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Abstract 

Background 

Although hypothesized to be the root cause of the pulse oximetry disparities, skin tone and its 

use for improving medical therapies have yet to be extensively studied. Studies previously used 

self-reported race as a proxy variable for skin tone. However, this approach cannot account for 

skin tone variability within race groups and also risks the potential to be confounded by other 

non-biological factors when modeling data. Therefore, to better evaluate health disparities 

associated with pulse oximetry, this study aimed to create a unique baseline dataset that 

included skin tone and electronic health record (EHR) data.  

Methods 

Patients admitted to Duke University Hospital were eligible if they had at least one pulse 

oximetry value recorded within 5 minutes before an arterial blood gas (ABG) value. We 

collected skin tone data at 16 different body locations using multiple devices, including 

administered visual scales, colorimetric, spectrophotometric, and photography via mobile phone 

cameras. All patients’ data were linked in Duke’s Protected Analytics Computational 

Environment (PACE), converted into a common data model, and then de-identified before 

publication in PhysioNet.  

Results 

Skin tone data were collected from 128 patients. We assessed 167 features per skin location on 

each patient. We also collected over 2000 images from mobile phones measured in the same 

controlled environment. Skin tone data are linked with patients’ EHR data, such as laboratory 

data, vital sign recordings, and demographic information.  
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Conclusions 

Measuring different aspects of skin tone for each of the sixteen body locations and linking them 

with patients’ EHR data could assist in the development of a more equitable AI model to combat 

disparities in healthcare associated with skin tone. A common data model format enables easy 

data federation with similar data from other sources, facilitating multicenter research on skin 

tone in healthcare.  
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Description 

A prospectively collected EHR-linked skin tone measurements database in a common data 

model with emphasis on pulse oximetry disparities.   
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Introduction 

Pulse oximetry, a fundamental non-invasive tool used in healthcare settings worldwide, enables 

the monitoring of oxygen saturation levels and heart rate through the use of light-emitting diodes 

at specific wavelengths (660 nm and 940 nm).22 This technique, by measuring differences in 

light absorption by oxyhemoglobin and deoxyhemoglobin, estimates the peripheral oxygen 

saturation (SpO2) as a surrogate for arterial oxygen saturation (SaO2), providing critical data for 

patient triage, monitoring, and intervention.2 Despite its widespread use and the immediacy of 

its results, pulse oximetry's reliability is increasingly questioned, especially in critical care 

settings where accurate measurements are vital.3 The device's fundamental dependence on 

optical technology makes it susceptible to various factors that can skew readings, such as 

patient movement, ambient light interference, and, most critically, variations in skin 

pigmentation.4–10 

   

Recent studies highlight significant racial and ethnic discrepancies in SpO2 readings, which 

could obscure the true severity of conditions such as hypoxemia in individuals with darker skin 

tones.4,15 These inaccuracies in pulse oximetry can lead to mismanagement of critically ill 

patients, resulting in severe consequences, including organ dysfunction and death.11 

Furthermore, these discrepancies often result in delayed or inadequate interventions, 

exacerbating health inequities and complicating clinical decision-making.4–10  Studies also 

suggest that conventional calibration methods for pulse oximeters may not account for 

physiological variations across different skin tones, underscoring the need for tailored 

approaches.12,13,23 The underlying issue has been traced to differences in skin tone, which affect 

the oximeter’s light absorption readings. Yet, the integration of skin tone as a medical variable 

has been limited, leading to a substantial knowledge gap in how pulse oximetry should be 

adjusted or interpreted based on this factor.8  
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To bridge this gap, our research, encapsulated in the ENCoDE (mEasuring skiN Color to correct 

pulse Oximetry DisparitiEs) study, aims to systematically collect and analyze skin tone data at 

different body locations from patients requiring acute care. This study is designed to develop a 

robust framework for incorporating skin tone into clinical assessments, ensuring that pulse 

oximetry can provide accurate readings across a diverse patient population. By linking these 

findings with clinical data in electronic health records (EHR), we hypothesize that our approach 

will significantly reduce the disparities currently observed in pulse oximetry, thereby enhancing 

patient care and outcomes.  
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Methods 

IRB 

This study was approved by the Duke Health IRB under Pro00110842 on 18 May 2022, titled 

“ENCODE (mEasuring skiN Color to correct pulse Oximetry DisparitiEs).” 

Cohort Acquisition 

The ENCoDE project enrolled patients admitted to inpatient care at Duke University Hospital 

(Durham, NC, USA) with hospital encounters. The requirement for inclusion was synchronized 

ABG-pulse oximetry measurements, defined as at least one pulse oximetry value recorded 

within 5 minutes prior to an ABG value captured in EHR and referred to as SaO2-SpO2 pairs. All 

data, including patient consent, measurements, and EHR data, were stored in REDCap 

electronic data capture tools hosted at Duke University.24,25 For patients unable to consent, a 

Legally authorized representative (LAR) would consent on their behalf, and the patient re-

consented after they regain the ability to consent. Exclusion criteria included unremovable 

fingernail polish, admission for vascular complications (e.g., grafting or stenting), any limb 

amputations, and causes of skin discoloration such as vitiligo, jaundice, and wounds/bruising. 

These criteria were established to ensure data quality by avoiding cases of arterial insufficiency 

or other conditions that could affect skin tone across all patient locations.  

