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Abstract 

Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are 

neurodevelopmental conditions that share genetic etiology and frequently co-occur. Given 

this comorbidity and the well-established clinical heterogeneity within both conditions, 

identifying individuals with similar brain signatures may be valuable for predicting clinical 

outcomes and tailoring treatment strategies. Cortical myelination is a prominent 

developmental process, and its disruption is one of the candidate mechanisms for both 

disorders. Yet, no studies have attempted to identify subtypes based on T1w/T2w-ratio, a 

magnetic resonance imaging (MRI) based proxy for intracortical myelin. Moreover, cortical 

variability likely arises from numerous biological pathways, and multimodal approaches can 

effectively integrate several cortical metrics by fusing them into a single network. We 

analyzed data from 310 youths aged 2.6-23.6 years, obtained from the Province of Ontario 

Neurodevelopmental (POND) Network consisting of individuals diagnosed with ASD 

(n=136), ADHD (n=100), and typically developing (TD) individuals (n=74). We first tested 

for differences in cortical microstructure between diagnostic categories and controls, as 

assessed by the T1w/T2w-ratio. We then performed unimodal (T1w/T2w-ratio) and 

multimodal (T1w/T2w-ratio, cortical thickness, and surface area) spectral clustering to 

identify diagnostic-blind subgroups. As hypothesized, we did not find statistically significant 

case-control differences in T1w/T2w-ratio. Unimodal clustering mostly isolated single 

individual- or minority clusters, driven by image quality and intensity outliers. Multimodal 

clustering suggested three distinct subgroups, which transcended diagnostic boundaries, 

showing distinct cortical patterns but similar clinical and cognitive profiles. T1w/T2w-ratio 

features were the most relevant for demarcation, followed by surface area. While there do not 

appear to be considerable differences at the diagnostic group level, multimodal clustering 

using the T1w/T2w-ratio holds promise for identifying biologically similar subsets among 

individuals with neurodevelopmental conditions. 
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Introduction 

Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are 

heritable neurodevelopmental conditions that affect about 1% and 7% of the population 

respectively, with higher prevalence in boys (Talantseva et al., 2023; Thomas et al., 2015). 

ASD encompasses challenges in social functioning, atypical sensory sensitivity, and 

stereotyped patterns of movement, interests, and behaviors (American Psychiatric 

Association, 2022). ADHD is recognized by age-inappropriate levels of inattention, and/or 

hyperactivity and impulsivity (American Psychiatric Association, 2022). While ASD and 

ADHD are diagnostically distinct, with different core symptoms, they frequently co-occur. 

There are for instance reports of children with ADHD showing elevated levels of autistic-like 

traits (Grzadzinski et al., 2016; Martin et al., 2014), and about 40% of individuals with ASD 

also presenting with comorbid ADHD (Rong et al., 2021). Moreover, there is considerable 

overlap in the genetic etiology of ASD and ADHD (Mattheisen et al., 2022). Relatives of 

individuals with ASD have an increased risk for ADHD, which increases by the level of 

relatedness (Ghirardi et al., 2018; Jokiranta-Olkoniemi et al., 2016). Consequently, 

researchers increasingly adopt transdiagnostic approaches, when investigating underlying 

neural mechanisms of ASD and ADHD.  

ASD and ADHD typically manifest in early and mid-childhood, respectively. These 

are critical periods for brain development, including of the cerebral cortex, which plays a 

crucial role for cognitive abilities (Gilmore et al., 2018; Norbom et al., 2021). Magnetic 

resonance imaging (MRI) can indirectly capture these processes, revealing decreases in 

apparent thickness from about year 2, and early increases, and subsequent leveling off, in 

surface area in typically developing youths (Bethlehem et al., 2022; Tamnes et al., 2017). 

Beyond morphometry, a prominent feature of cortical development is a change in its 

brightness, and variations in cortical intensity can be assessed by dividing a T1-weighted 

(T1w) and a T2-weighted (T2w) image (Glasser & Van Essen, 2011). The T1w/T2w-ratio 

has been suggested as a viable MRI based proxy for intracortical myelin (Glasser & Van 

Essen, 2011; Nakamura et al., 2017; Shafee et al., 2015). This is as cholesterol in myelin is a 

major determinant for both the T1w and T2w signal, in an inverse manner (Does, 2018; 

Koenig, 1991; Koenig et al., 1990). Intracortical myelination is a crucial developmental 

process providing efficient signal transmission between neurons, and structural support 

(Miller et al., 2012; Wake et al., 2011). Multiple studies demonstrate an age-related increase 

in T1w/T2w-ratio throughout childhood and adolescence, and support the effectiveness of the 

ratio in mapping global and regional cortical maturational patterns (Baum et al., 2021; 
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Grydeland et al., 2013, 2019; Norbom, Rokicki, Alnæs, et al., 2020; Vandewouw et al., 

2019). While there are numerous likely cortical candidate mechanisms for ASD an ADHD, 

oligodendrocyte dysregulation and myelination disruptions are one of them (Patterson, 2011; 

Phan et al., 2020; Richetto et al., 2016). 

As neurodevelopmental conditions, both ASD and ADHD are thought to involve 

atypical (pre- and) post-natal brain development. MRI studies have revealed atypical cortical- 

and white matter microstructure in ASD and ADHD (Ameis et al., 2016; Bezgin et al., 2018; 

Connaughton et al., 2022; Gharehgazlou et al., 2022; MRC AIMS Consortium et al., 2018; 

Ohta et al., 2020). Still, previous studies disagree on the presence and direction of structural 

differences, regional specificity, and the imaging metric most sensitive to these aspects (Hong 

et al., 2020; Pagnozzi et al., 2018). These discrepancies can in part be attributed to the 

predominant use of case-control designs. While suitable for homogeneous clinical 

populations, these designs are subpar when applied to conditions like ASD and ADHD as 

they may dilute their well-recognized phenotypic and etiological heterogeneity (Zabihi et al., 

2020).  

Recognizing this notion, a better alternative is to parse ASD and ADHD into 

diagnostic-blind subgroups, based on common brain signatures. This could not only clarify 

previous discrepancies but may shed light on variance in severity, illness progression, 

treatment response, etiology, and potentially be informative for the development of tailored 

treatments. Brain-based subtyping have found subcategories both within and across 

neurodevelopmental conditions (Itahashi et al., 2020; Jacobs et al., 2021; Kushki et al., 2021; 

Sadat-Nejad et al., 2023; Vandewouw et al., 2023), including structure-based clustering of 

ASD (Brucar et al., 2023; Hong et al., 2020; Zabihi et al., 2020). Although subtyping based 

on cortical structure shows potential, studies have yet to identify subtypes based on 

T1w/T2w-ratio.  

Another limitation with the previous literature is that most studies assess a single-, or 

a few selected brain metrics separately. This overlooks the probable scenario of cortical 

variability arising from multiple and partly independent biological pathways, that are 

indirectly captured best by different imaging metrics. Multimodal approaches can effectively 

integrate several cortical sources of variability by fusing their similarity matrices into a single 

similarity network, capturing shared and complementary information and higher-order 

interactions (Wang et al., 2014). Such approaches could lead to both enhanced parsing and 

improved neurobiological interpretation.  
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A final consideration is that, due to convention and availability, many cortical region 

of interest (ROI) studies default to using the Desikan-Killiany or the Destrieux atlas (Desikan 

et al., 2006; Destrieux et al., 2010). These atlases are based on gyral folding and anatomical 

landmarks rather than cyto- or myeloarchitecture which are the main proposed 

neurobiological drivers of cortical thickness, surface area and T1w/T2w-ratio. A parcellation 

based on multimodal imaging, including relative myelin content, such as the “multimodal 

Glasser atlas” (Glasser et al., 2016), could in these cases be more appropriate.  

To this end we used, post quality-control, data from 310 youths (89 females) aged 

2.6-23.6 years, obtained from the Province of Ontario Neurodevelopmental (POND) 

Network. Our sample consisted of individuals diagnosed with ASD (n=136), ADHD (n=100), 

and typically developing (TD) individuals (n=74). Separately for ASD and ADHD, we first 

employed a case-control design, testing for group differences in cortical microstructure as 

assessed by the T1w/T2w-ratio in the multimodal Glasser atlas. We then used a spectral 

clustering approach to find diagnostic-blind subgroups based the similarity of their regional 

T1w/T2w-ratio profiles. Finally, we fused Glasser-ROI based T1w/T2w-ratio, cortical 

thickness, and surface area before using the same clustering approach. Due to clinical 

heterogeneity, we did not expect statistically significant case-control differences in 

microstructure between the neurodevelopmental conditions and TD youths. However, we 

hypothesized that we would identify transdiagnostic subgroups exhibiting similar T1w/T2w-

ratio patters. We also anticipated that these groupings would hold clinical or cognitive 

significance and therefore tested for differences in social functioning, repetitive behaviors, 

attention, hyperactivity and total IQ scores. Finally, we hypothesized that incorporating 

microstructure into a multimodal clustering approach, would enhance the ability to group 

individuals based on shared characteristics.  

