially improve the generalizability, robustness and interpretability of ML models 

[16-20]. While randomized clinical trials are the reference standard for establishing 

causal effects, they commonly face ethical, scalability, and patient disruption 

challenges [20]. EHRs serve as a rich source of real-world observational data, often 

providing the only accessible information for research purposes [13, 14]. Since we 

cannot directly randomize interventions with observational data, causal modeling relies 

on careful assumptions to account for potential biases and confounding factors [16, 

17, 20]. Although BN-derived DAGs have been applied to real-world observational data 

in other biomedical fields, e.g., to identify genetic and protein interactions [18, 19], 

there is no previous work in the context of patient clinical history, i.e., identifying 

phenotypic trajectories and assessing their causal impact on CID/CVID diagnosis.  

Leveraging large-scale observational EHR data from four nationwide US cohorts, we 

developed and evaluated causal BN models to elucidate the complex interplay of 

antecedent clinical phenotypes associated with CID/CVID. An ensemble approach was 

employed, constructing multiple BN models on bootstrapped datasets. Each resulting 

DAG was subsequently integrated into a consensus DAG, wherein arcs exhibiting 

lower prevalence across the ensemble were pruned. The consensus DAGs 

demonstrated robust predictive performance and generalizability in identifying 
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CID/CVID patients, across diverse populations. These DAGs elucidate causal 

trajectories of interrelated comorbidities preceding CID/CVID diagnosis, including 

autoimmune and blood disorders, lymphomas, organ damage or inflammation, 

respiratory conditions, genetic anomalies, recurrent infections, and allergies. Causal 

inference analysis, quantifying the impact of each variable in the consensus DAG on 

the odds of receiving a CID/CVID diagnosis, and evaluations by expert clinical 

immunologists, substantiate further the clinical relevance of the identified phenotypic 

trajectories which hold promise for translation into refined clinical practices.  
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Results  

The study comprised four parts as follows: (1) A consensus DAG was learned for each 

cohort (Cohorts 1-4) and its predictive ability was evaluated using cross-validation. (2) 

The generalizability of each consensus DAG was then evaluated, by assessing their 

predictive accuracy in the other three unseen cohorts. (3) Quantitative assessments 

were conducted by performing causal interventions to evaluate the impact of each 

DAG variable on the CID/CVID diagnosis. (4) The transferability of these DAGs to 

clinical practice was assessed through qualitative evaluations with domain experts. 

Figure 1 illustrates the study workflow.   

Participants 

Table 1 presents the patient demographics, which have been previously described 

[13]. In brief, age, gender, ethnicity, and patient history were similar between PI cases 

and controls. Most patients were female (53.1-62.2%) and Caucasian (82.4-88.1%). 

The mean age ranged from 44-48 years across cohorts. As anticipated, CID/CVID 

cases consistently had a higher number of healthcare visits compared to controls.  

BN models and their resulting consensus DAGs were generated in the setting of 

identifying CID/CVID patients against matched controls, across cohorts. All ICD codes 

were extracted from patient clinical histories and converted into clinical phenotypes, 

which were then used as inputs for the causal BN models. Initially, the model focused 

on identifying CID patients with pneumonia against matched controls (Cohort 1), then 

expanded to include controls without pneumonia (Cohort 2). Subsequently, the model 

was refined to identify all CID patients (Cohort 3) in our data and ultimately expanded 

to include all CID and CVID patients (Cohort 4), both against matched random controls. 

In Cohorts 3-4, cases and controls were selected irrespectively of pneumonia status. 

All controls were negative for CID, CVID, and PI.  

Consensus DAGs across cohorts 

The cause-effect relationships in the consensus DAGs represent probabilistic 

associations, not strict chronological sequences: each parent phenotype significantly 

increases the likelihood of observing at least one of its child phenotypes in a patient's 

history, regardless of their temporal order. 

The consensus DAGs identified by performing causal discovery in Cohorts 1-4 are 

presented in Figures 2-5, respectively. Figures 2-5 illustrate: up to 2 direct parent levels 

and up to 2 direct child levels away from the CID/CVID diagnosis; and up to 1 direct 

parent level for each direct child and up to 1 direct child level for each direct parent. 

These consensus DAGs consistently reveal a network of interrelated comorbidities 
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preceding CID/CVID diagnosis, including autoimmune and blood disorders, 

lymphomas, organ damage or inflammation, respiratory conditions, genetic anomalies, 

recurrent infections, and allergies. 

In Cohort 1, neutropenia, complications after procedure, pneumococcal pneumonia 

and general pneumonia were the direct parents of CID diagnosis (Figure 2). Abnormal 

findings from examinations on lungs and diseases of respiratory system not elsewhere 

classified (NEC) were the direct parents of multiple phenotypes including respiratory 

conditions (pneumococcal pneumonia, general pneumonia, bronchiectasis, empyema 

and pneumothorax, alveolar and parietoalveolar pneumonopathy, abnormal imaging 

findings, acute bronchitis and bronchiolitis), organ damage or inflammation 

(pericarditis, hepatomegaly) and infections or inflammations (meningitis, chronic 

pharyngitis and nasopharyngitis). Failure to thrive and developmental disorders was 

also the direct parent of gastrointestinal conditions and pancytopenia. Other 

phenotypes involved in this consensus DAG were non-Hodgkin lymphoma and 

disorders involving the immune mechanism. 

In Cohort 2, neutropenia, bacterial pneumonia and influenza were the direct parents of 

CID diagnosis (Figure 3). Influenza, bacterial pneumonia, abnormal findings from 

examinations on lungs and acute pharyngitis were the direct parents of multiple 

phenotypes including respiratory conditions (bronchopneumonia and lung abscess, 

pseudomonal pneumonia, empyema and pneumothorax, acute bronchitis and 

bronchiolitis, pulmonary inflammation or edema, bronchiectasis, pneumococcal 

pneumonia), acute or recurrent infections (acute sinusitis, chronic tonsilitis and 

adenoiditis, acute pharyngitis, otitis media, skin infections, bacteremia, meningitis, 

candidiasis, mycoses), allergies or allergic reactions (allergic rhinitis, urticaria), organ 

inflammation (pericarditis), non-Hodgkin lymphoma, developmental delays/ disorders 

and disorders of the immune system (IM; the latter typically associated with 

autoimmune diseases [13]).     

