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SUMMARY 21 
The spread of antibiotic-resistance genes in bacteria has severely reduced the efficacy 22 
of antibiotics, now contributing to 1.3 million deaths annually. Despite the far-reaching 23 
epidemiological implications of this trend, the extent to which antimicrobial resistance 24 
load varies within human populations and the drivers that contribute most to this 25 
variation remain unclear. Here, we demonstrate in a representative cohort of 7,095 26 
Finnish adults1 that socio-demographic factors, lifestyle, and gut microbial community 27 
composition shape resistance selection and transmission processes. Antimicrobial 28 
resistance gene load was linked not only to prior use of antibiotics, as anticipated, but 29 
also to frequent consumption of fresh vegetables and poultry, two food groups 30 
previously reported to contain antibiotic-resistant bacteria. Interestingly, ARG load was 31 
not associated with high-fat and -sugar foods. Furthermore, antimicrobial resistance 32 
gene load was systematically higher in females and the generally healthier high-income 33 
demographics in urban and densely populated areas. Data from this prospective cohort 34 
with a 17-year follow-up suggests that the prognostic potential of antimicrobial 35 
resistome is comparable to blood pressure for mortality and sepsis. These findings 36 
highlight population-level risks and socio-demographic dimensions of antimicrobial 37 
resistance that are particularly relevant in the current context of global urbanization and 38 
middle-class growth. 39 
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 40 

INTRODUCTION 41 
Antibiotic-resistant bacteria (ARB) pose a rapidly increasing threat to global health due 42 
to failures in treating infections. By 2050, antimicrobial resistance (AMR, including 43 
antibiotic, antifungal, antiparasitic, and antiviral resistance) is predicted to contribute to 44 
10 million deaths annually, surpassing the current most common causes of death, such 45 
as cancer and cardiovascular disease2. The resistance is encoded by multiple classes 46 
of antibiotic resistance genes (ARGs) that can spread across bacterial and human 47 
populations. In particular, the human gut has been established as a major reservoir of 48 
ARGs and a highway for their lateral transfer3,4. The entire collection of ARGs in a given 49 
habitat, such as the gut, is called the resistome5,6.  50 
 51 
The emergence and spread of antibiotic resistance in microbial communities3,7,8 are 52 
driven by the ecological processes of selection and transmission (Figure 1), which act 53 
on both the resistance genes and the bacteria that carry them. Direct selection of genes 54 
that confer antibiotic resistance can be caused, for instance, by antibiotic use, as it 55 
favors the selection of resistant strains and, thus, ARG proliferation in the human gut 56 
resistome. Indirect selection of resistant bacteria can be caused by environmental 57 
factors that influence the growth of bacterial communities with specific types of 58 
resistomes9. Finally, transmission of resistance genes or resistant bacteria between 59 
individuals has been suggested to be a key driver of clinical resistance10. In particular, 60 
previous studies have indicated that contaminated food, person-to-person contact, and 61 
travel are possible risk factors for acquiring ARGs11–13.   62 
 63 
The World Health Organization has called for research on the demographic parameters 64 
underlying the AMR emergence and spread in human populations14 to tackle the AMR 65 
crisis effectively. Previous studies based on country-level statistics have shown that 66 
antibiotic resistance varies with socioeconomic markers10,15,16 and antibiotic use6,17. 67 
However, few studies have analyzed participant-level variation and the role of 68 
demographic and lifestyle factors in shaping the resistome within specific populations. 69 
Moreover, the associations between population-level resistome variation and long-term 70 
mortality and morbidity risk remain largely uncharacterized.  71 
 72 
We investigated factors associated with gut resistome variation, as well as prospective 73 
mortality and morbidity risk associated with ARG load in a well-characterized Finnish 74 
population cohort of 7,095 adults across six regions of Finland with varying 75 
demographics (mean age 49, 55% women). The cohort represents the general, non-76 
institutionalized population without acute infections (Figure 2; FINRISK1). Based on 77 
metagenomic profiles from fecal samples collected in 2002, we studied gut resistome 78 
composition and diversity, the total ARG load, and the factors contributing to their 79 
observed variation. We defined the total ARG load as the cumulative relative 80 
abundance of all observed ARGs. Data on address-level geographic location, diet, 81 
household income level, prescription drug purchases, diseases, and causes of death 82 
until 2019 were gathered from electronic population registers, health examinations, and 83 
complementary questionnaires (see Methods for a description of data sources and 84 
covariate selection including analysis of collinearity in key covariates). Summary 85 
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statistics for all antibiotics purchases during the seven years before sampling are86 

provided in Extended Data Table 1. We combined these data to investigate how87 

geographic and demographic factors, lifestyle, and health shape the antibiotic88 

resistome, and what the taxonomic underpinnings of these associations are. Moreover,89 

we investigated the prognostic value of the resistome for mortality due to infectious or90 

other causes. These analyses shed light on the putative ecological and epidemiological91 

patterns of antibiotic resistance at the population level and their health implications. 92 

 93 

 94 

 95 

96 

 97 

Figure 1: Ecological and epidemiological framework for population-level variation in ARG98 

load and resistome The ecological processes underlying ARG variation include 1) selection of99 
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antimicrobial resistance genes (ARGs) and bacteria that carry them, for instance as a direct100 

consequence of antibiotic consumption or indirectly due to environmental selection or host101 

factors (e.g., prevalent disease) that impact microbial community composition; 2) external102 

transmission via antimicrobial resistance gene carrying bacteria (ARBs). We associated103 

resistome diversity, composition, and the overall ARG load with various socio-demographic104 

parameters - some of which can be used as proxies for the above ecological processes - as well105 

as long-term morbidity and mortality risk. 106 

107 

 108 

Figure 2: Overview of the FINRISK cohort (N=7,095) a Geographical distribution of the cohort109 

participants. The jittered data points indicate the population density per km2.  Some individual110 

points at remote locations were removed to obscure participants’ addresses. b Age distribution111 

by decade, shown for males (M; blue) and females (F; brown) c Population-density versus112 

household income level (scale 1-9). d Household income level (scale 1-9) e Household income113 

level versus antibiotic purchases during the seven years before the sample collection. f114 

Household income level versus poultry consumption (scale 1-5, from less than once a month to115 

multiple times per day), and g fresh vegetable and salad consumption. Panels c, e, f, and g116 

include linear models' estimated slope and p-value. See Methods for a more detailed117 

description of the scales. 118 
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119 

Figure 3: ARG load prediction and variation. a Regional variation in total ARG load across120 

the six regions in the FINRISK cohort (North Karelia and North Savonia in the east, Oulu region121 

and Lapland in the north, Turku region in the southwest and Helsinki capital region in the south).122 