 

Materials and Methods 

 

Participants 

The data was acquired from the POND Network, which is collected across four Canadian 

cites (https://pond-network.ca/). The sample comprises over 3000 individuals spanning an 

age range from young childhood to young adulthood. Most of the youths have 

neurodevelopmental disorders or conditions including ASD, ADHD, OCD, Tourette- Rett- or 

Fragile X- syndrome (Jacobs et al., 2021; Kushki et al., 2021). The POND Network holds 
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comprehensive demographic, genetic, and behavioral information, along with neuroimaging 

data for a subset of individuals. The clinical cohort used in the current study was recruited 

from mental health facilities, primarily based on receiving a diagnosis. TD youths were 

recruited through public advertising and social media, provided that neither they nor their 

first-degree relatives had a diagnosis of a neurodevelopmental condition. Parental informed 

consent, as well as child assent when possible, was obtained for all participants and approval 

of research ethics was obtained by the Hospital for Sick Children, Toronto, Canada 

(1000012230) (Baribeau et al., 2019; Sadat-Nejad et al., 2023). 

The present study focused on a subset of 484 potential participants recruited between 

2016 and 2022 who had both T1w and T2w MRI sequences with a voxel resolution of 0.8mm 

isotropic. 117 subjects did not pass MRI based quality control or processing (described 

below) and another 57 youths were excluded as they had neurodevelopmental conditions 

other than ASD or ADHD or missing demographic information. This resulted in a final 

sample size of 310 participants (89 females) aged 2.6- 23.6 years (mean =12.4, SD =4.4). The 

sample included individuals diagnosed with ASD (n=136), ADHD (n=100), and TD 

individuals (n=74) (Figure 1).  

 

 

Figure 1. Age, sex and diagnostic histograms. The figure shows the distributions of age, sex, and 
diagnoses for the final sample (n=310) on the left side, and for the individuals excluded during MRI-
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based quality control and processing (n=117) on the right side. ASD= autism spectrum disorder, 
ADHD= attention-deficit/hyperactivity disorder, and TD= typically developing individuals. 

 

Diagnostic-, clinical-, and cognitive measures 

Clinical diagnoses were confirmed using the Diagnostic Observation Schedule – 2 (Lord et 

al., 2000) and the Autism Diagnostic Interview – Revised (Lord et al., 1994) for ASD, and 

The Parent Interview for Child Symptoms (Ickowicz et al., 2006) for ADHD. 

Social functioning was assessed using the Social Communication Questionnaire 

(SCQ) (Rutter, 2003), a widely used caregiver report comprising 40 binary items that 

quantify the presence or absence of non-typical social abilities and behaviors. For our 

analyses, we utilized the total SCQ score, with higher scores indicating greater social 

communication deficits. We used the Repetitive Behaviors Scale – Revised (RBS-R) 

(Bodfish et al., 2000) to assess a broad range of repetitive behaviors including stereotypic, 

self-injurious and compulsive conduct. The scale consists of 43 items scored by a caregiver 

on a 0-3 Likert scale with 0 and 3 indicating no- and severe presence, respectively. We 

utilized the total RBS-R score, with higher scores indicating having more repetitive 

behaviors. Inattentive and hyperactive-impulsive traits were assessed by the Strengths and 

Weaknesses of ADHD-symptoms and Normal-behavior (SWAN) questionnaire (Brites et al., 

2015), which employs a Likert scale with varying levels across items. Inattention was 

determined by summing the first 9 items, and the hyperactivity-impulsivity metric by 

summing items 10-18, with higher scores indicating greater severity. Individuals with 

missing clinical scores, 72 for SCQ, 75 for RBS-R, and 79 for SWAN, were excluded from 

the clinical analyses. 

Cognitive abilities were assessed with the age-appropriate Wechsler or Stanford–

Binet test (Frandsen & Higginson, 1951; Wechsler, 1981). These tests assess multiple 

dimensions of intelligence, including verbal comprehension, perceptual reasoning, working 

memory, and processing speed. In the current study we used the age standardized Full-Scale 

IQ score as a reflection of general cognitive abilities. 69 individuals had missing IQ scores 

and were excluded from the cognitive analyses.  

MRI acquisition, quality control, and preprocessing  

MRI data were obtained at The Hospital for Sick Children (SickKids) in Toronto, using a 

single 3T Siemens MAGNETOM PRISMA scanner. Anatomical scans were acquired using a 
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sagittal T1w MPRAGE sequence, and a sagittal T2w 3D-SPACE sequence. The resolutions 

for both sequences were 0.8 mm isotropic. Detailed information regarding acquisition 

parameters is given in the Supplementary Information (SI). 

Out of 484 potential participants, 203 individuals had multiple T1w and/or T2w 

images and/or sessions. To identify the optimal image, a single trained rater (L.B.N) visually 

inspected the raw images in FSLeyes, giving preference to the earliest session when possible. 

During this process, 41 individuals were excluded due to inadequate quality of all images.  

The T1w and T2w images were subsequently processed using a three-step pipeline 

from the Human Connectome Project (HCP), which is described in detail elsewhere (Glasser 

et al., 2013). Briefly, step one generates a native space, aligns the T1w and T2w image, 

applies bias field correction, and creates transformations from native to standard MNI space. 

Step two, based on FreeSurfer (Fischl, 2012) includes reconstructions of the "white" and 

"pial" surface, representing the boundaries between grey and white matter, and grey and 

cerebrospinal fluid, respectively (Dale et al., 1999; Fischl et al., 1999). Cortical thickness is 

computed based on the vertex-wise distances between these surfaces. Finally, step three maps 

individual surfaces to a common “fs_LR” space, surface area is calculated by summing the 

triangle areas converging at each particular vertex of the midthickness surface, and 

T1w/T2w-ratio maps are created. More specifically, based on methods from Glasser and Van 

Essen (2011) the T1w volume is divided by the T2w volume, the cortical ribbon voxels are 

isolated, and voxels suspected of being highly affected by partial voluming are removed. The 

remaining voxels are mapped onto a midthickness-surface and averaged to produce a single 

value per vertex. 12 individuals were excluded due to exit-errors or a failure to complete the 

pipeline within a reasonable timeframe (30 hours).  

After image processing, a report was created consisting of screenshots depicting all 

T1w/T2w-ratio maps. These maps were visually inspected by the same trained rater, who 

excluded 64 individuals due to inadequate quality. T1w/T2w-ratio, cortical thickness, and 

surface area were in fs_LR space and with a vertex-wise resolution of 32k. Finally, we 

parcellated our data using the "Glasser multimodal atlas" (Glasser et al., 2016) obtained from 

BALSA (https://balsa.wustl.edu/file/3VLx), resulting in 360 cross-hemispheric regions per 

metric, totaling 1080 features. 

As a supplementary analysis we retained only 43% of the full imaging sample, based 

on additional MRI quality control (QC) steps, including the FreeSurfer output “total number 

of surface holes” similar to the Euler Number, as described in SI. 
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Statistical analysis 

Based on our sample size, we first conduced a power analysis to estimate the probability that 

a test would detect true case-control effects (1-beta) and the probability of Type II errors 

(beta). We utilized the "pwr.t2n.test" function in R and assessed small (Cohen's d = 0.2) and 

medium (Cohen’s d = 0.5) effect size detection, using a two-sample t-test with unequal 

sample sizes, and an alpha level of 0.05. This gave base-estimates and were not adjusted for 

later multiple comparisons, which lower power further. Calculations were performed 

separately for ASD and ADHD. 

We then tested for group level differences in T1w/T2w-ratio between the clinical 

groups and TD youths in separate linear models using the Permutation Analysis of Linear 

Models (PALM) toolbox (Winkler et al., 2014). T1w/T2w-ratio ROIs were added as 

dependent variables, while dummy coded diagnoses was added as an independent variable. Z-

standardized age and sex were included as covariates in the analysis. This resulted in 360 

ASD related-, and another 360 ADHD related tests.  

To assess statistical significance robustly with a limited sample size, we employed 

data shuffling with 10,000 permutations. We adjusted for multiple comparisons and contrasts 

using false discovery rate (FDR) with threshold-free cluster enhancement (Smith & Nichols, 

2009) and a significance threshold of 0.05. In a supplementary analysis, we performed 

identical tests on a subset of the data after more stringent QC of the MRI data (n=209). 

The statistical code used in the present paper is available online (https://osf.io/dfvk9/).  

 

Spectral clustering 

To mitigate age effects which if unhandled would dominate clustering solutions, we 

employed normative modelling to age-residualize all 1080 ROIs. For this, we employed 

Gaussian Process Regression in the PCNtoolkit (Rutherford et al., 2022). First, we estimated 

ROI-specific normative models as a function of age and sex considering only TD youths, 

with 5-fold cross validation. We subsequently applied the normative models to our clinical 

population, allowing us to quantify deviations from the norm through an individual- and ROI-

specific Z-score. 

We performed spectral clustering in R using the SNFtool (Wang et al., 2014). Initially 

we tested a range of parameters, including alpha levels (0.3-0.8) and k-nearest-neighbors 

(KNN) (11-31) clustering on T1w/T2w-ratio ROIs. We then assessed the Dunn Index and 
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Silhouette score across cluster solutions spanning 2 to 10, and based on these assessments, we 

selected an alpha level of 0.3, and a KNN value of 23. 