In Cohort 3, neutropenia, genetic susceptibility to disease and encounter for long-term 

use of antibiotics were the direct parents of CID (Figure 4). Developmental delays/ 

disorders, abnormal findings from examinations on lungs, bacterial infection not 

otherwise specified (NOS), disorders involving the immune mechanism and acute 

bronchitis and bronchiolitis were the direct parents of several phenotypes including 

acute or chronic respiratory conditions (pleurisy and pleural effusion, respiratory 

failure, emphysema), infections (sepsis, bacteremia, acute sinusitis, acute pharyngitis, 

streptococcus infection), gastrointestinal conditions (gastritis and duodenitis, 

diarrhea), blood conditions (decreased white blood cell count (bcc), anemia of chronic 
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disease) and organ damage (splenomegaly). Other phenotypes identified in the 

consensus DAG were non-Hodgkin lymphoma, symptoms concerning nutrition, 

metabolism and development, failure to thrive and edema.       

In Cohort 4, autoimmune disease NEC, hypothyroidism NOS, neutropenia, 

developmental delays/ disorders and bronchiectasis were the direct parents of 

CID/CVID diagnosis (Figure 5). In turn, hypothyroidism NOS, bronchiectasis, 

neutropenia, viral infection and bacterial pneumonia were the direct parents of multiple 

phenotypes including acute or chronic respiratory conditions (bronchitis, asthma, 

asphyxia and hypoxemia), infections or inflammations (chronic sinusitis, bacteremia, 

otitis media, chronic pharyngitis and nasopharyngitis) autoimmune diseases 

(rheumatoid arthritis), gastrointestinal conditions (gastritis and duodenitis, non-

infectious gastroenteritis) and allergies (allergic rhinitis). Other phenotypes involved 

were non-Hodgkin lymphoma and abnormal electrocardiogram (ECG).   

Predictive accuracy within the same population 

Subsequently, we evaluated the predictive ability of each consensus DAG in identifying 

CID/CVID in an unseen test set from the same population. ROC analysis showed good 

predictive performance within each cohort (Table 2, Figure 6).  

In Cohorts 1-2, the model achieved strong predictive performance with a sensitivity of 

0.84 and 0.70, a specificity of 0.69 and 0.75, overall accuracy of 0.75 and 0.72 and an 

AUC of 0.77 and 0.75, respectively. In Cohorts 3-4, the model showed good predictive 

performance with a sensitivity of 0.88 and 0.78, a specificity of 0.59 and 0.55, overall 

accuracy of 0.65 and 0.59 and an AUC of 0.63 and 0.61, respectively.     

Generalizability to other populations  

When the consensus DAG models were applied to unseen data from other cohorts, 

they maintained high predictive accuracy across all evaluations (Table 2). Sensitivity, 

specificity, accuracy, and AUC ranged from 0.83-0.66, 0.67-0.54, 0.73-0.57, and 0.72-

0.56 respectively. 

Notably, the consensus DAG models trained on larger cohorts (Cohorts 3-4) showed 

improved predictive performance when tested in unseen smaller data (Cohorts 1-2), 

against when tested in unseen data from the cohorts they were trained on (Table 2). 

Conversely, models trained on smaller cohorts (Cohorts 1-2) demonstrated reduced 

predictive performance when applied to new (larger) data. 
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Causal inference 

Interventional analysis identified key antecedent phenotypes with high ORs (Table 3). 

The following antecedent phenotypes with ORs greater than 2.00 were identified in 

each cohort: Cohort 1: pneumococcal pneumonia, neutropenia and general 

pneumonia (OR range: 13.09-4.09); Cohort 2: neutropenia, bacterial pneumonia and 

influenza (OR range: 6.07-3.55); Cohort 3: failure to thrive, genetic susceptibility to 

disease, disorders involving the IM and decreased white bcc (OR range: 23.65-5.14). 

Cohort 4; bronchiectasis, autoimmune disease NEC, neutropenia and developmental 

delays/ disorders (OR range: 9.44-2.25). 

Qualitative evaluation by clinical immunologists  

Three clinical immunologists (RT, VHT, JR) reviewed the consensus DAG outcomes 

(Figures 2-5, Tables 2-3) against their clinical experience and prior studies on PI [13, 

14, 39, 40]. All 3 clinicians agreed that the DAGs could substantially enhance patient 

screening by identifying phenotype combinations on the following trajectories: 

a) Direct precursors of CID/CVID diagnoses (e.g., bacterial pneumonia) alongside 

conditions from different phenotype families (e.g., acute pharyngitis) or disease 

complications (e.g., bronchiectasis), anywhere in the DAG.  

b) Parent phenotypes (e.g., abnormal findings in examinations of lungs) associated 

with child phenotypes from different phenotype families (e.g., pericarditis, 

hepatomegaly, lymphoma, meningitis) or disease complications (e.g., sepsis). 

c) Associations between parent phenotypes and other, not necessarily interconnected, 

child phenotypes from different phenotype families or disease complications.  

The consensus among clinicians was that certain phenotypes identified in (a-c) may 

be subject to recurrence, aligning with existing medical literature on the recurrent 

nature of conditions such as pneumonias, infections, and inflammations [1-10, 13].  

According to all clinicians, analysis of consensus DAGs in the context of prior large-

scale studies [13, 14, 39, 40] revealed a broader and more nuanced spectrum of PI-

associated comorbidities that could precede CID/CVID diagnosis, potentially 

enhancing their identification. 
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Discussion 

In this study, we present a novel approach to identify antecedent patient comorbidities 

associated with CID and CVID, through the development and evaluation of consensus 

DAGs derived from BN models. Our findings demonstrate that these DAGs can 

effectively identify CID/CVID diagnoses across diverse patient cohorts, exhibiting good 

predictive accuracy both within the training population and when generalized to unseen 

populations. Notably, this methodology offers a unique advantage by revealing 

complex interrelationships among a wide array of comorbidities preceding CID/CVID 

diagnosis, including autoimmune and blood disorders, lymphomas, organ damage or 

inflammation, respiratory conditions, genetic anomalies, recurrent infections and 

allergies. This comprehensive understanding of the antecedent phenotypic landscape 

has the potential to significantly improve patient screening and early detection of these 

PIs. 