The color indicates the fraction of the population in the high ARG group for each region (>458123 

RPKM; the sum of all normalized ARGs per kilobase per million reads, i.e., the top-10% quantile124 

in this cohort; Extended Data Table 3). The dashed line illustrates the East-West split (the Turku125 

and Helsinki regions in the West and the other four regions in the East). b Drivers of ARG load126 

(boosted GLM effect size; see Methods). For drivers of resistome diversity, see Figure S1a. The127 

line plot shows each predictor's effect sizes and 95% confidence interval. The inset shows the128 

predicted and observed ARG load in test data (R2 = 0.28). Prior X: purchase of drug X in the129 

seven years before sampling (yes/no), Prior X events: number of purchases of drug X in the130 

seven years before sampling, Baseline X: Purchase of drug X in the six months before sampling131 

(yes/no). ATC class abbreviations: A = Alimentary tract and metabolism, A07 = Antidiarrheals,132 

intestinal anti-inflammatory/anti-infective agents, D = Dermalogicals, J = Anti-infectives, J02 =133 

Antifungals, M01 = Anti-inflammatory and antirheumatic products, N05 = Psycholeptics,  R =134 

Respiratory system. c Association between ARG load and fresh vegetables and poultry135 

consumption, household income, population density, and age (N=7,095: see Methods for136 

variable descriptions and Supplementary Table 3 for the numerical estimates). Similar trends137 

can be observed within individual regions (Figure S2). 138 

 139 
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RESULTS 140 
Predictors of ARG load and diversity 141 
The ability to predict ARG load and other resistome features could help identify 142 
individuals at risk and derive population-wide estimates of resistome variation (Figure 143 
3). We trained a supervised machine learning model (boosted GLM; Methods) to predict 144 
ARG load from gut microbiome composition and demographic, health, and lifestyle 145 
factors. Through cross-validation on left-out (test) data, we identified key predictors of 146 
ARG load and quantified their ability to provide generalizable predictions on new 147 
individuals (Figure 3b).  148 

The prediction model could explain 28% and 21% of the variation in ARG load and 149 
resistome diversity, respectively, in the independent test set (Figure 3b; Figure S1a). 150 
Key predictors for both included antibiotic and drug use, diet, gender, household 151 
income, East/West geographic division, population density, and bacterial species 152 
diversity (see also Figure 3c). Similar, albeit sometimes non-significant trends could be 153 
observed independently within each of the six geographical regions (Figure S2, 154 
Extended Data Tables 2-3). Including bacterial families as predictors increased the 155 
explained variance to 32% in the test set (boosted GLM, Figure S1b), suggesting that 156 
microbial community composition contributes to the ARG load on top of the other 157 
covariates. Antibiotic use explained the largest proportion of variance (GLM with just the 158 
respective covariates, 27%) in ARG load in the test data, followed by prevalent bacterial 159 
families (3%), demographic variables (household income and gender; 2%), geography 160 
(East/West; 1%) and diet (1%). Resistome diversity was primarily explained by species 161 
diversity (11%) and antibiotic use (6%), followed by demographics (gender and 162 
household income) (3%), geography (1%), population density (1%), and diet (1%) 163 
(results on ARG diversity are shown in Figure S1a). Antibiotic use, diet, population 164 
density, geography, and demographic factors represent proxies for the selection and 165 
transmission of antibiotic resistance genes (see Figure 1). Our data confirms they have 166 
substantial predictive value on individual ARG load and diversity. 167 

 168 

Drug use  169 
Antibiotic use promotes the selection of antibiotic resistance. The majority of variation in 170 
ARG load was explained by antibiotic use alone. Prior use of several classes of 171 
antibiotic and non-antibiotic therapeutics listed in the Anatomical Therapeutic Chemical 172 
Classification System (ATC) during the past seven years was positively associated with 173 
ARG load (p < 0.05, Supplementary Table 1). Consumption of antimicrobials (ATC class 174 
J) was associated with a 55% higher ARG load (p < 0.001) compared to no 175 
antimicrobial exposure in the past seven years. 176 

In particular, prior tetracycline (ATC class J01) purchases were associated with a 67% 177 
increase in ARG load (p < 0.001), and MLSB antibiotics with a 39% increase (ATC class 178 
J01F; p < 0.001). These associations remained robust after controlling for other 179 
participant-level data, such as diet (Figure 3b). Tetracycline was the second most 180 
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frequently purchased antibiotic class in the cohort (Extended Data Table 1) and has 181 
been widely used since the 1950s. It is also very commonly used in animal production18. 182 
Moreover, purchases of respiratory medication  (ATC class R) were associated with a 183 
higher ARG load after controlling for past antibiotic use, demographic factors, and other 184 
participant-level data  (Figure 3b). Other associations between non-antibiotic drugs and 185 
ARG load were not robust to adjusting for other covariates or for abundances of 186 
bacterial families (Figure S1). Although some of these drugs might have selective 187 
effects favoring resistance, drug use can also be a proxy for additional, unobserved 188 
covariates. These observations highlight the need to consider the long-term impact of 189 
the use of antibiotics.  190 

Diet 191 
 192 
Food could directly contribute to antibiotic resistance by transmitting ARGs to the gut, 193 
for instance, by consuming fresh produce and meat13,19. Another way food could 194 
influence antibiotic resistance is through indirect selection, that is, by promoting or 195 
inhibiting the growth of ARB. For instance, it has been hypothesized that high-fat, high-196 
sugar, and processed foods could promote the growth of Proteobacteria20 or other 197 
bacterial taxa that tend to carry more ARGs.  Conversely, high-fiber foods could select 198 
against ARB21. Systematic population-level data associating specific foods and 199 
antibiotic resistance is limited21,22, and the relative importance of selection and 200 
transmission in food-mediated resistance is yet to be characterized.  201 

We associated ARG load and diversity with the self-declared habitual consumption 202 
frequency of 42 food groups (Methods). Poultry had the strongest positive association 203 
with ARG load (4% average increase per consumption level, adjusted for antibiotics; p < 204 
0.001; Supplementary Table 1), followed by fresh vegetables and salad (3% increase 205 
per level; p < 0.001). In contrast to the other dietary components, the associations 206 
remained robust for poultry and fresh vegetables even after controlling for other 207 
covariates, including socio-demographics and antibiotic use (p < 0.05 Figure 3b-c). 208 
Moreover, their association with ARG load remained significant also when controlling for 209 
the abundance of bacterial families (Figure S1, p < 0.05), which suggests that this effect 210 
is not due to indirect selection. These results support the hypothesis that these foods 211 
contain ARBs that can transfer to the gut.23,24 We did not find a similar association for 212 
beef or pork, which is in line with the fact that other meat production animals in Finland 213 
were reported to have much less antibiotic resistance than poultry at the time of 214 
sampling25.  215 