For unimodal clustering we incorporated the 360 T1w/T2w-ratio ROI z-scores from 

individuals with ASD and ADHD only (n=236) as features. From these a distance matrix was 

created before being converted to a similarity matrix, which is a quantification of the pairwise 

similarities between features. Spectral clustering was then applied to the similarity matrix, 

exploring solutions of 2 to 10 with 100 iterations. 

 Similarly, for multimodal clustering, z-scores from T1w/T2w-ratio, cortical thickness, 

and surface area were used as features to create three separate distance matrices. They were 

then converted into three similarity matrices. We then utilized a similarity network fusion 

technique to combine the distinct matrices into a unified similarity network. This approach 

minimizes signal dilution which might be associated with other concatenation methods, 

preserving the integrity of individual cortical sources (Wang et al., 2014). Spectral clustering 

was then performed on the fused similarity matrix, testing cluster solutions from 2 to 10 with 

100 iterations. 

To identify the optimal number of clustering solutions, we used the “eigengap” and 

“rotation cost” (Wang et al., 2014). Eigenvalues, obtained from the Laplacian matrix offer 

valuable insights into the connectivity structure of the data. A large difference between 

eigenvalues, or a large eigengap, suggests the presence of well-separated clusters. Rotation 

cost is derived from constructing a rotation matrix using the eigenvectors obtained from the 

Laplacian matrix. To encourage that each datapoint is predominantly assigned to a single 

cluster, a sparsity constraint (each row at most having one non-zero entry) was introduced. 

The optimal number of clusters can be decided by the configuration that achieves minimal 

rotation cost, indicating that the rotation matrix aligns the eigenvectors in a manner that 

adheres to the sparsity constraint. When estimators diverged, emphasis was put on rotation 

cost, as it has been reported to be more stable (Wang et al., 2014).  

For optimal cluster solutions we tested whether sub-groups showed statistically 

significant differences in cognitive or clinical scores. Shapiro-Wilk-, and Levene’s tests 

indicated that assumptions for parametric testing were violated, due to skewed distributions 

of most sub-groups, and heteroscedastic inattentive scores. We therefore performed non-

parametric testing, i.e. quantile regression in R targeting the median. P-values were estimated 

using bootstrap methods with 1000 repetitions. For each model, cognitive and clinical scores 

were included as dependent variables, while cluster membership was incorporated as a 

categorical independent variable. Age was included as a covariate as we observed modest 
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correlations between age and several of the dependent variables. Sex showed negligible 

associations with the dependent variables and was therefore not included as a covariate. P-

values were adjusted for multiple comparisons by FDR using Benjamini-Hochberg’s 

procedure and a significance threshold of 0.05. Each tested clustering solution was treated as 

a separate family. 

To identify cortical imaging features that were particularly important for subgrouping, 

we employed Normalized Mutual Information (NMI). This measure quantifies the similarity 

between subgroups formed when individuals are clustered on a single feature with those from 

the actual fused network. A score of 1 indicates perfect agreement, meaning that the 

individual feature produces identical groupings, while a score of 0 signifies no agreement 

(Wang et al., 2014). We ranked cortical features by their NMI scores, highlighting the top 

10% as particularly relevant. 

 

Results 

 

Case-control comparisons 

Power analyses indicated that we had a high chance of detecting true differences with 

medium effect sizes in cortical microstructure between TD youths and individuals with ASD 

(93%) and ADHD (91%) separately. Correspondingly, the chances of committing a type II 

error were 7% and 9% for ASD and ADHD assessments, respectively. Regarding the 

detection of small differences, our analyses had limited statistical power, with a 28% chance 

of detecting such differences within our ASD comparisons, and 26% for ADHD. 

Correspondingly, the likelihood of committing a type II error were 72% and 74%, 

respectively. 

Permutation testing revealed no significant group differences in T1w/T2w-ratio 

between individuals with ASD and TD youths, or individuals with ADHD and TD youths. 

Our supplementary analyses, performing the same assessments on a subset with a more 

stringent QC, also yielded no group differences. Cortical maps showing Cohen’s d values, 

masked by uncorrected p-values thresholded at a minimum of 0.05 (−log(p) = 1.3) are 

presented in SI Figure 1.  

 

Unimodal clustering 

Normative modelling successfully minimized the associations between the T1w/T2w-ratio 

features and age as presented in SI Figure 2.   
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 Unimodal clustering of T1w/T2w-ratio features from individuals with 

neurodevelopmental conditions exclusively showed one relatively large cluster (which further 

divided with more fine-grained parsing), with remaining groupings consisting of single-

individual clusters, or clusters with a very limited number of individuals (Figure 2). 

Estimators revealed that 4-subgroup partition (eigengap= 0.194, rotation cost=177.314), 

closely followed by a 3-subgroups partition (eigengap= 0.197, rotation cost= 186.563), were 

the most optimal solutions. Further investigations into these clusters revealed a similar 

distribution of diagnoses (SI Figure 3). However, individuals appeared to be singled out 

based on either showing a highly local increase in T1w/T2w-ratio, making them an outlier on 

a single feature, or showing globally increased T1w/T2w-ratio (SI Figure 4), also coupled 

with a high number of surface holes (SI Figure 5). T1w/T2w-ratio features that were of 

particular relevance for parsing are presented in SI Figure 6. Estimators for the cluster 

solutions are presented in SI Figure 7. 

  

Figure 2. Unimodal clustering solutions. The figure illustrates cluster solutions ranging from 2 to 10 
from clustering based on T1w/T2w-ratio features. Individuals are plotted according to the first two 
principal components (Dim1 and Dim2), that explained the majority of the variance in the data. 
Cluster centroids are depicted as slightly larger shapes. 
 

Multimodal clustering 
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As for the T1w/T2w-ratio features, normative modelling successfully minimized the 

associations between cortical thickness features and age. Surface area features showed similar 

associations, which were negligeable from the outset, as presented in SI Figure 2.   

Multimodal clustering of all 1080 features from T1w/T2w-ratio, cortical thickness 

and surface area resulted in groups of similar size (Figure 3). The distributions of age, sex, 

clinical diagnosis, number of surface holes, and brain volumes across all solutions are 

presented in SI Figures 8-12. The top 10% of cortical features particularly relevant for 

distinguishing individuals, were T1w/T2w-ratio features, followed by surface area features 

(Figure 4). The T1w/T2w-ratio features were symmetrically spread across hemispheres and 

primarily located within lateral and medial parietal regions, extending into occipital regions, 

and the pre-central gyrus. Particularly relevant surface area regions were also located 

symmetrically across hemispheres and primarily within lateral temporal- and medial frontal 

regions. Still, heatmaps of individual cortical feature scores, segmented by subgroup, 

generally showed global differences in cortical structure across groups.  

 

 

Figure 3. Multimodal clustering solutions. The figure illustrates cluster solutions ranging from 2 to 10 
from multimodal clustering based on T1w/T2w-ratio, cortical thickness and surface area. Individuals 
are plotted according to the first two principal components (Dim1 and Dim2), which explained most 
of the variance in the data. Cluster centroids are depicted as slightly larger shapes. 
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Figure 4. The top 10% most central cortical features for multimodal clustering. The figure displays the 
top 10% most central cortical features for clustering, based on the highest ranked normalized mutual 
information (NMI). 
 
 

Estimators revealed that partitioning into 3 subgroups (eigen gap= 0.045, rotation 

cost= 199.812) yielded the most optimal solution, which was followed by partitioning into 2 

subgroups (eigen gap= 0.036, rotation cost= 209.348). Estimators for all tested cluster 

solutions, are presented in SI Figure 13. The three-group parsing appeared proportionate on 

sex, diagnostic categories, and number of surface holes. Individuals within Cluster 1 

appeared to have a slightly higher median age compared to those in Cluster 3, while 

individuals in Cluster 2 appeared to exhibit lower total brain volume - excluding ventricle 

volume, compared to the other clusters (Figure 5). Individuals within Cluster 1 exhibited 

slightly higher T1w/T2w-ratio, thinner cortex, and somewhat larger surface area. Individuals 

within Cluster 2 exhibited higher ratio coupled with much smaller surface area, while 

individuals within Cluster 3 generally displayed the reverse pattern compared to those in 

Cluster 1 (SI Figure 14). In the two-subgroup parsing, the first cluster appeared to be a 

combination of what was previously described as Cluster 1 and 2, whereas the second cluster 

closely resembled the previously described Cluster 3 (SI Figure 14).  
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Figure 5. Distribution of age, diagnosis, brain volume, sex, and number of surface holes for 
multimodal clustering solutions 2 and 3. The figure shows boxplots illustrating the distribution of age, 
brain volume scaled by a factor of 10k and the number of surface holes, alongside bar plots showing 
the proportion of diagnoses and sex across the two solutions.  
 