To the best of our knowledge, this is the first study to apply causal discovery methods 

to clinical history phenotypes derived from diagnosis codes, and the first such 

investigation within the context of PI. While not directly pertinent to causal discovery, 

a previous study employed a BN structure to quantify the interplay of diagnosis codes 

within a pediatric cohort (N=3,460 patients and 1:1 matched controls) [18]. However, 

this approach relied on a predetermined set of 36 diagnosis codes selected by an 

expert immunologist, potentially introducing bias into the BN structure (due to involving 

a single domain expert) and limiting its generalizability to larger and more clinically 

diverse patient populations. Prior research has demonstrated the efficacy of ML 

models in identifying PI, including CID and CVID, using EHR-derived clinical history 

diagnosis codes [13, 14]. In our recent work, we demonstrated that ML models can 

identify CID and CVID with high accuracy [13], from the same populations used in our 

current work. By using descriptive statistics, we have also identified combinations of 

antecedent phenotypes associated with these conditions [13]. Building upon our prior 

work [13], but without imposing any knowledge from it, our causal discovery method 

has independently identified, represented and interrelated many of these antecedent 

phenotypes within the consensus DAGs across cohorts (Figures 2-5, Tables 3-4). 

Among these, our interventional analysis identified key antecedent phenotypes 

(respiratory conditions, blood disorders, developmental delays, autoimmune diseases) 

with high ORs (Table 3). Our causal discovery methodology can offer a distinct 

advantage by explicitly unveiling probabilistic trajectories across clinical history 

phenotypes, which can be used to potentially improve the early suspicion and 

identification of adult patients at risk for CID/CVID. 
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Standard (non-causal) machine learning (ML) and statistical models frequently fail to 

capture the intricate interplay and probabilistic dependencies among variables 

(phenotypes), thereby potentially limiting their generalizability, robustness, and 

interpretability [15-17, 41]. Of note, previous ML research on large-scale PI datasets 

consisting of patient clinical history (diagnosis codes), has primarily focused on 

evaluating the predictive performance of ML models on unseen data drawn from the 

same population used for model training [13, 14]. Regarding generalizability, without 

the capacity to discern causal mechanisms and spurious associations, the predictive 

accuracy of non-causal ML and statistical models is compromised when the distribution 

of the testing data diverges from that of the training data [15, 16]. It is known that 

variations in the sampled populations, such as the patient characteristics and clinical 

histories observed in Cohorts 1-4, can potentially degrade model generalizability if the 

model was not exposed to such variations during development [15-17, 41-43]. This 

issue, referred to as the out-of-distribution generalization challenge in ML, constitutes 

an active research area, with causal modeling identified as a potential solution to 

mitigate these limitations [15]. Our results support these methodological 

developments, demonstrating the robust performance of consensus DAG models 

across diverse cohorts, including those not represented in the training data (Table 2). 

While maintaining high predictive accuracy within the same cohort, the models 

exhibited notable generalizability across datasets. Importantly, consensus DAG 

models trained on the largest and most heterogeneous cohorts (Cohorts 3-4) showed 

superior performance on smaller, unseen datasets (Cohorts 1-2) compared to their 

performance on unseen data from the cohorts they were originally trained on (Table 

2). By giving access to our open-source code, learning consensus DAGs across further 

large external CID/CVID cohorts, and potentially other PI subtypes, could provide 

important clinical utility by enabling the generation of informative consensus DAGs in 

the setting of predicting PI in smaller cohorts e.g., derived from certain patient 

populations or healthcare systems. Moreover, our analysis indicates that causal 

modeling, by accounting for underlying causal mechanisms across phenotype 

occurrences, enhances model robustness and generalizability across diverse data 

distributions, thereby addressing the out-of-distribution generalization challenge in our 

data. By incorporating causal discovery into our screening and early detection tool, we 

can potentially enhance its generalizability, robustness, and interpretability, ultimately 

contributing to more effective clinical decision-making and improved patient outcomes. 
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In terms of clinical interpretation of the constructed consensus DAGs, the presence of 

a parent phenotype in a patient's clinical history signals a heightened likelihood of 

observing its child phenotypes, regardless of their chronological order. This 

interpretation suggests that the DAG can be utilized as a diagnostic tool for identifying 

groups of patients who may exhibit specific clusters of phenotypes, even if these 

phenotypes do not appear in a strict temporal sequence. Consequently, the DAG could 

serve as a valuable resource for clinicians, potentially aiding in early suspicion and 

diagnosis of CID/CVID, by highlighting key phenotypic trajectories within patient 

histories. 

Our study elucidates a consistent pattern of interconnected comorbidities preceding 

CID/CVID diagnosis, demonstrating a complex interplay of factors contributing to their 

clinical manifestation. While the specific phenotypes directly preceding CID/CVID 

diagnosis varied across cohorts (reflecting differences in patient populations), the 

broader constellations of antecedent conditions remained remarkably consistent. This 

highlights the robustness of our causal discovery approach and suggests the presence 

of shared underlying causal history trajectories across diverse patient populations. 

Notably, neutropenia emerges as a key antecedent and direct parent of CID/CVID 

across all cohorts, suggesting that it may be an early clinical indicator or risk factor for 

these conditions. This aligns with existing literature highlighting the association 

between neutropenia and PI, further underscoring its clinical relevance [40]. The 

prominent involvement of respiratory conditions and complications, infections, and 

inflammatory processes across cohorts aligns with the known susceptibility of 

individuals with PIs to these manifestations, reinforcing the importance of early PI 

identification and management [1-10, 12]. The presence of allergies across multiple 

cohorts is consistent with the known association between allergic manifestations and 

PI [1-5, 10, 44]. Additionally, the presence of multiple autoimmune diseases highlights 

a known link between autoimmunity and PIs [1-5, 10, 12, 40, 44]. Ongoing research 

aims to elucidate the precise genetic and immunological mechanisms underpinning 

the relationships between autoimmunity and PIs [45]. The identification of 

developmental disorders as precursors across all cohorts is in line with current medical 

knowledge of inherited or early-life factors in individuals with CID/CVID [1-5]. 

Furthermore, the presence of non-Hodgkin lymphoma in all cohorts highlights the 

established link between PI and increased risk for lymphoid malignancies [1-5, 12, 40], 

emphasizing the need for heightened surveillance in this patient population to address 

both such severe co-morbidities and PI. The consistent identification of gastrointestinal 

disorders across cohorts aligns with the established link between PIs and such 
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antecedent manifestations [1-3, 40, 44]. These findings provide a comprehensive, 

data-driven understanding of the complex network of comorbidities associated with 

CID/CVID, offering valuable insights for early detection, risk stratification, and 

personalized treatment strategies. The consistent patterns identified across cohorts 

further emphasize the potential of causal discovery methods to uncover meaningful 

relationships within clinical data and inform clinical practice. 