In contrast, highly processed, high-sugar, and high-fat foods did not exhibit robust 216 
associations with ARG load and diversity. We observed weak associations with ARG 217 
load for dietary components such as chocolate and fast food. However, they were not 218 
robust to adjusting for participants’ covariates (1% increase per level, p = 0.05-0.15; 219 
Figure 3b). Nevertheless, the link between these foods and ARG load and diversity may 220 
be partially confounded by antibiotic exposure and diseases, which covary with diet and 221 
likely influence the abundance of ARG-containing taxa proposed to respond to high-fat 222 
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diets, such as Proteobacteria20. Interestingly, some of these foods were, in fact, 223 
inversely associated with ARG load, as were also total cholesterol and BMI (p < 0.05). 224 
This might be partly explained by the lack of fresh vegetables and poultry in the typical 225 
diets containing these foods.  Associations with high-fiber foods were mixed: both fresh 226 
and cooked vegetables were positively associated with ARG load, whereas berries and 227 
rye bread had an inverse association (p < 0.05). Taken together, our findings suggest 228 
that the influence of population-level dietary variation on antibiotic resistance is 229 
dominated by transmission from food rather than indirect selection by diet. 230 

 231 

Population density and urban regions 232 
 233 
Geography is a key epidemiological parameter that co-varies with many genetic, 234 
demographic, and lifestyle factors that can contribute to the emergence and spread of 235 
antibiotic resistance. In Finland, the Eastern and Western populations have well-236 
characterized genetic and lifestyle differences26. Whereas earlier large-scale studies 237 
have consistently reported geographic variation in antibiotic resistance between 238 
countries5,15,17, these results have been largely limited to country-level aggregates and 239 
thus lack the participant-level resolution that would be necessary for detailed 240 
quantification of resistome variation. We used the available participant-level data from 241 
national population registers to derive high-resolution estimates of population density 242 
based on the participants’ home addresses. This enabled a high-resolution analysis of 243 
geographic variation.  244 
 245 
Differences in resistome composition between geographic regions were significant in 246 
most comparisons (Extended Data Table 4, PERMANOVA, p=0.0015), albeit small 247 
(explained variance <0.1%; p<0.002). Eastern Finns had a generally lower ARG load 248 
and diversity even after controlling for (family-level) microbiota composition diet, health, 249 
population density, and demographic factors (boosted GLM, p > 0.05, Figure 3b; Figure 250 
S1). Thus, the variation between East and West could be partly due to other 251 
differences, such as limited spatial dispersal, lifestyle covariates, and differences in the 252 
genetic background. Urban regions were enriched in individuals with a high ARG load 253 
(top-10% quantile; >458 RPKM. This trend was particularly notable around the two 254 
urban centers: the Helsinki capital area and Turku, the third-largest urban region in 255 
Finland (Figure 3a; Extended Data Table 3). The highest regional ARG load and 256 
diversity were observed in these two cities. In contrast, the lowest median ARG load 257 
was observed in Lapland, a rural region with a remarkably low population density. 258 
Compared to Lapland, the median ARG load was 20% higher in Helsinki and 13% 259 
higher in Turku. The increase in the prevalence of high-ARG individuals was even 260 
higher (84% and 47%, respectively), suggesting that moderate increases in overall ARG 261 
load in urban regions increase the risk of acquiring a high ARG load. This could be 262 
explained by increasing ARG transmission in densely populated areas12, a hypothesis 263 
supported by the observation that ARG load and diversity increased also more generally 264 
with population density (Figure 3c; Supplementary Table 1).  265 
 266 
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Demographics 267 
 268 

Next, we investigated the associations between ARG load and specific socio-269 
demographic factors (Figure 3, Supplementary Table 1). Men had 92% lower average 270 
ARG load than women (95% CI 0.89-0.94, p<0.001; log-linear model); the same trend 271 
could be observed across all six regions (Figure S2). Women tend to purchase more 272 
antibiotics (41% more purchases on average in a linear model adjusted for age; 273 
p<0.001) and consume raw vegetables more frequently than men (52%; p<0.001), 274 
regardless of household income. Nevertheless, the difference between genders 275 
remained significant even after controlling for other covariates, including antibiotics, diet, 276 
and the relative abundance of bacterial families (p<0.05, Figure 3b, Figure S1). 277 
Potential causes for this result include differences in occupation or caretaking, 278 
prevalence of urinary tract infections14, and propensity to seek medical care27. 279 
Household income was positively associated with ARG load, with a 2% average 280 
increase in ARG load per income level (p < 0.001). This association was again robust to 281 
differences in antibiotic use and other participant-level covariates, including abundance 282 
variations in bacterial families. This finding contrasts with the generally positive 283 
association between higher socio-economic status and health28, and could be partly 284 
explained by lifestyle factors associated with a higher income: these participants 285 
consumed more raw vegetables, lived in more densely populated areas (Figure 2, 286 
Extended Data Table 1), and are generally more engaged in international travel29.  287 
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Figure 4. Resistome variation and taxonomic composition. a Resistome composition by the 289 
relative abundance for the 10 most abundant ARG classes in the FINRISK cohort. b Bacterial 290 
species diversity and resistome diversity (Shannon index; Pearson r=0.32). c Top panel: High 291 
ARG load (>458 RPKM) enrichment by enterosignature (ES) abundance (B0: not detected; B1-292 
B4: 25% abundance quartiles); each ES represents a sub-community of co-varying genera 293 
(Figure S6). Lower panel indicates associations between each ES, bacterial species diversity, 294 
resistome diversity, total ARG load, and the five most dominant ARG classes (Kendall’s Tau; 295 
Supplementary Table 2). The gray bars indicate significant associations (p<0.05). 296 
Abbreviations: MLSB: “Macrolide, Lincosamide, Streptogramin B”; MATQAR: "Macrolide, 297 
Aminoglycoside, Tetracycline, Quinolone, Amphenicol, Rifamycin". d Phylogenetic relatedness 298 
among the most prevalent genera in the FINRISK cohort and their association with the most 299 
prevalent ARGs. Node size indicates the total number of ARGs found in each genus according 300 
to the BLAST nr database; the colors indicate a match between each genus and the ARGs.  301 