We observed modest correlations between age and several of the dependent variables 

within our quantile regression: IQ (r = -0.02), Repetitive Behaviors (r = -0.03), SCQ Score (r 

= 0.14), Inattentiveness (r = -0.22), and Hyperactive-Impulsive Behavior (r = -0.27) and 

therefore included age as a covariate in these analyses. We found no statistically significant 

differences between the three subgroups for any of the clinical or cognitive measures. Figure 

6 shows the distribution of scores after age-residualization. Uncorrected findings indicated 

that individuals within Cluster 1 had higher median IQ scores (t= -2.82, p= 0.005, corrected p 

= 0.075) as compared to individuals within Cluster 3 and experienced less inattention (t= 2.12 

p = 0.036 corrected p= 0.18) and engaged in fewer repetitive behaviors (t = 2.12, p = 0.036, 

corrected p = 0.18) than individuals within Cluster 2. Estimates were corrected across 15 

tests. Similar null findings were generally observed among individuals categorized into two 

subgroups (see distribution in SI Figure 15) with a noticeable exception of individuals within 

Cluster 1 showing higher IQ scores (t=-2.65, p= 0.009 corrected p= 0.045) as compared to 

individuals within Cluster 2, also after correction, but here across 5 tests. All t-statistics and 

corresponding p-values are presented in SI Table 1 and 2.  
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Figure 6. Distribution of clinical and cognitive scores for multimodal clustering solution 3. The 
figure shows boxplots illustrating the distribution of IQ, repetitive behaviors (RepBehavior), social 
functioning (SocialFunction), inattentive and hyperactive scores after age-residualization. Individuals 
with missing scores: IQ n = 69, Social Communication Questionnaire (SCQ) n = 72, Repetitive 
Behaviors Scale – Revised (RBS-R) n = 75, and Strengths and Weaknesses of ADHD-symptoms and 
Normal-behavior (SWAN) n = 79 are not included in the plots. 

 

Discussion 

Intracortical myelination is essential for typical brain development, and cortical 

dysmyelination is one of several candidate mechanisms for neurodevelopmental disorders 

such as ASD and ADHD (Henriquez-Henriquez et al., 2020; Hettwer et al., 2022; Patterson, 

2011; Richetto et al., 2016). In this study, initial case-control comparisons using T1w/T2w-

ratio as an intracortical myelin proxy did not reveal consistent differences between diagnostic 

groups. However, T1w/T2w-ratio features were the most central within multimodal clustering 

for parsing individuals based on distinct cortical signatures. These subgroups cut across 

diagnostic categories but did not show different clinical and cognitive profiles. 

 In line with our hypothesis, we found no differences in cortical microstructure when 

comparing either youths with ASD or ADHD to their TD peers. Our findings correspond well 

with a previous smaller-scale study that also found no difference in T1w/T2w-ratio when 

comparing 21 children with ASD to 16 TD peers, aged 1-5 years (Chen et al., 2022). A few 

studies have also assessed the related and inverse T1w intensity metric grey/white matter 

contrast (GWC) in ASD, yielding discrepant findings. One longitudinal study of 20 toddlers 

reported GWC variations linked to ASD diagnosis (Godel et al., 2021), but the inadequate 

sample size limits reliability. Another study reported lower regional GWC in 98 adults with 

ASD compared to 98 TD peers (Andrews et al., 2021), a pattern which a separate youth study 
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(77= ASD, 76=TD) found to be more prominent before 15 years of age (MRC AIMS 

Consortium et al., 2018). We did not expect case-control differences in T1w/T2w-ratio as 

dysmyelination represents only one of several candidate etiological mechanisms for ASD and 

ADHD. Other prominent theories include dysregulation of transcription and translation, 

synaptic proteins, epigenetics, and immunoinflammatory responses (Jiang et al., 2022; Mehta 

et al., 2019). Therefore, it is probable that myelin disruptions are implicated for a subgroup of 

youths, and that these effects might be diluted within a case-control design (Zabihi et al., 

2020). 

Unimodal clustering of T1w/T2w-ratio features resulted in one large group, alongside 

three smaller groups with single-, or a limited number of individuals. Contrary to our 

expectations clusters were not distinguished by phenotypically relevant information, but 

rather by poor image quality and their status as a single-feature or global T1w/T2w-ratio 

outlier. For this reason, we chose not to pursue further phenotypic analyses based on 

unimodal clustering. Additionally, since no prior studies have assessed clustering based on 

T1w/T2w-ratio or other intensity metrics, comparing the parsing ability of cortical 

microstructure is challenging. 

Incorporating microstructure and standard morphometry into a multimodal clustering 

approach identified three similarly sized trans-diagnostic groups. Within the first cluster, 

individuals exhibited somewhat brighter and thinner cortex, along with somewhat larger 

surface area. Despite our effective efforts to minimize age effects prior to clustering, these 

patterns align with the classic maturational patterns typically observed in MRI-based 

assessments of cortical development in youth (Norbom et al., 2021). While inferring 

neurobiology from the mm-scale of MRI is challenging, such patterns are collectively 

suggested to reflect increased levels of cortical myelin and axon caliber, as well as dendritic 

arbor remodeling and reductions in glial cells (Huttenlocher & Dabholkar, 1997; Petanjek et 

al., 2011; Peter R., 1979; Seldon, 2005; Vidal-Pineiro et al., 2020). Individuals within the 

third cluster exhibited cortical patterns contrasting those in cluster one, likely indicating 

reversed neurobiological interpretations. Youths within the second cluster on the other hand, 

displayed a brighter cortex combined with markedly smaller surface area. This combination 

is somewhat unusual from a neurobiological standpoint but could be related to having higher 

levels of intracortical myelin but an overall smaller brain. Correspondingly, individuals in the 

second cluster appeared to have smaller total brain volumes compared to the other groups.  

Our multimodal clustering findings are somewhat consistent with recent studies that 

have used partly overlapping samples from the POND Network. One study parsed individuals 
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with ASD, ADHD, obsessive-compulsive disorder (OCD) and TD youths, based on cortical 

and subcortical brain structure, and social communication scores. The approach identified 

three subgroups, with distinct yet transdiagnostic structural signatures and differing levels of 

social impairment (Kushki et al., 2021). Another study, parsing ASD, ADHD, and TD youths 

based on the structural co-variance of cortical and subcortical brain structure identified two 

trans-diagnostic clusters. Clusters differed in age and sex as well as adaptive functioning, 

inattention, hyperactivity and IQ (Sadat-Nejad et al., 2023). More generally, our findings also 

align with previous structure-based clustering approaches focusing solely on ASD, which 

have identified between 2-5 biological subtypes (Brucar et al., 2023; Hong et al., 2020; 

Zabihi et al., 2020). In a methodologically similar study, researchers initially applied 

normative modelling to a group of 206 TD individuals before performing cortical thickness-

based spectral clustering on 316 individuals with ASD. Their investigation revealed 5 

putative subtypes, displaying distinct clinical, behavioral and genetic characteristics (Zabihi 

et al., 2020).  

While Kushki et al., (2021), Sadat-Nejad et al., (2023) and Zabihi et al., (2020) 

identified clinically relevant clusters, comparisons of our subgroups did not reveal 

statistically significant differences in clinical or cognitive profiles. A larger sample might be 

necessary to determine whether the observed uncorrected findings are spurious. Reflecting a 

consistent pattern, patients characterized by what might be seen as having a “more mature” 

cortex (cluster 1) tended to exhibit higher IQs as compared to those with a “less mature” 

cortex (cluster 3), and experience less inattention and engage in fewer repetitive behaviors 

than those with markedly smaller cortical surface area (cluster 2). However, biologically 

based subtyping often identifies differences that do not directly relate to psychopathology 

(Dinga et al., 2019). These differences could instead be associated with physical 

characteristics, or variables that show more consistent correlations with macro-and 

microstructure such as age, maturational processes, and possibly socioeconomic constructs. It 

is also possible that, despite its importance for brain-based parsing of youths, T1w/T2w 

variation, suggestive of intracortical dysmyelination, may not be the primary driver of clinical 

manifestations observed in atypical neurodevelopment. 

As hypothesized, T1w/T2w-ratio features appeared to hold central and 

complementary information for clustering, and notably, specific features emerged as the most 

discriminative factors for distinguishing between youths. This was followed by the 

discriminatory capacity of surface area. This suggests that microstructural variance within 

neurodevelopmental populations is highly relevant, even after minimizing the effects of age. 
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While no previous studies have performed multimodal clustering with T1w/T2w-ratio, the 

emphasis on cortical microstructure over morphometry in youth aligns with findings from 

other multimodal developmental studies. For instance, a study involving almost 2,600 youths 

aged 3-23 years demonstrated that the related intensity metric GWC, accounted for the 

majority of cortical variance, surpassing standard morphometry measures. Moreover, GWC 

showed stronger associations with age compared to standard morphometry (Norbom, 

Rokicki, Meer, et al., 2020) and socioeconomic diversity, as separately tested in about 10,000 

children (Norbom et al., 2024) surpassing the well-established link between socioeconomic 

diversity and surface area. Our findings add to the body of literature that underscores the 

sensitivity of intensity metrics in neurodevelopmental research. Future studies aiming to 

parse neurodevelopmental populations should consider including the T1w/T2w ratio. 