Several limitations warrant consideration in the interpretation of our findings. The major 

limitation lies in the reliance on a set of assumptions necessary for conducting causal 

modeling (described in our Methods). Specifically, observational studies such as ours 

face the inherent limitation of partial identifiability [29, 30]. This can result in ambiguity 

in causal direction, as multiple causal models may fit the observed data equally well. 

In addition, the critical assumptions of faithfulness and the absence of unobserved 

variables, while theoretically necessary for interpreting arcs as causal effects, cannot 

be statistically verified [16]. Violations of these assumptions can lead to 

misinterpretations of causal relationships. However, to mitigate these limitations and 

ensure a robust interpretation of our findings, we employed a multi-faceted approach 

which included: a) accurate predictive performance on held-out test data within and 

across cohorts created by using different inclusion criteria, to assess model 

performance and generalizability, respectively; b) incorporation of expert knowledge 

from clinical immunologists to enhance the validity of causal interpretations; c) causal 

inference through interventions on BN variables to observe their effects on the odds of 

CID/CVID diagnosis, providing further empirical support for our causal claims; d) an 

ensemble approach to reduce bias and variance across individual DAGs, ultimately 

identifying the most prevalent variables within the consensus DAGs [16, 36].  

In conclusion, our study demonstrates the potential of causal BNs to uncover complex 

trajectories among clinical phenotypes preceding CID/CVID diagnosis. The consensus 

DAGs exhibit robust predictive performance and generalizability across diverse patient 

cohorts, offering a promising avenue for enhanced screening and early detection of 

these conditions. Our multi-pronged approach, incorporating BN model predictions 

across diverse cohorts, causal inference and expert knowledge, strengthens the 

validity and clinical relevance of our findings. The identified phenotypic trajectories and 

their causal relationships hold considerable promise for translating into improved 

clinical practice, potentially leading to earlier identification and intervention for adults 

at risk of CID/CVID. 
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Methods 

Dataset extraction and curation 

To characterize patient history and perform causal discovery, we used International 

Classification of Diseases (ICD) diagnosis codes (medical claims) extracted from large 

anonymized Electronic Health Records (EHR) (Optum®, Inc., Eden Prairie, MN), a US 

nationally representative cohort covering all 50 U.S. States. The study was performed 

with the approval of Pfizer US Medical Affairs Hospital Specialty Care Leadership 

Team. Data extraction, pre-processing, causal modeling and evaluation of the Optum 

data were performed in accordance with the Declaration of Helsinki. The Optum data 

have been acquired according to the Health Insurance Portability and Accountability 

Act (HIPAA) Privacy Rule and all data were fully de-identified before licensed by Pfizer 

[13].  

The end-to-end process of ICD data extraction and curation has been previously 

described [13]. Our ICD data spanned from January 1, 2008 to December 31, 2021 

and included diagnosis codes from approximately 100 million US patients, featuring 

detailed records of clinical histories and demographic information. Clinical history ICD 

codes were converted into clinical phenotypes which were then utilized as data inputs 

for causal discovery modeling (see details in the subsection “Converting ICD codes to 

phenotypes”). Demographic information was used to match cases and controls using 

propensity score matching [13]. Participants were divided into four distinct cohorts 

(Cohorts 1-4), consisting of 797, 797, 2,312 and 19,924 PI cases respectively, with 

each cohort having an equivalent number of controls (a total of N= 47,660 cases and 

controls). The inclusion criteria required participants to be at least 18-years old at the 

time of PI diagnosis [13].  

The identification of CID and CVID was based on ICD codes obtained from 

https://www.icd10data.com/, by including all D81 (for CID) and D83 (CVID) sections 

and subsections [13]. Supplementary Table 1 details all the ICD codes for CID/CVID, 

as identified in the Optum database at the time of our data extraction. 

In all cohorts, cases of PI and controls were 1:1 matched for age, gender, race, 

ethnicity, duration of medical history (in months) and number of healthcare visits, 

through propensity score matching. This resulted in an even distribution of PI patients 

and PS-matched controls within each cohort. Across each patient and control in 

Cohorts 1-4, all available ICD codes were extracted and added in the list of clinical 

history [13]. The presence or absence of all ICD codes identified were used as binary 

categorical features.  
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Cohort generation 

As previously described [13], given that pneumonia is the most frequent severe 

infection in CID [1, 8-10], we first generated BN models to identify CID patients with 

pneumonia against matched controls with pneumonia (Cohort 1). We then generated 

another set of BN models to identify CID patients with pneumonia against matched 

controls with or without pneumonia (Cohort 2). We continued BN model development 

by aiming to identify CID patients against matched random controls (both with or 

without pneumonia) (Cohort 3). Lastly, we expanded our dataset and developed 

another set of BN models to identify both CID and CVID patients against matched 

random controls (both with or without pneumonia). Across all cohorts, we ensured 

none of the controls had CID, CVID or PI.  

ICD data preparation  

Across all Cohorts 1-4, ICD-10 / ICD-9 codes and patient demographics were mined 

from the Optum® patient and diagnosis tables using Dataiku: https://www.dataiku.com/ 

[13]. All the ICD-9 codes present in the data were converted to ICD-10, using the 

updated general equivalence mappings (2018 GEMS) from the https://www.cms.gov/ 

website, as previously described [13]. All ICD-10 codes were then converted to disease 

descriptions: e.g., the ICD-10 for unspecified abdominal pain is R10.9, which was 

converted to “unspecified abdominal pain”. For this step, hierarchical ICD code 

mapping was implemented using the “regexp_replace” SQL function, by combining 

information from the Sub Chapter, Major and Short Description levels, as previously 

described [13]. These levels match the diagnosis category, name and description 

respectively, obtained from the most updated (2020) ICD Data R package 

(http://cran.nexr.com/web/ packages/icd/icd.pdf) [13].  

In clinical settings, a PI patient might be assigned multiple ICD codes corresponding 

to general or more specific characterization of PI. To avoid biasing causal modeling, 

all other ICD codes that were relevant to immunodeficiency were removed as data 

leaks (Supplementary Table 2) [13].  

Converting ICD codes to phenotypes 

We used the PheWAS Phecode v.1.2 system to translate features into clinically 

meaningful phenotypes (disease categories), prior to BN modeling [21]. One or more 

ICD codes were mapped into a distinct phenotype across each patient, based on the 

PheWAS Phecode v.1.2. To perform this, we employed the "regexp_replace" SQL 

function, combining data from multiple description levels (i.e., the Short and Long 

Description, Major and Sub Chapter levels), as previously described [13]. This 
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mapping was based on the updated ICD Data R package 

(http://cran.nexr.com/web/packages/icd/icd.pdf) [13].   