 302 
Resistome composition reflects bacterial phylogeny 303 
Tetracycline resistance was found among virtually all participants (prevalence 100%), 304 
whereas the prevalence of other ARG classes was more variable (Figure 4a; Figure S4). 305 
Resistome composition and diversity tend to co-vary with bacterial phylogeny9 as 306 
bacterial taxa differ in their tendency to harbor ARGs3,30. In our data, bacterial species 307 
diversity partly explained resistome diversity (R2=0.11; Figure 4b; Extended Data Fig 308 
1a), although association with ARG load remained weak (R2=0.001, Figure 3b). We 309 
observed phylogenetic clustering among some of the most prevalent ARGs (Figure 4d). 310 
The tetracycline resistance genes covered a broad phylogenetic range, which could 311 
partly explain their high prevalence. Macrolide resistance gene ermB was observed in a 312 
more limited yet phylogenetically disjoint set of taxa (e.g., in Bifidobacterium, 313 
Clostridium, and Faecalibacterium). Escherichia and Klebsiella carried the largest 314 
number of unique ARGs. Abundant ARGs were often found in commensal taxa: for 315 
instance, beta-lactam resistance gene cfxA6 was detected in Bacteroides, 316 
Parabacteroides, Veillonella, and Prevotella (BLAST nr database31,32, Figure 4d). To 317 
further examine co-variation between resistome and microbiota composition, we 318 
identified five sub-communities, or enterosignatures (ES)33 of co-varying bacterial 319 
genera (Figure S6), which collectively explained 82% of all genus-level variation. They 320 
were respectively dominated by members of Bacteroides (ES-Bact), Firmicutes (ES-321 
Firm), Prevotella (ES-Prev), Bifidobacterium (ES-Bifi), and Escherichia (ES-Esch). Each 322 
ES was associated with a different characteristic resistome profile (Figure 4c, Extended 323 
Data Table 5). For instance, ES-Prev was associated with high beta-lactam and low 324 
tetracycline resistance gene abundances. High ES-Bact and ES-Esch and low ES-Prev 325 
and ES-Bifi were associated with an increased ARG load. The analysis suggests a non-326 
monotonic relation between ES abundance and ARG enrichment for ES-Bact, ES-Firm, 327 
ES-Bifi, and ES-Esch, indicating potentially complex ecological relations between 328 
bacterial community composition and antibiotic resistance. These observations are 329 
supported by the analysis of individual bacterial families (Figure S5; Supplementary 330 
Table 1). Overall, these findings emphasize the role of microbiota composition as a key 331 
confounder in population-level analyses of resistome variation. 332 
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 333 

 334 

Figure 5: Antibiotic resistance gene (ARG) load predicts long-term mortality risk. a Total335 

ARG load associates with long-term mortality risk in a 17-year follow-up (proportional hazards;336 

Extended Data Table 6). The model is adjusted for Enterobacteriaceae relative (log10)337 

abundance, age, smoking, gender, diabetes, antineoplastic and immunomodulating agents,338 

body mass index, self-reported antihypertensive medication, systolic blood pressure, recent339 

antibiotics use (six months before baseline), household income, and fresh salad and vegetable340 

consumption. The median hazard ratio (HR) is shown for each variable, along with the 95%341 

credible intervals (CI); variables whose CI overlaps with 1 (no association) are excluded from342 

the graph. b Cumulative incidence of all-cause mortality during the follow-up period for343 

individuals stratified by high (red; >458 RPKM) and conventional (blue) ARG load. High ARG344 

load is associated with significantly higher mortality among women (p=0.006; log-rank test;345 

multivariate Cox). A similar but non-significant trend is observed in men (p=0.06). Associations346 

of ARG load with sepsis and cause-specific mortality are shown in Figure S7. 347 

Antibiotic resistance is associated with long-term mortality and sepsis risk 348 

We gathered follow-up data on all major health events, including deaths from the349 

baseline sample collection in 2002 until 2019. This data allowed us to link the baseline350 

ARG load to mortality rates and sepsis incidence during the 17 years following sample351 

collection. We anticipated that ARG load could predict all-cause mortality risk because352 

antibiotic-resistant infections may occur as comorbidities and thus contribute to mortality353 

risk due to reduced antibiotic efficacy and as a marker for dysbiotic gut microbiota. In354 

total, 863 (12.2%) of the participants died during the 17-year follow-up period, and 197355 

(2.8%) got sepsis. We estimated time-to-event associations for selected variables with a356 
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probabilistic Cox model (Methods). We controlled mortality-associated covariates (age, 357 
smoking, gender, diabetes, use of antineoplastic and immunomodulating agents, 358 
systolic blood pressure, and self-reported antihypertensive medication) and (log10) 359 
relative abundance of Enterobacteriaceae. Indeed, this bacterial family is known to 360 
harbor many antibiotic-resistant pathogenic members34, and we have previously 361 
reported an association between its relative abundance and increased risk of all-cause 362 
and cause-specific mortality in the same cohort35. Furthermore, microbiome composition 363 
has been shown to be associated with infection mortality and hospitalizations36. In 364 
addition, we controlled income and fresh salad and vegetable consumption as potential 365 
confounders as they have been inversely associated with mortality28,37.  366 

We observed a positive association between ARG load (log10 RPKM) and increased 367 
mortality risk (median HR 1.34; Figure 5a). Notably, this association with all-cause 368 
mortality was stronger for ARG load than for Enterobacteriaceae (median HR 1.08) or 369 
systolic blood pressure (median HR 1.04). Moreover, the mortality associated with the 370 
high ARG load was more significant in women (Figure 5b).  ARG load was specifically 371 
associated with increased mortality due to respiratory causes (median HR 2.22; Figure 372 
S7), although the sample sizes for cause-specific events, including infectious mortality 373 
other than respiratory infections (ICD-10 A; N=13), remain relatively low (Extended Data 374 
Table 7). Moreover, we observed an association between ARG load and an increased 375 
sepsis risk (median HR 2.22; Figure S7). The associations between ARG load, all-376 
cause mortality, mortality by respiratory causes, and sepsis remained significant when 377 
controlling for the abundance of Enterobacteriaceae (Extended Data Tables 6-8), other 378 
prevalent bacterial families, or the 42 recorded food groups as covariates (Cox model; 379 
p>0.05). These observations suggest that ARG load is a robust risk factor for mortality 380 
and sepsis (Figure 5; Figure S7). 381 