There are several limitations to our study. First, radiofrequency transmit field (B1+) 

correction of T1w/T2w-ratio maps are not yet available in the open-access HCP pipeline, and 

we therefore did not perform this correction. This bias could correlate with our variables of 

interest (Glasser et al., 2022; Nerland et al., 2021). Second, while having the benefit of being 

based on conventional MRI sequences, T1w/T2w-ratio is by no means a straightforward 

myelin marker. Although it is supported by various histological and quantitative relaxometry 

studies its links to myelin-related genes and more recognized quantitative proxies are not 

always consistent (Hagiwara et al., 2018; Righart et al., 2017; Ritchie et al., 2018; Uddin et 

al., 2019). Third, within psychology, psychiatry (Meyer et al., 2001) and multimodal imaging 

(Miller et al., 2016) effect sizes are often small. In our study we had limited statistical power 

to detect small case-control differences if present. Fourth, the goal was not to establish 

ground truth “biotypes”, but to probe the utility of cortical microstructure in redefining 

typical and non-typical neurodevelopment, beyond diagnostic categories. Consequently, we 

did not employ rigorous tests to validate cluster solutions against a null hypothesis (Dinga et 

al., 2019). Finally, while our findings generally aligned with previous literature, reliability 

can only be established through replication. There are currently no other datasets with the 

relevant neurodevelopmental disorders and T1w and T2w sequences with adequate isotropic 

voxel resolution (> 1mm, preferably 0.7mm), and thus encourage future investigations into 

these aspects. 

In conclusion, joining cortical macro- and microstructure for parsing of non-typical 

neurodevelopment revealed distinct subgroups with unique combinations that transcended the 

diagnostic boundaries of ASD and ADHD. Although microstructural differences were not 

apparent at the diagnostic group level, T1w/T2w-ratio emerged as a key discriminator for 
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subtyping, followed by surface area. The incorporation of T1w/T2w-ratio in developmental 

studies offers both a potential for enhancing our understanding of neurodevelopmental 

diversity and a more precise approach for delineating cortically similar individuals than 

standard morphometry alone. 

 

Acknowledgments: Data was obtained from the Province of Ontario Neurodevelopmental 

Network (POND) (https://pond-network.ca/), and with the support of Ontario Brain Institute 

(PIs: E. Anagnostou, J. Lerch) an independent non-profit corporation, funded partially by the 

Ontario government. The findings reported in this study are the sole responsibility of the 

authors. 

 

Funding: This work was supported by the Research Council of Norway (#223273, #248238, 

#249795, #276082, #286838, #288083, #323951, # 341355), the South-Eastern Norway 

Regional Health Authority (#2021070, #2023012, #500189), KG Jebsen Stiftelsen, the ERA-

Net Cofund through the ERA PerMed project IMPLEMENT, and the European Research 

Council under the European Union’s Horizon 2020 research and Innovation program (ERC 

StG Grant #802998). 

 

Declaration of Generative AI and AI-assisted technologies in the writing process: During the 

preparation of this work the corresponding author used chatGPT 4.0 in order to ensure that 

specific sentences adhered to English language norms and to enhance readability. After using 

this tool, the author reviewed and edited the content as needed and takes full responsibility 

for the content of the publication. 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.08.24311239doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.08.24311239
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21

References 

Ameis, S. H., Lerch, J. P., Taylor, M. J., Lee, W., Viviano, J. D., Pipitone, J., Nazeri, A., 

Croarkin, P. E., Voineskos, A. N., Lai, M.-C., Crosbie, J., Brian, J., Soreni, N., 

Schachar, R., Szatmari, P., Arnold, P. D., & Anagnostou, E. (2016). A Diffusion 

Tensor Imaging Study in Children With ADHD, Autism Spectrum Disorder, OCD, 

and Matched Controls: Distinct and Non-Distinct White Matter Disruption and 

Dimensional Brain-Behavior Relationships. American Journal of Psychiatry, 173(12), 

1213–1222. https://doi.org/10.1176/appi.ajp.2016.15111435 

American Psychiatric Association. (2022). Diagnostic and Statistical Manual of Mental 

Disorders (DSM-5-TR). American Psychiatric Association Publishing. 

https://doi.org/10.1176/appi.books.9780890425787 

Andrews, D. S., Lee, J. K., Harvey, D. J., Waizbard-Bartov, E., Solomon, M., Rogers, S. J., 

Nordahl, C. W., & Amaral, D. G. (2021). A Longitudinal Study of White Matter 

Development in Relation to Changes in Autism Severity Across Early Childhood. 

Biological Psychiatry, 89(5), 424–432. 

https://doi.org/10.1016/j.biopsych.2020.10.013 

Baribeau, D. A., Dupuis, A., Paton, T. A., Hammill, C., Scherer, S. W., Schachar, R. J., 

Arnold, P. D., Szatmari, P., Nicolson, R., Georgiades, S., Crosbie, J., Brian, J., Iaboni, 

A., Kushki, A., Lerch, J. P., & Anagnostou, E. (2019). Structural neuroimaging 

correlates of social deficits are similar in autism spectrum disorder and attention-

deficit/hyperactivity disorder: Analysis from the POND Network. Translational 

Psychiatry, 9(1), 72. https://doi.org/10.1038/s41398-019-0382-0 

Baum, G. L., Flournoy, J. C., Glasser, M. F., Harms, M. P., Mair, P., Sanders, A., Barch, D. 

M., Buckner, R. L., Bookheimer, S., Dapretto, M., Smith, S., Thomas, K. M., Yacoub, 

E., Van Essen, D. C., & Somerville, L. H. (2021). Graded Variation In Cortical 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.08.24311239doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.08.24311239
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22

T1w/T2w Myelination During Adolescence [Preprint]. Neuroscience. 

https://doi.org/10.1101/2021.12.06.471432 

Bethlehem, R. A. I., Seidlitz, J., White, S. R., Vogel, J. W., Anderson, K. M., Adamson, C., 

Adler, S., Alexopoulos, G. S., Anagnostou, E., Areces-Gonzalez, A., Astle, D. E., 

Auyeung, B., Ayub, M., Bae, J., Ball, G., Baron-Cohen, S., Beare, R., Bedford, S. A., 

Benegal, V., … Alexander-Bloch, A. F. (2022). Brain charts for the human lifespan. 

Nature, 604(7906), 525–533. https://doi.org/10.1038/s41586-022-04554-y 

Bezgin, G., Lewis, J. D., & Evans, A. C. (2018). Developmental changes of cortical white–

gray contrast as predictors of autism diagnosis and severity. Translational Psychiatry, 

8(1), 249. https://doi.org/10.1038/s41398-018-0296-2 

Bodfish, J. W., Symons, F. J., Parker, D. E., & Lewis, M. H. (2000). Varieties of repetitive 

behavior in autism: Comparisons to mental retardation. Journal of Autism and 

Developmental Disorders, 30(3), 237–243. https://doi.org/10.1023/A:1005596502855 

Brites, C., Salgado-Azoni, C. A., Ferreira, T. L., Lima, R. F., & Ciasca, S. M. (2015). 

Development and applications of the SWAN rating scale for assessment of attention 

deficit hyperactivity disorder: A literature review. Brazilian Journal of Medical and 

Biological Research, 48(11), 965–972. https://doi.org/10.1590/1414-431x20154528 

Brucar, L. R., Feczko, E., Fair, D. A., & Zilverstand, A. (2023). Current Approaches in 

Computational Psychiatry for the Data-Driven Identification of Brain-Based 

Subtypes. Biological Psychiatry, 93(8), 704–716. 

https://doi.org/10.1016/j.biopsych.2022.12.020 

Chen, B., Linke, A., Olson, L., Kohli, J., Kinnear, M., Sereno, M., Müller, R., Carper, R., & 

Fishman, I. (2022). Cortical myelination in toddlers and preschoolers with autism 

spectrum disorder. Developmental Neurobiology, 82(3), 261–274. 

https://doi.org/10.1002/dneu.22874 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.08.24311239doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.08.24311239
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23

Connaughton, M., Whelan, R., O’Hanlon, E., & McGrath, J. (2022). White matter 

microstructure in children and adolescents with ADHD. NeuroImage: Clinical, 33, 

102957. https://doi.org/10.1016/j.nicl.2022.102957 

Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical Surface-Based Analysis. 

NeuroImage, 9(2), 179–194. https://doi.org/10.1006/nimg.1998.0395 

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, 

R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. 

(2006). An automated labeling system for subdividing the human cerebral cortex on 

MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980. 

https://doi.org/10.1016/j.neuroimage.2006.01.021 

Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human 

cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53(1), 

1–15. https://doi.org/10.1016/j.neuroimage.2010.06.010 

Dinga, R., Schmaal, L., Penninx, B. W. J. H., Van Tol, M. J., Veltman, D. J., Van Velzen, L., 

Mennes, M., Van Der Wee, N. J. A., & Marquand, A. F. (2019). Evaluating the 

evidence for biotypes of depression: Methodological replication and extension of. 