Pre-processing 

Following data preparation, the number of clinical history ICD codes identified in 

Cohorts 1-4 were: 2,188; 2,154; 3,522; and 10,445 ICD codes, respectively. After ICD 

to phenotype conversions, Cohorts 1-4 involved: 1,590; 1,551; 4,595 and 39,823 

phenotypes, respectively. Across all cohorts, BN modeling was performed on 

phenotype data.   

To remove sparse, redundant data and to improve computational efficiency, we 

performed dimensionality reduction. First, we removed sparse phenotypes that had 

<5% prevalence in the CID/CVID cases within each cohort. This led to 565, 562, 397 

and 331 phenotypes in Cohorts 1-4, respectively. Subsequently, we performed 

Pearson’s X2 analysis to evaluate collinearity between phenotypes within each cohort. 

Given that all phenotypes were binary and had a hierarchical structure (from general 

to specific phenotypes), there were many highly colinear phenotype pairs. Based on 

expert advice from 3 clinical immunologists (co-authors RT, JR and VHT), we only 

allowed one phenotype from each pair demonstrating a Pearson’s X2 statistic P-value 

< 10-20, 10-20, 10-84 and 10-84 in Cohorts 1-4, respectively. This led to 241, 245, 212 and 

122 phenotypes in Cohorts 1-4, respectively. Due to the varying selection criteria 

across cohorts and the large sample size in Cohorts 3 and 4, which increased 

statistical power, P-value thresholds were chosen to ensure at least 20 phenotypes 

were included in the DAG across all cohorts [22]. 

Causal discovery  

Causal discovery aims to recover causal relationships among the variables. Causal 

networks (CNs), a foundational ML approach rooted in BNs, offer a mathematically 

rigorous, semantically sound and interpretable representation of cause-effect 

relationships through probabilistic graphical models that represent variables as nodes 

and associations as arcs in a DAG [17]. 

The processes of learning the DAG and the parameters of BNs [23, 24], performing 

inference and model validation [25], as well as generating hypotheses [26] and guiding 

the design of experiments (with BNs) [27], are well-studied topics. BNs are generative 

models: as such, we can use them as a working model of reality and explore the 

phenomena we are studying through inference, reducing the need for experimental 

data collection. Furthermore, BNs can easily incorporate information available from the 

literature and domain experts [28]. 
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To construct his causal reasoning framework, Judea Pearl endowed probabilistic 

interpretations of BN models with additional causal meaning [16]. Under additional 

assumptions such as the lack of unobserved (latent) confounders, he showed that we 

can attribute causal meaning to the BN arcs. Modern literature focuses on how to learn 

them from observational data [29, 30], from a combination of observational and 

interventional data [19], and hierarchical data such as that arising from multi-center 

clinical trials [31]. Further work on BNs has been focused to identify when they can be 

uniquely identifiable [32], to deal with missing data [33, 34] and to detect possible 

sources of confounding [35].  

Formally, BNs are defined as a set of variables 𝑋𝑋1, … ,𝑋𝑋𝑁𝑁 that are associated with the 

nodes of a DAG 𝐺𝐺 . Each arc 𝑋𝑋𝑖𝑖 → 𝑋𝑋𝑗𝑗 indicates that 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑗𝑗 are linked by a 

relationship in which 𝑋𝑋𝑖𝑖 is the cause and 𝑋𝑋𝑗𝑗 is the effect. Arcs are assumed not to form 

cycles in the DAG. Indirect causal effects mediated by other variables are not 

represented directly as arcs but can be read from the DAG by checking whether 𝑋𝑋𝑖𝑖 

and 𝑋𝑋𝑗𝑗 are graphically separated, or if there is an open path that makes it possible to 

reach 𝑋𝑋𝑗𝑗 from 𝑋𝑋𝑖𝑖. 

Each variable has an associated probability distribution. The BN represents the joint 

probability distributions and provides a clear graphical representation of the 

relationship among the variables, thus producing an interpretable generative model. 

In practice, learning a BN consists of two steps: 

1. Learning the structure of the network, i.e., learning which arcs should appear 

in the DAG to represent the cause-effect relationships between the variables. 

2. Learning the parameters of the probability distributions associated with the 

variables. The BN defines them as the distributions of each variable 

conditioned on its direct causes, with independent parameters in each 

distribution. 

The first step corresponds to model selection and is the main focus of causal discovery. 

The second step corresponds to model estimation, a statistical process also integral 

to causal discovery. Causal discovery and inference were performed using the bnlearn 

environment (https://www.bnlearn.com/documentation/man/bnlearn-package.html).  

 

Structure learning: Structure learning involves finding the DAG 𝐺𝐺 that is best 

supported by the data 𝐷𝐷, optimizing for: 

𝑃𝑃(𝐺𝐺  ∣  𝐷𝐷 )  ∝ 𝑃𝑃(𝐺𝐺)𝑃𝑃(𝐷𝐷  ∣  𝐺𝐺 ) 
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The term 𝑃𝑃(𝐺𝐺) encodes our prior knowledge on the cause-effect relationships that 

should appear in the DAG. Further, the likelihood term 𝑃𝑃(𝐷𝐷  ∣  𝐺𝐺 ) represents how well 

the DAG is supported by the data. Together, they are proportional to the posterior 

probability 𝑃𝑃(𝐺𝐺  ∣  𝐷𝐷 ) of the DAG given the data. 

Here, we used a score-based approach with tabu search as the causal discovery 

algorithm and the Bayesian Information Criterion (BIC) to approximate the likelihood 

of observing the data given the model 𝑃𝑃(𝐷𝐷  ∣  𝐺𝐺 ), which was found to provide the best 

trade-off between speed and structural accuracy [23]. Tabu search is a greedy search 

algorithm that operates similarly to gradient descent. It chooses to add or remove an 

arc based on the BIC. BIC is derived as a first-order approximation from 𝑃𝑃(𝐷𝐷  ∣  𝐺𝐺 ) and 

is robust against overfitting.  