DISCUSSION 382 
We have characterized the population variation and prognostic potential of gut antibiotic 383 
resistome in a single representative cohort of Finnish adults. Our results highlight 384 
ecological and epidemiological processes that can facilitate the emergence and spread 385 
of antibiotic resistance in human populations. Moreover, our data indicates that ARG 386 
load can predict long-term sepsis and mortality risk, with a prognostic potential 387 
comparable to blood pressure in a 17-year follow-up. The strongest predictor of ARG 388 
load was prior use of antibiotics. This suggests that the direct selection of antibiotic 389 
resistance genes induced by antibiotic consumption is a key mechanism underlying 390 
individual levels of ARG load, potentially several years ahead. 391 

Moreover, further indirect selection of the ARGs could be caused by variations in ARG-392 
carrying bacteria in the microbiome, for instance, due to differences in immune function 393 
or lifestyle. Finally, we found that known proxies for ARG transmission - high population 394 
density, income level, and certain food groups - could predict individual ARG load. 395 
Thus, these findings highlight population-level patterns that may contribute to antibiotic 396 
resistance selection and transmission. 397 
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Each study must be evaluated in the context of its limitations.  Sequence-based 398 
identification of ARGs is not a guarantee of phenotypic antibiotic resistance of bacteria 399 
but rather a proxy for antibiotic resistance potential in a microbial community3. The 400 
patterns observed in a single population may not be generalizable to other countries. 401 
Additionally, the lack of longitudinal metagenome data limits our ability to assess causal 402 
relations. Our analysis is based on shallow, short-read metagenome profiling. This 403 
emphasizes the most abundant and prevalent ARGs and does not allow for the 404 
assembly or the creation of draft genomes, which would allow for more detailed 405 
information about gene variants as well as the context of the ARGs. The limited 406 
sequencing depth is balanced by the sample size, which provides sufficient statistical 407 
power for generalizable predictions and distinguishing between the effects of multiple 408 
potential confounders. 409 

This is the largest currently available population study quantifying the participant-level 410 
variation of antibiotic resistance and its socio-demographic determinants. Our results 411 
confirm the need to consider such factors and stratify individuals accordingly when 412 
studying resistome variation14. Our findings suggest that antibiotic resistance could be a 413 
'disease of affluence', as it is more prevalent among high-income individuals with longer 414 
life expectancies. Similarly, a previous report found that higher gross domestic product 415 
(GDP) per person is linked to higher clinical isolate resistance across countries when 416 
controlling for the level of water-sanitation infrastructure, even though not controlling for 417 
infrastructure leads to the opposite trend of lower-income countries harboring higher 418 
resistance10,15.  The elevated ARG load among women, high-income participants, and 419 
the urban population calls for studies on demographic differences in morbidity and 420 
mortality associated with antibiotic resistance. 421 

Interestingly, despite their generally higher ARG load, the overall mortality rates are 422 
generally lower in women27 and urban high-income groups28. These groups also had a 423 
lower risk of acquiring sepsis and dying of respiratory causes. The risks associated with 424 
a higher ARG load might be thus mitigated by other factors in these subpopulations. 425 
However, the observed prognostic potential of high ARG load and the increasing 426 
number of reported AMR-related deaths38,39 implies that this might be changing. 427 
Resistome composition could complement the ongoing efforts to define a healthy 428 
microbiome40.  429 

Antimicrobial resistance and infection mortality38 are rising as leading causes of 430 
mortality globally. This trend may be exacerbated by shifts in lifestyle towards conditions 431 
that favor ARG selection and transmission through increased consumption of antibiotics 432 
and animal protein, urbanization, and international travel. In Finland, poultry 433 
consumption has increased by 57% during the past two decades41 since our original 434 
sample collection, and the population has become more centered in urban areas. 435 
Although in Finland, antibiotic use in humans declined over that period, and resistance 436 
levels mostly remained stable42, global antibiotic consumption and mortality attributed to 437 
antibiotic resistance steadily increased over time43,44. Moreover, the demand for animal 438 
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protein and the use of antibiotics in meat production18,45 has increased globally. It has 439 
been predicted that AMR infections will be the most common cause of death by 2050, 440 
marking a shift from cancer and cardiovascular diseases2. Our findings represent early 441 
warning signals of these shifts.  442 

 443 

STAR Methods 444 
 445 

RESOURCE AVAILABILITY 446 
 447 

Lead contact 448 
Further information and requests for resources should be directed to and will be fulfilled by the lead 449 
contacts: Katariina Pärnänen and Leo Lahti, katariina.parnanen@utu.fi, leo.lahti@utu.fi  450 
 451 
Materials availability 452 
This study did not generate new unique reagents  453 
 454 
Data and code availability  455 
The metagenomic data are available from the European Genome-Phenome Archive 456 
(accession number  EGAD00001007035). The phenotype data contain sensitive 457 
information from healthcare registers and are available through the THL biobank upon 458 
submission of a research plan and signing a data transfer agreement 459 
(https://thl.fi/en/web/thl-biobank/for-researchers/application-process). 460 

 461 
The analysis source code is available for review as a tar archive. The code will be made 462 
public in a GitHub repository with a permanent DOI upon acceptance. 463 

 464 

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS  465 
The FINRISK population surveys were conducted every five years from 1972 to 2012 466 
with the primary objective of tracking trends in cardiovascular disease risk factors in the 467 
Finnish adult population. The FINRISK 2002 study utilized a stratified random sampling 468 
approach of individuals between the ages of 25 and 74 from specific regions of Finland 469 
(Figure 2). These areas included North Karelia in the east, Northern Savonia in the east, 470 
Oulu in the northwest, the province of Lapland in the north, Turku and Loimaa regions in 471 
the southwest, and the cities of Helsinki and Vantaa capital region in the south. In 472 
addition, we used the West-East split of the regions based on the broad demographic 473 
and genetic characteristics of the Finnish population; the Western subset covers the 474 
regions of Turku/Loimaa and Helsinki/Vantaa, and the Eastern subset covers the rest of 475 
the regions (North Karelia, Northern Savonia, Oulu, Lapland). The sampling procedure 476 
was stratified by sex, region, and 10-year age group, resulting in 250 participants in 477 
each stratum. For Northern Karelia, Lapland, and the cities of Helsinki and Vantaa, the 478 
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strata of 65-74-year-old men and women were also sampled, each with 250 479 
participants. The initial population sample comprised 13,500 individuals (excluding 64 480 
who had died or moved away between sample selection and the survey), with an overall 481 
participation rate of 65.5% (n�=�8,798). Of the participants, n�=�7,231 individuals 482 
successfully underwent stool shotgun sequencing. Of those,129 participants withdrew 483 
their consent from the THL Biobank at the time of the study. We excluded four 484 
individuals with zero reads mapping to the ARG database from the analysis. 485 
Subsequently, n�=�7,095 participants (mean age 49 years, 55 % women) remained for 486 
unsupervised analysis. Due to a lack of external cohorts with sufficient microbiome 487 
profiling and long-term health data, we used two internal subsamples to achieve a 70/30 488 
train test split (n = 5,000 and n = 2,098). We used cross-validation to examine the 489 
robustness of the results within the cohort.  490 