NeuroImage: Clinical, 22, 101796. https://doi.org/10.1016/j.nicl.2019.101796 

Does, M. D. (2018). Inferring brain tissue composition and microstructure via MR 

relaxometry. Microstructural Imaging, 182, 136–148. 

https://doi.org/10.1016/j.neuroimage.2017.12.087 

Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2), 774–781. 

https://doi.org/10.1016/j.neuroimage.2012.01.021 

Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical Surface-Based Analysis. 

NeuroImage, 9(2), 195–207. https://doi.org/10.1006/nimg.1998.0396 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.08.24311239doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.08.24311239
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24

Frandsen, A. N., & Higginson, J. B. (1951). The Stanford-Binet and the Wechsler 

Intelligence Scale for Children. Journal of Consulting Psychology, 15(3), 236–238. 

https://doi.org/10.1037/h0059816 

Gharehgazlou, A., Vandewouw, M., Ziolkowski, J., Wong, J., Crosbie, J., Schachar, R., 

Nicolson, R., Georgiades, S., Kelley, E., Ayub, M., Hammill, C., Ameis, S. H., 

Taylor, M. J., Lerch, J. P., & Anagnostou, E. (2022). Cortical Gyrification 

Morphology in ASD and ADHD: Implication for Further Similarities or Disorder-

Specific Features? Cerebral Cortex, 32(11), 2332–2342. 

https://doi.org/10.1093/cercor/bhab326 

Ghirardi, L., Brikell, I., Kuja-Halkola, R., Freitag, C. M., Franke, B., Asherson, P., 

Lichtenstein, P., & Larsson, H. (2018). The familial co-aggregation of ASD and 

ADHD: A register-based cohort study. Molecular Psychiatry, 23(2), 257–262. 

https://doi.org/10.1038/mp.2017.17 

Gilmore, J. H., Knickmeyer, R. C., & Gao, W. (2018). Imaging structural and functional 

brain development in early childhood. Nature Reviews Neuroscience, 19(3), 123–137. 

https://doi.org/10.1038/nrn.2018.1 

Glasser, M. F., Coalson, T. S., Harms, M. P., Xu, J., Baum, G. L., Autio, J. A., Auerbach, E. 

J., Greve, D. N., Yacoub, E., Van Essen, D. C., Bock, N. A., & Hayashi, T. (2022). 

Empirical transmit field bias correction of T1w/T2w myelin maps. NeuroImage, 258, 

119360. https://doi.org/10.1016/j.neuroimage.2022.119360 

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., 

Ugurbil, K., Andersson, J., Beckmann, C. F., Jenkinson, M., Smith, S. M., & Van 

Essen, D. C. (2016). A multi-modal parcellation of human cerebral cortex. Nature, 

536(7615), 171–178. https://doi.org/10.1038/nature18933 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.08.24311239doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.08.24311239
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., 

Xu, J., Jbabdi, S., Webster, M., Polimeni, J. R., Van Essen, D. C., & Jenkinson, M. 

(2013). The minimal preprocessing pipelines for the Human Connectome Project. 

NeuroImage, 80, 105–124. https://doi.org/10.1016/j.neuroimage.2013.04.127 

Glasser, M. F., & Van Essen, D. C. (2011). Mapping Human Cortical Areas In Vivo Based 

on Myelin Content as Revealed by T1- and T2-Weighted MRI. Journal of 

Neuroscience, 31(32), 11597–11616. https://doi.org/10.1523/JNEUROSCI.2180-

11.2011 

Godel, M., Andrews, D. S., Amaral, D. G., Ozonoff, S., Young, G. S., Lee, J. K., Wu 

Nordahl, C., & Schaer, M. (2021). Altered Gray-White Matter Boundary Contrast in 

Toddlers at Risk for Autism Relates to Later Diagnosis of Autism Spectrum Disorder. 

Frontiers in Neuroscience, 15, 669194. https://doi.org/10.3389/fnins.2021.669194 

Grydeland, H., Vértes, P. E., Váša, F., Romero-Garcia, R., Whitaker, K., Alexander-Bloch, 

A. F., Bjørnerud, A., Patel, A. X., Sederevičius, D., Tamnes, C. K., Westlye, L. T., 

White, S. R., Walhovd, K. B., Fjell, A. M., & Bullmore, E. T. (2019). Waves of 

Maturation and Senescence in Micro-structural MRI Markers of Human Cortical 

Myelination over the Lifespan. Cerebral Cortex, 29(3), 1369–1381. 

https://doi.org/10.1093/cercor/bhy330 

Grydeland, H., Walhovd, K. B., Tamnes, C. K., Westlye, L. T., & Fjell, A. M. (2013). 

Intracortical Myelin Links with Performance Variability across the Human Lifespan: 

Results from T1- and T2-Weighted MRI Myelin Mapping and Diffusion Tensor 

Imaging. Journal of Neuroscience, 33(47), 18618–18630. 

https://doi.org/10.1523/JNEUROSCI.2811-13.2013 

Grzadzinski, R., Dick, C., Lord, C., & Bishop, S. (2016). Parent-reported and clinician-

observed autism spectrum disorder (ASD) symptoms in children with attention 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.08.24311239doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.08.24311239
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26

deficit/hyperactivity disorder (ADHD): Implications for practice under DSM-5. 

Molecular Autism, 7(1), 7. https://doi.org/10.1186/s13229-016-0072-1 

Hagiwara, A., Hori, M., Kamagata, K., Warntjes, M., Matsuyoshi, D., Nakazawa, M., Ueda, 

R., Andica, C., Koshino, S., Maekawa, T., Irie, R., Takamura, T., Kumamaru, K. K., 

Abe, O., & Aoki, S. (2018). Myelin Measurement: Comparison Between 

Simultaneous Tissue Relaxometry, Magnetization Transfer Saturation Index, and 

T1w/T2w Ratio Methods. Scientific Reports, 8(1), 10554. 

https://doi.org/10.1038/s41598-018-28852-6 

Henriquez-Henriquez, M., Acosta, M. T., Martinez, A. F., Vélez, J. I., Lopera, F., Pineda, D., 

Palacio, J. D., Quiroga, T., Worgall, T. S., Deckelbaum, R. J., Mastronardi, C., 

Molina, B. S. G., the MTA Cooperative Group, Vitiello, B., Severe, J. B., Jensen, P. 

S., Arnold, L. E., Hoagwood, K., Richters, J., … Muenke, M. (2020). Mutations in 

sphingolipid metabolism genes are associated with ADHD. Translational Psychiatry, 

10(1), 231. https://doi.org/10.1038/s41398-020-00881-8 

Hettwer, M. D., Larivière, S., Park, B. Y., Van Den Heuvel, O. A., Schmaal, L., Andreassen, 

O. A., Ching, C. R. K., Hoogman, M., Buitelaar, J., Van Rooij, D., Veltman, D. J., 

Stein, D. J., Franke, B., Van Erp, T. G. M., ENIGMA ADHD Working Group, 

ENIGMA Autism Working Group, Van Rooij, D., ENIGMA Bipolar Disorder 

Working Group, ENIGMA Major Depression Working Group, … Valk, S. L. (2022). 

Coordinated cortical thickness alterations across six neurodevelopmental and 

psychiatric disorders. Nature Communications, 13(1), 6851. 

https://doi.org/10.1038/s41467-022-34367-6 

Hong, S.-J., Vogelstein, J. T., Gozzi, A., Bernhardt, B. C., Yeo, B. T. T., Milham, M. P., & 

Di Martino, A. (2020). Toward Neurosubtypes in Autism. Biological Psychiatry, 

88(1), 111–128. https://doi.org/10.1016/j.biopsych.2020.03.022 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.08.24311239doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.08.24311239
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27

Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in 

human cerebral cortex. The Journal of Comparative Neurology, 387(2), 167–178. 

https://doi.org/10.1002/(SICI)1096-9861(19971020)387:2<167::AID-

CNE1>3.0.CO;2-Z 

Ickowicz, A., Schachar, R. J., Sugarman, R., Chen, S. X., Millette, C., & Cook, L. (2006). 

The Parent Interview for Child Symptoms: A Situation-Specific Clinical Research 

Interview for Attention-Deficit Hyperactivity and Related Disorders. The Canadian 

Journal of Psychiatry, 51(5), 325–328. https://doi.org/10.1177/070674370605100508 

Itahashi, T., Fujino, J., Sato, T., Ohta, H., Nakamura, M., Kato, N., Hashimoto, R.-I., Di 

Martino, A., & Aoki, Y. Y. (2020). Neural correlates of shared sensory symptoms in 

autism and attention-deficit/hyperactivity disorder. Brain Communications, 2(2), 

fcaa186. https://doi.org/10.1093/braincomms/fcaa186 

Jacobs, G. R., Voineskos, A. N., Hawco, C., Stefanik, L., Forde, N. J., Dickie, E. W., Lai, 

M.-C., Szatmari, P., Schachar, R., Crosbie, J., Arnold, P. D., Goldenberg, A., Erdman, 

L., & Ameis, S. H. (2021). Integration of brain and behavior measures for 

identification of data-driven groups cutting across children with ASD, ADHD, or 

OCD. Neuropsychopharmacology, 46(3), 643–653. https://doi.org/10.1038/s41386-

020-00902-6 

Jiang, C.-C., Lin, L.-S., Long, S., Ke, X.-Y., Fukunaga, K., Lu, Y.-M., & Han, F. (2022). 