Furthermore, we employed an ensemble approach by using bootstrapping and model 

aggregation, to enhance the robustness of our findings by reducing bias and variance 

across individual DAGs, ultimately identifying the most prevalent variables within the 

consensus DAGs [36]. We produced 200 bootstrap samples from the data and applied 

causal discovery to each of them. We then created a “consensus DAG” from the 

resulting 200 DAGs by selecting those arcs that appeared with a frequency above the 

data-driven thresholds, as previously detailed [36]. This approach provides us with the 

inclusion probability of each arc (the frequency with which either 𝑋𝑋𝑖𝑖 → 𝑋𝑋𝑗𝑗 or 𝑋𝑋𝑗𝑗 → 𝑋𝑋𝑖𝑖 

appear) and the probability of each causal direction (the frequency of, e.g., 𝑋𝑋𝑖𝑖 → 𝑋𝑋𝑗𝑗 

divided by the inclusion probability) for each of the arcs in the consensus BN. These 

two quantities estimate the posterior probability that 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑗𝑗 are linked by a cause 

effect relationship and the possible direction of causality, respectively. 

Parameter Learning: After we have learned the DAG, BNs define the distribution of 

each variable 𝑋𝑋𝑖𝑖 in the model as 𝑃𝑃�𝑋𝑋𝑖𝑖  ∣∣  𝑝𝑝𝑝𝑝(𝑋𝑋𝑖𝑖) �, where 𝑝𝑝𝑝𝑝(𝑋𝑋𝑖𝑖) are the direct causes 

of 𝑋𝑋𝑖𝑖 in the DAG (i.e., all nodes with an arc pointing to 𝑋𝑋𝑖𝑖). As our variables are binary, 

representing presence or absence of conditions, their distributions are modeled as 

logistic regressions against their direct causes [16, 17]. The parameters, being 

regression coefficients, intuitively reflect the odds of causing the associated condition 

associated with the node [16]. Parameter learning involves estimating these model 

coefficients, often facilitated by Bayesian inference to incorporate prior knowledge [16, 

17]. 

Assumptions: Using BNs as CNs requires careful consideration of several essential 

assumptions. Firstly, inherent to observational studies is the challenge of partial 

identifiability, where multiple causal models may fit the data equally well, resulting in 
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ambiguity in causal direction [29, 30]. This stems from the inability of observational 

data alone to differentiate between statistically equivalent models sharing the same 

dependencies and correlations. Moreover, interpreting arcs as causal effects relies on 

the assumptions of faithfulness (observed dependencies arise solely from causal 

structure) and the absence of unobserved confounders [16]. These assumptions, while 

crucial for valid causal inference, are inherently untestable through statistical methods. 

Furthermore, the acyclic nature of DAGs precludes representing cyclic relations, which 

require the construction of dynamic BNs with duplicated nodes across time points, 

modeled as vector autoregressive series [17, 37, 38]. Lastly, the training data for the 

BN should be representative, sufficient in quantity (adequate statistical power to 

identify causal effects), as well as free from sampling bias and systematic missing 

values which can act as hidden confounders [16, 33]. We observed no missing values 

in our large-scale diagnosis codes [13].  

In our study, to fairly interpret the learned consensus DAGs and evaluate the validity 

of the aforementioned assumptions, we developed a multi-pronged approach: a) we 

performed BN model predictions on held-out test data within each cohort and on test 

data  from the other three cohorts (acting as independent datasets); b) we incorporated 

domain expert knowledge from clinical immunologists to fairly interpret the DAGs 

across cohorts; c) we performed causal inference by conducting causal interventions 

on the variables in BN and observing their effects on the odds of being diagnosed with 

CID/CVID; d) we employed an ensemble approach to enhance the robustness of our 

findings by reducing bias and variance across individual DAGs, ultimately identifying 

the most prevalent variables within the consensus DAGs.  

Study-specific assumptions: We set two key study-specific assumptions: 1) that 

unraveling causal relationships between clinical history phenotypes may improve the 

identification of CID/CVID (but not the reverse) and 2) that CID/CVID may (commonly) 

chronologically stem from clinical history phenotypes, given the considerable 

challenges of underdiagnosis and delayed diagnosis in PI. These assumptions are 

based on the established association of PI with delayed diagnosis [1, 2, 7-10] and our 

previous large-scale ML study which demonstrated that clinical history phenotypes 

consistently preceded the first CID/CVID diagnosis across all four datasets [13]. The 

latter has also been shown by other computational PI studies [14, 37]. Hence, in our 

DAG we only allowed the exploration of cause-effect relationships leading from clinical 

phenotypes towards CID/CVID diagnosis across cohorts (and did not allow the reverse 

directions). We implement this assumption by prohibiting all the arcs stemming from 

CID/CVID towards clinical history phenotypes.  
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BN model performance  

We assessed the predictive performance of our consensus DAGs in two ways: 

Predicting CID/CVID diagnoses within the same population: We used 10-fold 

cross-validation, training the Bayesian Network (BN) on 9 folds of data and predicting 

CID/CVID in the held-out fold. This step was repeated across all cohorts. 

Generalizing to different populations: We tested the ability of each consensus DAG 

to predict CID/CVID in the other three cohorts (using the entire dataset of each cohort). 

This evaluates the consensus DAG’s ability to generalize to unseen data from distinct 

populations. 

For all evaluations, we perform receiver operating characteristic (ROC) analysis and 

report the sensitivity, specificity, accuracy, and area under the curve (AUC) as 

measures of predictive performance. 

Causal inference  

We conducted interventional analyses to quantify the impact of each condition 

(phenotype variable in the DAG) on the odds of receiving a CID and/ or CVID diagnosis 

(depending on the cohort). We perform an intervention on each phenotype in the 

consensus DAGs, by removing all incoming arcs and setting its value first to 1 (i.e., a 

positive diagnosis) and then to 0 (a negative diagnosis). We calculate the odds ratio 

(OR; presence/ absence of each phenotype) for a positive CID and/CVID diagnosis 

across phenotypes, to quantify the effect of each condition on the odds of receiving a 

CID and/ or CVID diagnosis.  