Population density The address-level coordinates of the participants were mapped with 491 
the sf R package46 v. 1.0.9. to a 1 km2 population grid from 2005, obtained through the 492 
geofi R package47 v. 1.0.7. of the participants' home addresses ranged from 1 to 19,175  493 
inhabitants/km2 (mean 1,753 inhabitants/km2). The most densely populated regions are 494 
in Southern and South-Western Finland (in the cities of Helsinki and Turku, 495 
respectively). We classified the population density into five levels: (<10) 0-9  496 
inhabitants/km2; (<100) 10-99; (<1e3) 100-999; (<1e4) 1000-9999; (<2e4) 10,000-497 
20,000. The data points were randomly displaced within a 5 km x 5 km grid to obscure 498 
identifiable addresses in the figures. The figures do not show addresses with a 499 
population density of less than 10/km2. 500 

Cumulative number of total antibiotic drug purchases during the past seven years 501 
before baseline varied from 0 to 85 (mean 3.3; Figure 2). 502 

Household income data was collected based on a questionnaire and was used as the 503 
primary demographic descriptor variable alongside gender and age. We also used 504 
education level (educational years adjusted for birth year, with the levels low, medium, 505 
and high) in the models. 506 

Ethical approval 507 
The study protocol of FINRISK 2002 was approved by the Coordinating Ethical 508 
Committee of the Helsinki and Uusimaa Hospital District (Ref. 558/E3/20 1 All 509 
participants signed informed consent. The study was conducted according to the World 510 
Medical Association's Declaration of Helsinki on ethical principles. 511 

 512 

METHOD DETAILS 513 
 514 

Baseline examination 515 

The FINRISK 2002 survey included a self-administered questionnaire, physical 516 

measurements, and blood and stool sample collection. The questionnaire and an 517 
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invitation to the health examination were mailed to all subjects. Trained nurses 518 

conducted physical examinations and blood sampling in local health centers or other 519 

survey sites. The participants were advised to fast for ≥4 hours and avoid heavy meals 520 

earlier during the day. The venous blood samples were centrifuged at the field survey 521 

sites, stored at −70 °C, and transferred daily to the Finnish Institute for Health and 522 

Welfare laboratory. Data was collected for physiological measures, biomarkers, and 523 

dietary, demographic, and lifestyle factors. 524 

Stool sample collection 525 

All willing participants were given a stool sampling kit at the baseline examination with 526 

detailed instructions. The participants mailed their samples overnight between Monday 527 

and Thursday under Finnish winter conditions to the Finnish Institute for Health and 528 

Welfare laboratory, where they were stored at −20 °C. The stool samples were 529 

transferred frozen in 2017 to the University of California San Diego for microbiome 530 

sequencing. 531 

Stool DNA extraction and library preparation 532 
A miniaturized version of the Kapa HyperPlus Illumina-compatible library prep kit (Kapa 533 
Biosystems) was used for library generation. DNA extracts were normalized to 5�ng 534 
total input per sample in an Echo 550 acoustic liquid-handling robot (Labcyte I c A 535 
Mosquito HV liquid-handling robot (TTP Labtech Inc. was used for 1/10 scale enzymatic 536 
fragmentation, end-repair, and adapter-ligation reactions. Sequencing adapters were 537 
based on the iTru protocol48, in which short universal adapter stubs are ligated first, and 538 
then sample-specific barcoded sequences are added in a subsequent PCR step. 539 
Amplified and barcoded libraries were then quantified by the PicoGreen assay and 540 
pooled in approximately equimolar ratios before being sequenced on an Illumina HiSeq 541 
4000 instrument to an average read count of ~900,000 reads per sample. 542 

Taxonomic and ARG profiling from sequencing data 543 
We analyzed shotgun metagenomic sequences using a pipeline built with the 544 
Snakemake49 bioinformatics workflow library. We trimmed the sequences for quality and 545 
adapter sequences using Atropos50. We removed host reads by genome mapping 546 
against the human genome assembly GRCh38 with Bowtie251. 547 

We performed taxonomic profiling using MetaPhlAn352 for R1 and R2 reads using the 548 
default settings. We mapped the R1 and R2 reads with Bowtie2 v 2.4.451 against the 549 
ResFinder database version 2.1.153 with the following options: “-D 20 -R 3 -N 1 -L 20 -i 550 
S,1,0 5”. SAMtools v1.1054 was used to filter and count reads and if both reads mapped 551 
to the same gene the read was counted as one match and if the reads mapped to 552 
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different genes, both were counted as hits to the respective gene. ARG counts were 553 
normalized by library size (number of reads per sample), ARG length, and the sum of all 554 
normalized ARGs per kilobase per million reads (RPKM). 555 

Phylogenetic tree visualization of bacterial taxa and ARGs 556 
We explored the phylogenetic distribution of ARGs in the ResFinder4 database in public 557 
sequence data, as our shallow shotgun sequencing did not allow for assigning ARGs to 558 
their host genomes using our data. We ran blastn using the ResFinder4 database as 559 
the query and the nucleotide collection “nt” database31 as a reference, filtering for e-560 
value <10-6 with custom ‘outfmt 6’ including ‘taxid’ for the taxonomic identifier. The 561 
blastn results were processed using TaxonKit 55 to add genus information based on the 562 
identifier to match the genera found in our cohort using genus names. Genera found in 563 
MetaPhlAn3 mapping filtered using mergeFeaturesByPrevalence function in mia for at 564 
least 0.1% abundance in 1% of the samples was used to build a phylogenetic tree of the 565 
prevalent genera using ggtree v.3.8.2 56. The most abundant ARGs in the cohort and 566 
their presence in the genera were visualized on the tree using the gheatmap function 567 
from ggtree. 568 

Register linkage for pre-existing diseases and medication use at baseline 569 
In Finland, each permanent resident is assigned a unique personal identity number at 570 
birth or after immigration, which ensures reliable linkage to the electronic health 571 
registers. The Finnish health registers cover nearly 100% of all major health events 572 
(Hospital Discharge Register, since 1969) and all prescription drug purchases (Drug 573 
Purchase Register, since 1995. The quality of the diagnoses in the Finnish national 574 
registers has been previously validated5,6. Antibiotic drug usage was based on 575 
prescription drug purchases (Drug Purchase Register with the Anatomical Therapeutic 576 
Chemical (ATC) class J01, which we used as a proxy for actual antibiotic use. Baseline 577 
antibiotics use (n�=�1,246) was defined as a purchase with an ATC code of J01* up to 578 
6 months before baseline. The participants were followed through Dec 31, 2019. 579 