Signalling pathways in autism spectrum disorder: Mechanisms and therapeutic 

implications. Signal Transduction and Targeted Therapy, 7(1), 229. 

https://doi.org/10.1038/s41392-022-01081-0 

Jokiranta-Olkoniemi, E., Cheslack-Postava, K., Sucksdorff, D., Suominen, A., Gyllenberg, 

D., Chudal, R., Leivonen, S., Gissler, M., Brown, A. S., & Sourander, A. (2016). Risk 

of Psychiatric and Neurodevelopmental Disorders Among Siblings of Probands With 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.08.24311239doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.08.24311239
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28

Autism Spectrum Disorders. JAMA Psychiatry, 73(6), 622. 

https://doi.org/10.1001/jamapsychiatry.2016.0495 

Koenig, S. H. (1991). Cholesterol of myelin is the determinant of gray-white contrast in MRI 

of brain. Magnetic Resonance in Medicine, 20(2), 285–291. 

https://doi.org/10.1002/mrm.1910200210 

Koenig, S. H., Brown III, R. D., Spiller, M., & Lundbom, N. (1990). Relaxometry of brain: 

Why white matter appears bright in MRI. Magnetic Resonance in Medicine, 14(3), 

482–495. https://doi.org/10.1002/mrm.1910140306 

Kushki, A., Cardy, R. E., Panahandeh, S., Malihi, M., Hammill, C., Brian, J., Iaboni, A., 

Taylor, M. J., Schachar, R., Crosbie, J., Arnold, P., Kelley, E., Ayub, M., Nicolson, 

R., Georgiades, S., Lerch, J. P., & Anagnostou, E. (2021). Cross-Diagnosis Structural 

Correlates of Autistic-Like Social Communication Differences. Cerebral Cortex, 

31(11), 5067–5076. https://doi.org/10.1093/cercor/bhab142 

Lord, C., Risi, S., Lambrecht, L., Cook, Jr., E. H., Leventhal, B. L., DiLavore, P. C., Pickles, 

A., & Rutter, M. (2000). The Autism Diagnostic Observation Schedule—Generic: A 

Standard Measure of Social and Communication Deficits Associated with the 

Spectrum of Autism. Journal of Autism and Developmental Disorders, 30(3), 205–

223. https://doi.org/10.1023/A:1005592401947 

Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism Diagnostic Interview-Revised: A 

revised version of a diagnostic interview for caregivers of individuals with possible 

pervasive developmental disorders. Journal of Autism and Developmental Disorders, 

24(5), 659–685. https://doi.org/10.1007/BF02172145 

Martin, J., Hamshere, M. L., O’Donovan, M. C., Rutter, M., & Thapar, A. (2014). Factor 

Structure of Autistic Traits in Children with ADHD. Journal of Autism and 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.08.24311239doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.08.24311239
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29

Developmental Disorders, 44(1), 204–215. https://doi.org/10.1007/s10803-013-1865-

0 

Mattheisen, M., Grove, J., Als, T. D., Martin, J., Voloudakis, G., Meier, S., Demontis, D., 

Bendl, J., Walters, R., Carey, C. E., Rosengren, A., Strom, N. I., Hauberg, M. E., 

Zeng, B., Hoffman, G., Zhang, W., Bybjerg-Grauholm, J., Bækvad-Hansen, M., 

Agerbo, E., … Børglum, A. D. (2022). Identification of shared and differentiating 

genetic architecture for autism spectrum disorder, attention-deficit hyperactivity 

disorder and case subgroups. Nature Genetics, 54(10), 1470–1478. 

https://doi.org/10.1038/s41588-022-01171-3 

Mehta, T. R., Monegro, A., Nene, Y., Fayyaz, M., & Bollu, P. C. (2019). Neurobiology of 

ADHD: A Review. Current Developmental Disorders Reports, 6(4), 235–240. 

https://doi.org/10.1007/s40474-019-00182-w 

Miller, D. J., Duka, T., Stimpson, C. D., Schapiro, S. J., Baze, W. B., McArthur, M. J., 

Fobbs, A. J., Sousa, A. M. M., Sestan, N., Wildman, D. E., Lipovich, L., Kuzawa, C. 

W., Hof, P. R., & Sherwood, C. C. (2012). Prolonged myelination in human 

neocortical evolution. Proceedings of the National Academy of Sciences, 109(41), 

16480–16485. https://doi.org/10.1073/pnas.1117943109 

MRC AIMS Consortium, Mann, C., Bletsch, A., Andrews, D., Daly, E., Murphy, C., 

Murphy, D., & Ecker, C. (2018). The effect of age on vertex-based measures of the 

grey-white matter tissue contrast in autism spectrum disorder. Molecular Autism, 9(1), 

49. https://doi.org/10.1186/s13229-018-0232-6 

Nakamura, K., Chen, J. T., Ontaneda, D., Fox, R. J., & Trapp, B. D. (2017). T1-/T2-weighted 

ratio differs in demyelinated cortex in multiple sclerosis. Annals of Neurology, 82(4), 

635–639. https://doi.org/10.1002/ana.25019 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.08.24311239doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.08.24311239
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30

Nerland, S., Jørgensen, K. N., Nordhøy, W., Maximov, I. I., Bugge, R. A. B., Westlye, L. T., 

Andreassen, O. A., Geier, O. M., & Agartz, I. (2021). Multisite reproducibility and 

test-retest reliability of the T1w/T2w-ratio: A comparison of processing methods. 

NeuroImage, 245, 118709. https://doi.org/10.1016/j.neuroimage.2021.118709 

Norbom, L. B., Ferschmann, L., Parker, N., Agartz, I., Andreassen, O. A., Paus, T., Westlye, 

L. T., & Tamnes, C. K. (2021). New insights into the dynamic development of the 

cerebral cortex in childhood and adolescence: Integrating macro- and microstructural 

MRI findings. Progress in Neurobiology, 204, 102109. 

https://doi.org/10.1016/j.pneurobio.2021.102109 

Norbom, L. B., Rokicki, J., Alnæs, D., Kaufmann, T., Doan, N. T., Andreassen, O. A., 

Westlye, L. T., & Tamnes, C. K. (2020). Maturation of cortical microstructure and 

cognitive development in childhood and adolescence: A T1w/T2w ratio MRI study. 

Human Brain Mapping, 41(16), 4676–4690. https://doi.org/10.1002/hbm.25149 

Norbom, L. B., Rokicki, J., Eilertsen, E. M., Wiker, T., Hanson, J., Dahl, A., Alnæs, D., 

Fernández�Cabello, S., Beck, D., Agartz, I., Andreassen, O. A., Westlye, L. T., & 

Tamnes, C. K. (2024). Parental education and income are linked to offspring cortical 

brain structure and psychopathology at 9–11 years. JCPP Advances, e12220. 

https://doi.org/10.1002/jcv2.12220 

Norbom, L. B., Rokicki, J., Meer, D. van der, Alnæs, D., Doan, N. T., Moberget, T., 

Kaufmann, T., Andreassen, O. A., Westlye, L. T., & Tamnes, C. K. (2020). Testing 

relationships between multimodal modes of brain structural variation and age, sex and 

polygenic scores for neuroticism in children and adolescents. Translational 

Psychiatry, 10(1), 251. https://doi.org/10.1038/s41398-020-00931-1 

Ohta, H., Aoki, Y. Y., Itahashi, T., Kanai, C., Fujino, J., Nakamura, M., Kato, N., & 

Hashimoto, R. (2020). White matter alterations in autism spectrum disorder and 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.08.24311239doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.08.24311239
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31

attention-deficit/hyperactivity disorder in relation to sensory profile. Molecular 

Autism, 11(1), 77. https://doi.org/10.1186/s13229-020-00379-6 

Pagnozzi, A. M., Conti, E., Calderoni, S., Fripp, J., & Rose, S. E. (2018). A systematic 

review of structural MRI biomarkers in autism spectrum disorder: A machine learning 

perspective. International Journal of Developmental Neuroscience, 71(1), 68–82. 

https://doi.org/10.1016/j.ijdevneu.2018.08.010 

Patterson, P. H. (2011). Maternal infection and immune involvement in autism. Trends in 

Molecular Medicine, 17(7), 389–394. https://doi.org/10.1016/j.molmed.2011.03.001 

Petanjek, Z., Judaš, M., Šimić, G., Rašin, M. R., Uylings, H. B. M., Rakic, P., & Kostović, I. 

(2011). Extraordinary neoteny of synaptic spines in the human prefrontal cortex. 