By conducting interventions and blocking all incoming causal effects on each 

phenotype, we can interpret the calculated ORs as cohort-wide causal effects, 

quantifying how the presence of each phenotype modifies the odds of a CID/CVID 

diagnosis for each cohort [19].  
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Figure 1) Study workflow. CID: Combined Immunodeficiency, CVID: Common 
Variable Immunodeficiency, BIC: Bayesian Information criterion, DAGs: directed 
acyclic graphs.   
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Figure 2) Consensus DAG calculated in Cohort 1. Cohort 1 involved N=797 CID 
cases with pneumonia and 797 matched controls (with no PI) with pneumonia. To 
improve clarity, we visualize up to 2 direct parent levels and up to 2 direct child levels 
away from CID diagnosis. To provide further context, up to 1 direct parent level for 
each direct child and up to 1 direct child level for each direct parent are included. DAG: 
directed acyclic graph; NEC: not elsewhere classified; NOS: not otherwise specified; 
IM: immune mechanism; CID: combined immunodeficiency; PI: primary 
immunodeficiency. 
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Figure 3) Consensus DAG calculated in Cohort 2. Cohort 2 involved N=797 CID 
cases with pneumonia and 797 matched controls (with no PI) with and without 
pneumonia. We visualize up to 2 direct parent levels and up to 2 direct child levels 
away from CID diagnosis. Up to 1 direct parent level for each direct child and up to 1 
direct child level for each direct parent are included. DAG: directed acyclic graph; IM: 
immune mechanism; CID: combined immunodeficiency; PI: primary 
immunodeficiency.   
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Figure 4) Consensus DAG calculated in Cohort 3. Cohort 3 involved N=2,312 CID 
cases (of which 797 with pneumonia) and 2,312 matched controls (with no PI), both 
with and without pneumonia. We visualize up to 2 direct parent levels and up to 2 direct 
child levels away from CID diagnosis. Up to 1 direct parent level for each direct child 
and up to 1 direct child level for each direct parent are included. DAG: directed acyclic 
graph; NEC: not elsewhere classified; NOS: not otherwise specified; IM: immune 
mechanism; bcc: blood cell count; CID: combined immunodeficiency; PI: primary 
immunodeficiency.  
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Figure 5) Consensus DAG calculated in Cohort 4. Cohort 4 involved N=19,924 CID 
and CVID cases (of which 2,350 with pneumonia) and 19,924 matched controls (with 
no PI), both with and without pneumonia. We visualize up to 2 direct parent levels and 
up to 2 direct child levels away from CID diagnosis. Up to 1 direct parent level for each 
direct child and up to 1 direct child level for each direct parent are included. DAG: 
directed acyclic graph; NEC: not elsewhere classified; NOS: not otherwise specified; 
IM: immune mechanism; ECG: electrocardiogram; CID: combined immunodeficiency; 
CVID: common variable immunodeficiency; PI: primary immunodeficiency.   
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Figure 6) Receiver operating characteristic curves (ROC) for all causal models 
developed (in the training set) and evaluated (test set) across all four cohorts. 
Here, ROC analysis demonstrates the evaluations performed in the held-out test set, 
within each cohort (e.g., a DAG trained and tested in Cohort 1, a DAG trained and 
tested in Cohort 2, and so forth). a) CID patients with pneumonia against pneumonia 
patients without PI (N = 1594; 797 CID cases and 797 controls). b) CID patients with 
pneumonia against randomly selected patients without PI, with and without pneumonia 
(N = 1594; 797 CID cases and 797 controls). c) CID patients with and without 
pneumonia against randomly selected patients without PI, with and without pneumonia 
(N = 4624; 2312 CID cases and 2,312 controls). d) All CID and CVID patients with and 
without pneumonia against randomly selected patients without PI, with and without 
pneumonia (N = 39,848; 19,924 PI cases and 19,924 controls). Across all cohorts, PI 
cases and controls were 1:1 matched for age, gender, race, ethnicity, duration of 
medical history, and the number of healthcare visits. CID: combined immunodeficiency; 
CVID: common variable immunodeficiency.   
 

 

 

AUC=0.77 (0.76-0.78) AUC=0.75 (0.75-0.75) 

AUC=0.63 (0.63-0.63) 

a) b) 

c) d) 

AUC=0.61 (0.61-0.61) 
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Table 1) Baseline demographics and clinical characteristics of the study 
participants (all four cohorts). 
 

 
a Median (25th–75th percentile) 

PI: primary immunodeficiency (combined immunodeficiency in Cohorts 1-3; combined 
immunodeficiency and common variable immunodeficiency in Cohort 4).   

Characteristics 
 

Cohort 1 Cohort 2 Cohort 3 Cohort 4 
PI Cases 
(N=797) 

Controls 
  (N=797) 

PI Cases 
(N=797) 

Controls 
  (N=797) 

PI Cases 
(N=2,312) 

Controls 
(N=2,312) 

PI Cases 
(N=19,924) 

Controls 
(N=19,924) 

Gender and Age 
Male (%) 46.9 46.3 46.6 45.4 44.3 41.7 38.7 37.8 

Female (%) 53.1 53.7 53.4 54.6 55.7 58.3 61.3 62.2 
Age (years) 46 ± 26 46 ± 25 46 ± 26 48 ± 24 44 ± 26 45 ± 24 47 ± 24 46 ± 23 
18-30 (%) 16.39 16.32 16.98 17.02 17.12 17.14 13.89 14.01 
31-50 (%) 24.55 24.61 23.96 23.91 23.65 23.69 28.98 29.79 
51-70 (%) 35.85 35.79 36.05 35.85 34.81 34.79 35.76 36.03 

71-max age (%) 23.21 23.28 23.01 23.22 24.43 24.38 21.37 20.17 
Patient History 
Diagnosis History 
duration (years) a 10 (8-13) 12 (10-14) 10 (8-13) 12 (9-14) 9 (6-12) 11 (8-14) 9 (6-12) 11 (8-14) 

Number of visits a  201 (103-
399) 

145 (48-
415) 

206 (105-
399) 

182 (45-
397) 

108 (36-
250) 

73 (17-
243.5) 87 (30-206) 64 (16-195) 

Ethnicity (%) 
African American 8.7 7.3 8.4 6.7 7.9 7.2 5.8 5.8 

Asian 1.4 1.5 1.3 0.5 1.7 1.6 1.2 1.1 
Caucasian 82.4 85.1 83.4 88.1 81.7 84.2 85.3 86.8 

Other/Unknown 7.5 6.1 7 4.7 8.7 7.1 7.8 6.3 
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Table 2) Mean diagnostic performance of causal modeling predictions in the testing set, 
across all evaluations performed in Cohorts 1-4. Within cohort evaluations in the held-out fold 
test set are shown with bold. Parentheses show standard deviation.  