Penicillin and other beta-lactam-antibiotics were purchased most often (5390 and 5529 580 
unique purchases in the cohort during 7 years of recording before sampling). 581 
Tetracyclines were purchased 5179 times, macrolides, lincosamides, and 582 
streptogramins 4620 times. There were no purchases of aminoglycosides 583 
(Supplementary Table 1). 584 

Food questionnaire 585 
Habitual diet was assessed using a food propensity questionnaire (FPQ), which 586 
contained 42 food items with choices ranging from 1 – 6 for consumption frequency. 587 
Answers denote the following descriptions: An answer 1 ("Less than once a month") 2 588 
("Once or twice a month") 3 ("Once a week") 4 ("Couple of times a week") 5 ("Almost 589 
every day"), and 6 ("Once a day or more often"). For fresh vegetable and salad 590 
consumption, the answers 1 and 2 were combined, resulting in new levels 1 (Less than 591 
twice a month), 2 (“Once a week”), 3 (“Couple of times a week”), 4 (“Almost every day”), 592 
5 (“Once a day or more often”). For poultry, levels 5 and 6 were combined, resulting in a 593 
new level 5 (Almost every day or more often), but the other levels were kept the same 594 
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as in the original questionnaire. Additionally, the healthy food score 57, HFC was used 595 
as a proxy for the general healthiness of the diet.  596 

Regional analysis 597 
For regional analysis, we used the six geographical regions defined above (North 598 
Karelia, Northern Savonia, Turku, and Loimaa, Helsinki, and Vantaa, Oulu, and 599 
Lapland) or East-West split of the regions. 600 

 601 

QUANTIFICATION AND STATISTICAL ANALYSIS 602 
Participant data and variable preprocessing 603 
We excluded all variables with near zero variance (caret R package58 v. 6.0-94) or more 604 
than 500 missing values. The ARG load was log10 transformed for all the statistical 605 
analyses. The dichotomous variables and variables with less than ten levels were 606 
unscaled, and other variables, excluding ARG load, were scaled. 607 

Statistical analysis 608 
All statistical analyses were done in R59 version 4.3.1.  We corrected for multiple testing 609 
using FDR correction (Benjamini–Hochberg) (R stats package). We report the adjusted 610 
p values. We considered an FDR-corrected P�<�0.05 significant. All figures were 611 
created with ggplot2 60 v. 3.4.4 unless otherwise indicated. For all analyses, including 612 
microbial taxa, the taxa abundances were centered log-ratio (CLR) transformed to 613 
account for compositionality in sequencing data unless otherwise indicated. 614 

General cohort statistics 615 
ARG load was measured using the total sum of all ARGs' reads per kilobase per million 616 
mapped reads (RPKM). The RPKM values varied considerably among the participants 617 
(mean 268 RPKM). The total number of ARG reads mapping to the ARG database had 618 
a mean of 468 per sample. There was no association between library size and ARG 619 
relative abundances (p = 0.4, linear model). The diversity of ARGs, as measured by the 620 
Shannon diversity index, ranged from 0 to 5, with a mean of 3 (Supplementary Figure 621 
1). The number of unique ARGs detected ranged from 1 to 194, with a mean of 42. 622 
ARG diversity and load were higher in participants with prior antibiotic use, but ARG 623 
richness did not vary significantly (linear model, log-transformed, α = 0.05). 624 

Alpha diversity 625 
We characterized the alpha diversity of the microbiome with the Shannon index using 626 
the complete species-level abundance data for the taxonomic profiles, and using the 627 
complete ARG abundance data for the resistome profiles.  628 

Beta diversity 629 
We used the standard combination of (non-linear) principal coordinate analysis (PCoA) 630 
based on the Bray–Curtis dissimilarity index (estimated with the R packages scater 61 631 
v1.29.4 and vegan62 v2.6-4 to visualize the overall population variation of the 632 
microbiome and resistome composition. The beta-diversity analysis for taxonomic 633 
composition was based on species-level relative abundance data from MetaPhlAn352. 634 
The beta-diversity analysis for resistome composition was based on the ARG profiles. 635 
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Selection of covariates for modeling 636 
The covariates included in linear models were chosen based on 1148 available 637 
covariates. We removed covariates that defined events after sampling and had at least 638 
500 missing values or near zero variance (R package caret v6.0-94, nzv function with 639 
default settings), yielding 134 covariates (Supplementary Table 1) that included prior 640 
disease diagnoses for major non-communicable diseases and drug purchase events, as 641 
well as geographic region, gender, age, and food frequency. The diseases that passed 642 
the filtering criteria included high blood pressure, asthma, diabetes, skeletal fractures, 643 
ischemic heart disease, and major cardiovascular events. The majority of diseases did 644 
not pass the near-zero variance criterion described above. Two categories for drug 645 
purchases were used to investigate if the association differed between recent (6 646 
months)  and prior use (7 years).  647 

Linear models 648 
We performed linear models pairwise with log10(ARG load in RPKM) and ARG diversity 649 
and all the explanatory variables that fit the selection criteria. Antibiotic use was 650 
controlled using the following parameters: number of events treated with all antibiotics 651 
and tetracyclines, prevalent MLSB and tetracycline use, and use of any antibiotic during 652 
the past month before baseline. The exponent of the coefficients for ARG load is 653 
reported in the main text for ease of interpretation. The pairwise Pearson correlations 654 
between key variables (for estimating collinearity) are reported in Extended Data Table 655 
9.   656 

Boosted GLM 657 
Boosted Generalized linear models (GLMs) with Gaussian distribution were fitted to 658 
associate log10(ARG load in RPKM) (and, separately, ARG diversity) with covariates 659 
using the R packages mboost 63 v2.9-8, and caret 58 v6.0-94. We followed the same 660 
selection for boosted GLM as for pairwise linear models, except excluding cholesterol 661 
and BMI since they were collinear with income level and diet (Extended Data Table 9), 662 
which were of interest (Pearson correlation, p-value <0.05). We further excluded the 663 
general diagnosis for mental diseases as it overlapped with drug purchases. Drug 664 
purchases were included as both prior (since 1995) and as baseline (past six months) to 665 
investigate both short and long-term associations. In boosted GLMs, the generalized 666 
linear model is fitted using a boosting algorithm based on component-wise univariate 667 
(generalized) linear models. During fitting, the variable selection is performed. The 668 
regression coefficients can be interpreted as regular GLM covariates. We reported the 669 
exponent of the coefficients for models with log10(ARG load)  in the main text for ease 670 
of interpretation. 671 