Proceedings of the National Academy of Sciences, 108(32), 13281–13286. 

https://doi.org/10.1073/pnas.1105108108 

Peter R., H. (1979). Synaptic density in human frontal cortex—Developmental changes and 

effects of aging. Brain Research, 163(2), 195–205. https://doi.org/10.1016/0006-

8993(79)90349-4 

Phan, B. N., Bohlen, J. F., Davis, B. A., Ye, Z., Chen, H.-Y., Mayfield, B., Sripathy, S. R., 

Cerceo Page, S., Campbell, M. N., Smith, H. L., Gallop, D., Kim, H., Thaxton, C. L., 

Simon, J. M., Burke, E. E., Shin, J. H., Kennedy, A. J., Sweatt, J. D., Philpot, B. D., 

… Maher, B. J. (2020). A myelin-related transcriptomic profile is shared by Pitt–

Hopkins syndrome models and human autism spectrum disorder. Nature 

Neuroscience, 23(3), 375–385. https://doi.org/10.1038/s41593-019-0578-x 

Richetto, J., Chesters, R., Cattaneo, A., Labouesse, M. A., Gutierrez, A. M. C., Wood, T. C., 

Luoni, A., Meyer, U., Vernon, A., & Riva, M. A. (2016). Genome-Wide 

Transcriptional Profiling and Structural Magnetic Resonance Imaging in the Maternal 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.08.24311239doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.08.24311239
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32

Immune Activation Model of Neurodevelopmental Disorders. Cerebral Cortex, 

cercor;bhw320v1. https://doi.org/10.1093/cercor/bhw320 

Righart, R., Biberacher, V., Jonkman, L. E., Klaver, R., Schmidt, P., Buck, D., Berthele, A., 

Kirschke, J. S., Zimmer, C., Hemmer, B., Geurts, J. J. G., & Mühlau, M. (2017). 

Cortical pathology in multiple sclerosis detected by the T1/T2-weighted ratio from 

routine magnetic resonance imaging. Annals of Neurology, 82(4), 519–529. 

https://doi.org/10.1002/ana.25020 

Ritchie, J., Pantazatos, S. P., & French, L. (2018). Transcriptomic characterization of MRI 

contrast with focus on the T1-w/T2-w ratio in the cerebral cortex. NeuroImage, 174, 

504–517. https://doi.org/10.1016/j.neuroimage.2018.03.027 

Rong, Y., Yang, C.-J., Jin, Y., & Wang, Y. (2021). Prevalence of attention-

deficit/hyperactivity disorder in individuals with autism spectrum disorder: A meta-

analysis. Research in Autism Spectrum Disorders, 83, 101759. 

https://doi.org/10.1016/j.rasd.2021.101759 

Rutherford, S., Kia, S. M., Wolfers, T., Fraza, C., Zabihi, M., Dinga, R., Berthet, P., Worker, 

A., Verdi, S., Ruhe, H. G., Beckmann, C. F., & Marquand, A. F. (2022). The 

normative modeling framework for computational psychiatry. Nature Protocols, 

17(7), 1711–1734. https://doi.org/10.1038/s41596-022-00696-5 

Rutter, M. (2003). Social communication questionnaire. (No Title). 

Sadat-Nejad, Y., Vandewouw, M. M., Cardy, R., Lerch, J., Taylor, M. J., Iaboni, A., 

Hammill, C., Syed, B., Brian, J. A., Kelley, E., Ayub, M., Crosbie, J., Schachar, R., 

Georgiades, S., Nicolson, R., Anagnostou, E., & Kushki, A. (2023). Investigating 

heterogeneity across autism, ADHD, and typical development using measures of 

cortical thickness, surface area, cortical/subcortical volume, and structural covariance. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.08.24311239doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.08.24311239
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33

Frontiers in Child and Adolescent Psychiatry, 2, 1171337. 

https://doi.org/10.3389/frcha.2023.1171337 

Seldon, H. L. (2005). Does brain white matter growth expand the cortex like a balloon? 

Hypothesis and consequences. Laterality: Asymmetries of Body, Brain and Cognition, 

10(1), 81–95. https://doi.org/10.1080/13576500342000310 

Shafee, R., Buckner, R. L., & Fischl, B. (2015). Gray matter myelination of 1555 human 

brains using partial volume corrected MRI images. NeuroImage, 105, 473–485. 

https://doi.org/10.1016/j.neuroimage.2014.10.054 

Smith, S., & Nichols, T. (2009). Threshold-free cluster enhancement: Addressing problems 

of smoothing, threshold dependence and localisation in cluster inference. 

NeuroImage, 44(1), 83–98. https://doi.org/10.1016/j.neuroimage.2008.03.061 

Talantseva, O. I., Romanova, R. S., Shurdova, E. M., Dolgorukova, T. A., Sologub, P. S., 

Titova, O. S., Kleeva, D. F., & Grigorenko, E. L. (2023). The global prevalence of 

autism spectrum disorder: A three-level meta-analysis. Frontiers in Psychiatry, 14, 

1071181. https://doi.org/10.3389/fpsyt.2023.1071181 

Tamnes, C. K., Herting, M. M., Goddings, A.-L., Meuwese, R., Blakemore, S.-J., Dahl, R. E., 

Güroğlu, B., Raznahan, A., Sowell, E. R., Crone, E. A., & Mills, K. L. (2017). 

Development of the Cerebral Cortex across Adolescence: A Multisample Study of 

Inter-Related Longitudinal Changes in Cortical Volume, Surface Area, and Thickness. 

The Journal of Neuroscience, 37(12), 3402–3412. 

https://doi.org/10.1523/JNEUROSCI.3302-16.2017 

Thomas, R., Sanders, S., Doust, J., Beller, E., & Glasziou, P. (2015). Prevalence of Attention-

Deficit/Hyperactivity Disorder: A Systematic Review and Meta-analysis. Pediatrics, 

135(4), e994–e1001. https://doi.org/10.1542/peds.2014-3482 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.08.24311239doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.08.24311239
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34

Uddin, Md. N., Figley, T. D., Solar, K. G., Shatil, A. S., & Figley, C. R. (2019). Comparisons 

between multi-component myelin water fraction, T1w/T2w ratio, and diffusion tensor 

imaging measures in healthy human brain structures. Scientific Reports, 9(1), 2500. 

https://doi.org/10.1038/s41598-019-39199-x 

Vandewouw, M. M., Brian, J., Crosbie, J., Schachar, R. J., Iaboni, A., Georgiades, S., 

Nicolson, R., Kelley, E., Ayub, M., Jones, J., Taylor, M. J., Lerch, J. P., Anagnostou, 

E., & Kushki, A. (2023). Identifying Replicable Subgroups in Neurodevelopmental 

Conditions Using Resting-State Functional Magnetic Resonance Imaging Data. JAMA 

Network Open, 6(3), e232066. https://doi.org/10.1001/jamanetworkopen.2023.2066 

Vandewouw, M. M., Young, J. M., Shroff, M. M., Taylor, M. J., & Sled, J. G. (2019). 

Altered myelin maturation in four year old children born very preterm. NeuroImage: 

Clinical, 21, 101635. https://doi.org/10.1016/j.nicl.2018.101635 

Vidal-Pineiro, D., Parker, N., Shin, J., French, L., Grydeland, H., Jackowski, A. P., 

Mowinckel, A. M., Patel, Y., Pausova, Z., Salum, G., Sørensen, Ø., Walhovd, K. B., 

Paus, T., Fjell, A. M., & the Alzheimer’s Disease Neuroimaging Initiative and the 

Australian Imaging Biomarkers and Lifestyle flagship study of ageing. (2020). 

Cellular correlates of cortical thinning throughout the lifespan. Scientific Reports, 

10(1), 21803. https://doi.org/10.1038/s41598-020-78471-3 

Wake, H., Lee, P. R., & Fields, R. D. (2011). Control of Local Protein Synthesis and Initial 

Events in Myelination by Action Potentials. Science, 333(6049), 1647–1651. 

https://doi.org/10.1126/science.1206998 

Wang, B., Mezlini, A. M., Demir, F., Fiume, M., Tu, Z., Brudno, M., Haibe-Kains, B., & 

Goldenberg, A. (2014). Similarity network fusion for aggregating data types on a 

genomic scale. Nature Methods, 11(3), 333–337. https://doi.org/10.1038/nmeth.2810 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.08.24311239doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.08.24311239
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35

Wechsler, D., 1896-1981. (1981). WAIS-R�: Wechsler adult intelligence scale-revised. 

https://search.library.wisc.edu/catalog/999605091402121 

Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). 

Permutation inference for the general linear model. NeuroImage, 92, 381–397. 

https://doi.org/10.1016/j.neuroimage.2014.01.060 

Zabihi, M., Floris, D. L., Kia, S. M., Wolfers, T., Tillmann, J., Arenas, A. L., Moessnang, C., 

Banaschewski, T., Holt, R., Baron-Cohen, S., Loth, E., Charman, T., Bourgeron, T., 

Murphy, D., Ecker, C., Buitelaar, J. K., Beckmann, C. F., Marquand, A., & The EU-

AIMS LEAP Group. (2020). Fractionating autism based on neuroanatomical 

normative modeling. Translational Psychiatry, 10(1), 384. 

https://doi.org/10.1038/s41398-020-01057-0 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.08.24311239doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.08.24311239
http://creativecommons.org/licenses/by-nc-nd/4.0/