 

  

                                                                       Patient Cohorts 
Metric Trained on (column)/ 
Predicted on (row) 

Cohort 1 Cohort 2 Cohort 3 Cohort 4 

Sensitivity Cohort 1 0.84 (0.00) 0.69 (0.01) 0.78 (0.00) 0.79 (0.00) 

Cohort 2 0.83 (0.00) 0.70 (0.00) 0.81 (0.00) 0.78 (0.00) 

Cohort 3 0.74 (0.00) 0.67 (0.00) 0.88 (0.00) 0.76 (0.00) 

Cohort 4 0.76 (0.00) 0.66 (0.01) 0.69 (0.00) 0.78 (0.00) 
Specificity Cohort 1 0.69 (0.00) 0.63 (0.00) 0.62 (0.00) 0.61 (0.00) 

Cohort 2 0.67 (0.00) 0.75 (0.01) 0.63 (0.01) 0.61 (0.00) 

Cohort 3 0.55 (0.01) 0.55 (0.01) 0.59 (0.00) 0.56 (0.00) 

Cohort 4 0.54 (0.01) 0.54 (0.01) 0.55 (0.00) 0.55 (0.00) 
Accuracy Cohort 1 0.75 (0.00) 0.65 (0.00) 0.67 (0.00) 0.66 (0.01) 

Cohort 2 0.73 (0.00)  0.72 (0.00) 0.69 (0.00) 0.66 (0.00) 

Cohort 3 0.58 (0.01) 0.57 (0.00) 0.65 (0.00) 0.59 (0.01) 

Cohort 4 0.57 (0.01) 0.56 (0.01) 0.58 (0.00) 0.59 (0.00) 
ROC AUC Cohort 1 0.77 (0.01) 0.66 (0.00) 0.71 (0.00) 0.65 (0.00) 

Cohort 2 0.72 (0.00) 0.75 (0.00) 0.72 (0.01) 0.65 (0.00) 

Cohort 3 0.58 (0.01) 0.59 (0.00) 0.63 (0.00) 0.56 (0.00) 

Cohort 4 0.57 (0.00) 0.56 (0.01) 0.59 (0.00) 0.61 (0.00) 
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Table 3) Temporal information and interventions (causal inference) in Cohorts 1 
and 2. Temporal distributions were calculated by considering the first diagnosis of each 
phenotype in reference to the first CID diagnosis, in terms of Box and Whisker plots: 
median value and 50% interquartile range to the median (lower and higher interquartile 
value to the median, shown in parenthesis). All temporal information (median values 
and interquartile ranges) is expressed in months. Odds ratio represents the effect of 
each intervention on the CID diagnosis. NEC: not elsewhere classified; NOS: not 
otherwise specified.   
 

  
Phenotype per cohort  Temporal  

Information  
(in months) 
 

Intervention  
(Odds ratio) 

Cohort 1 
Pneumococcal pneumonia -0.13 (-11.4, -10.61) 13.09 

Neutropenia    -10.3 (-36.0, 0.2) 7.22 

Pneumonia    -14.3 (-46.7, 0.0) 4.09 

Abnormal findings examination of lungs    -10.0 (-32.8, 0.2) 1.67 

Failure to thrive and developmental disorders    -14.5 (-48.4, 0.0) 1.29 
Diseases of respiratory system NEC    -14.9 (-45.0, 1.5) 1.29 
Bacteremia      -1.7 (-29.9, 5.3) 1.11 
Pancytopenia    -10.6 (-34.4, 0.4) 1.02 
Non-Hodgkin lymphoma   -21.9 (-60.3, -0.4) 1.02 
Meningitis -34.1 (-61.1, -11.8) 1.02 

Cohort 2 

Neutropenia    -10.3 (-35.4, 0.3) 6.07 

Bacterial pneumonia      -1.6 (-22.9, 3.1) 6.06 

Influenza  -7.9 (-30.3, 14.15) 3.55 

Abnormal findings examination of lungs      -9.7 (-32.7, 0.6) 1.70 

Acute pharyngitis    -19.2 (-55.9, 5.5) 1.33 

Bacterial infection NOS      -3.1 (-26.5, 8.2) 1.19 

Viral infection    -17.2 (-50.7, 2.6) 1.04 

Allergies    -14.0 (-41.5, 5.4) 1.02 

Acute bronchitis     -19.5 (-45.6, 0.0) 1.02 

Otitis media    -15.9 (-36.7, 9.3) 1.01 
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Table 4) Temporal information and interventions (causal inference) in Cohorts 3 
and 4. Temporal distributions were calculated by considering the first diagnosis of each 
phenotype in reference to the first CID/CVID diagnosis, in terms of Box and Whisker 
plots: median value and 50% interquartile range to the median (lower and higher 
interquartile value to the median, shown in parenthesis). All temporal information 
(median values and interquartile ranges) is expressed in months. Odds ratio 
represents the effect of each intervention on the CID/CVID diagnosis. IM: immune 
mechanism; bcc: blood cell count; NEC: not elsewhere classified.  
 

 

   

Phenotype per cohort  
 

Temporal  
Information 
(in months) 
 

Intervention  
(Odds ratio) 

Cohort 3 
Failure to thrive    -4.9 (-31.0, 0.7) 23.65 

Genetic susceptibility to disease    -4.1 (-30.7, 1.2) 13.24 

Disorders involving the IM   -8.2 (-35,2, -0.4) 8.74 

Decreased white bcc  -3.03 (-25.4, 0.7) 5.14 

Splenomegaly    -4.9 (-24.7, 1.8) 1.49 

Nutritional, metabolic, and developmental symptoms  -10.0 (-34.9, 0.9) 1.46 

Developmental delays & disorders    -5.8 (-33.0, 6.3) 1.26 

Pancytopenia    -5.2 (-29.5, 0.7) 1.22 

Pneumonia  -13.7 (-46.6, 0.0) 1.16 

Autoimmune disease NEC -28.8 (-61.2, -2.2) 1.16 

Cohort 4 

Bronchiectasis    -4.2 (-29.6, 1.3) 9.44 
Autoimmune disease NEC -23.7 (-50.1, -3.2) 4.36 
Neutropenia    -4.9 (-29.8, 0.9) 3.68 
Developmental delays & disorders    -7.8 (-39.3, 5.7) 2.25 
Bacterial pneumonia    -1.8 (-23.4, 5.8) 1.14 
Asphyxia and hypoxemia    -2.1 (-25.3, 6.5) 1.13 
Asthma -27.9 (-62.8, -4.5) 1.10 
Bronchitis   -7.8 (-19.8, -0.2) 1.08 
Viral infection    -16.5 (-45.8, 0.3) 1.07 
Rheumatoid arthritis -17.2 (-61.8, -0.2) 1.01 
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