The generalizability of the fitted models was assessed with cross-validation. Five 672 
thousand randomly selected participants from the cohort were used for model training, 673 
while the remaining 2,095 individuals were used for testing to obtain a 70/30 train-test 674 
split. We excluded anthropometric variables such as height and blood markers for 675 
cholesterol and triglycerides since those markers are collinear with diet, lifestyle, and 676 
gender, which were our main research interests.  677 

Additionally, we fit the boosted GLM by including the most prevalent bacterial families 678 
(an abundance of > 0.01% in 1% of samples) and the above-mentioned covariates. 679 
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Our analysis revealed collinearity between several covariates in the data used to build 680 
the boosted GLM (Pearson correlation, p-value <0.05), including income class, sex, and 681 
food frequencies for foods such as ready-to-eat meals, raw vegetables, and sausages. 682 
Further examination of collinearity is presented in Extended Data Table 9. Despite the 683 
collinearity of the covariates, our results show that each model component explains 684 
additional variation not captured by the other covariates, and the resulting model does 685 
not have variable collinearity. 686 
 687 
GLMs 688 
To validate that the association of fresh vegetables and poultry with ARG load (log10) is 689 
not because of underlying taxonomic composition shifts due to the consumption of 690 
these foods, we ran pairwise GLMs with fresh salad or poultry consumption and 691 
prevalent bacterial families using Gamma distribution and log link. We corrected the p-692 
values with the FDR method.  693 
 694 
To validate gender differences, we ran GLMs with fresh vegetable consumption and 695 
antibiotic purchases as responses and adjusted with age using Gaussian distribution. 696 
 697 
Probabilistic analyses 698 
To detect potentially non-linear trends in ARG load concerning key covariates (fresh 699 
vegetable consumption, poultry consumption, household income, population density, 700 
age) and to quantify uncertainties (Figure 3c), we implemented a probabilistic model to 701 
predict mean ARG load. We modeled the relation between ARG load and each factor 702 
level in the given covariate based on the lognormal distribution using the default values 703 
in the R brm function from the brms package (version 2.21.0). The model can be 704 
summarized in the following pseudocode: brm(ARGload ~ factor(variable)-1, family = 705 
lognormal()). We ran this model separately for each gender. Posterior simulations were 706 
used to estimate the mean and credible intervals at the top 10% quantiles for the 707 
lognormal distribution at each factor level. 708 

Survival analysis 709 
We used the Cox-proportional hazards model to predict all-cause mortality during the 710 
17-year follow-up after baseline. We inferred the model parameters with a probabilistic 711 
multivariate Cox model using the brms v 2.20.4 64  and tidybayes v3.0.6 R packages. 712 
We used the ggfortify 65,66 v0.4.16 and survminer 67 v0.4.9 packages to generate the 713 
Kaplan-Meier curve. We verified the probabilistic analyses with frequentist analyses 714 
based on the survival 68,69 v3.5-7 R package. Survival analysis was controlled for 715 
Enterobacteriaceae abundance, which we previously reported to associate with 716 
increasing mortality risk in this cohort (Salosensaari et al. 2021), other mortality-717 
associated covariates used in that publication (age, smoking, gender, diabetes, use of 718 
antineoplastic and immunomodulating agents, body-mass index, self-reported 719 
antihypertensive medication), and fresh vegetable consumption and income class were 720 
included as controls. Income and fresh salad and vegetable consumption were adjusted 721 
for in the model since they have been negatively associated with mortality28,37 but 722 
positively with ARG load. Enterobacteriaceae abundance and total ARG load were 723 
log10-transformed before the analysis. The median hazard ratio (HR) in Fig. 5a shows a 724 
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relative change in mortality risk following a unit change in each covariate based on the 725 
probabilistic multivariate Cox regression model. The covariates that exhibited strong 726 
independent association with mortality are shown (>95% Bayesian credible intervals do 727 
not include zero); the credible intervals can be considered a probabilistic version of 728 
classical confidence intervals. The Kaplar-Meier curves (Fig. 5b) compare survival 729 
between the individuals with high vs. conventional ARG load (the top-10% quantile vs. 730 
others; >458 RPKM), controlled for the same covariates as in the Cox regression model. 731 
The classical multivariate Cox model further confirms the significant association 732 
(p<0.02).   733 
 734 
Enterosignatures 735 
We adapted recently proposed enterosignatures to summarize the community 736 
composition in a few coherent subcommunities33. The enterosignature approach was 737 
proposed to complement the earlier attempts to stratify each individual into one of the 738 
few distinct community types driven by major groups of gut bacteria. In summary, we 739 
applied non-negative matrix factorization (NMF) on the genus-level relative abundances 740 
after combining the rare genera (<1% prevalence above 0.1% relative abundance) into 741 
a single group (“Other”). We run NMF with 2-10 components with 10 runs using the 742 
default parameters in the function nmf from the R package NMF (v. 0.26). The 743 
Silhouette consensus measure in the function output indicated an optimal solution of 5 744 
NMF components. Frioux et al. (2023) originally reported the same optimal number of 745 
components. We observed a notable correspondence of these signatures between 746 
FINRISK (Figure S6) and Frioux et al. (2023; Figure 1). Three of the components had 747 
the same most abundant genus in both cases (Bacteroides, Prevotella, 748 
Bifidobacterium). In the Firmicutes component, the most abundant ten genera were 749 
Firmicutes, which accounted for 94% of this component in FINRISK. The Escherichia 750 
component was dominated by Butyrivibrio in FINRISK, with fewer Proteobacteria in the 751 
FINRISK data. Yet, it was the only signature observed in FINRISK associated with 752 
Escherichia (a scaled component loading 100% for this signature). Notably, despite the 753 
differences, including independent data sets, metagenomic preprocessing pipelines, 754 
and implementation details, the five ES identified in FINRISK had a direct qualitative 755 
correspondence with the initially reported enterosignatures. We also checked that the 756 
enterosignature abundances were robust to variations in library sizes (Kendall's tau; 757 
p>0.05 for all ES).  758 
 759 
Kendall’s Rank Correlation 760 
Associations between diversities, ARG load, and bacterial families or Enterosignatures were 761 
calculated using Kendall’s Rank Correlation (also known as Kendall’s Tau), followed by FDR 762 
correction using the mia 70 package v. 1.9.19 function getExperimentCrossAssociation. 763 
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