Data Collection 

Skin tone data collection 

In all patients, four modalities of skin assessments were conducted: infrared temperature (using 

the HoMedics HTD8813C [clinical-range, 34-42.9 C°] and IDEAL Model #61-847 [general-
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range, -32 - 500 C°] ), administered visual scales (Fitzpatrick Skin Type, Monk Skin Tone, and 

Von Luschan), colorimetric (Delfin SkinColorCatch), spectrophotometric (Konica-Minolta CM-

700d, Variable Spectro 1 Pro), and photography via mobile phone cameras (Google Pixel 4a, 

iPhone SE 2020). Visual skin scales were printed for reference on 4"x 6" photo paper.  

 

Measurements were taken using all four skin assessment modalities at sixteen different 

locations: eight on the left and right upper extremities (dorsal and ventral finger pad, dorsal and 

ventral palm), three on the head (forehead, inner and outer surface of an earlobe), one on the 

sternum, and four on the left and right lower extremities (dorsal and ventral toe). Measurements 

were collected from patients lying down or in a seated position. A black card was placed on the 

opposite side for earlobes (and fingers, if needed) to reduce the impact of reflection. For this 

study, measurements were collected among patients admitted to an intensive care unit (ICU) 

and regular nursing floor units.  

 

The study utilized two trained personnel to collect measurements to improve the timeliness of 

data collection and create an efficient workflow in a dynamic, multidisciplinary, and fast-paced 

environment. The location of the pulse oximeter was reported as directly observed by the 

clinical research coordinator at the time of data collection or surveyed by clinical staff regarding 

location at the time of the ABG.  

 

 

 

EHR data  

Patients' hospital encounter information, demographic details, laboratory measurements (such 

as arterial blood gas panel, complete blood count panel, and comprehensive metabolic panel), 
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and flowsheets (containing measurements of standard vital signs and information about oxygen 

delivery) were extracted from Duke University Hospital's EHR system (EPIC Clarity). All data, 

including image records, are linked to the patient's encounter using unique hospital account 

identifiers. 

Data Processing 

Data linking 

To link skin tone data with patients’ EHR data, we pulled all structured data from EPIC Clarity 

and REDcap into Duke’s Protected Analytics Computing Environment (PACE) for processing. 

Tables from the two systems are linked via the hospital encounter number and the patient’s 

medical record number (MRN).  

Image feature processing  

Every image captured by mobile devices undergoes a filtering process to isolate the brightest 

section, achieved by selecting the largest contour above the median brightness in greyscale. 

Subsequently, a mask is generated to eliminate extraneous values. An example processed 

image, with full consent from the measurement subject, is provided below (Figure 2). From 

these masked images, the average and standard deviation on each RGB (Red, Green, and 

Blue) and LCH (Lightness, Chroma, and Hue) channels are extracted as features linked to the 

patient's skin tone. 

De-identification 

 

We de-identified our dataset according to the provision of the Health Insurance Portability and 

Accountability Act (HIPAA) Safe Harbor. All date and time information has been shifted 
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randomly into the future while preserving the difference within one subject. Patient encounter 

numbers and MRNs are randomly re-mapped to visit_occurrence_id and patient_id. All 

measurement values are first evaluated as strings and then whitelisted before deidentification. 

Image data from potential biometric locations (ventral side of both left and right fingers, palms, 

and toes) are excluded. However, processed features (e.g., mean or standard deviation RGB 

values) from images that are not considered biometric information are included. 

OMOP Conversion 

The Observation Medical Outcomes Partnership (OMOP) Common Data Model (CDM) is a 

standardized framework designed to enable systematic analysis of disparate observational 

healthcare databases, facilitating large-scale data integration and research. We converted our 

structured tables into OMOP format following OMOP CDM version 5.4.26. We manually mapped 

semantic concepts to standard representations in the OMOP vocabularies; these mappings 

were then validated by two clinical experts. For those source concepts without an existing 

standard representation, such as reflectance measurements of skin tone at a particular location 

with a specific device, we created custom standard concepts that we will eventually contribute 

back to the OMOP vocabulary team for future uptake into the community-curated vocabularies. 

In total, we created 2,704 concepts to represent the various imaging-related elements specific to 

this study.  With regard to the data model itself, this dataset includes rows in the following 

tables: PERSON, VISIT_OCCURENCE, MEASUREMENT, OBSERVATION, 

DEVICE_EXPOSURE, PROCEDURE_OCCURRENCE, OBSERVATION_PERIOD, and 

CDM_SOURCE. A comprehensive summarization of the data flow can be found a Figure 1.  
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Results 

Cohort 

From January 2023 to June 2023, a total of 1,119 admitted inpatients with qualifying SaO2-

SpO2 pairs were screened at Duke University Hospital. Out of those patients, 302 met our 

inclusion criteria and were approached, of whom 134 consented to this study. After six 

exclusions due to withdrawal or missing skin tone data, 128 patients were included in the final 

cohort. (39.8% female, 43% Black)  

 

Skin tone features 

A total of 167 skin tone features from three administered visual scales, a colorimetry device 

(Delfin Technologies, SkinColorCatch), two spectrophotometer devices (Konica Minolta 

CM700d; Variable Inc, Spectro 1 Pro), and processed features from two types of mobile phone 

cameras (iPhone SE, hereafter referred to as iPhone; Google Pixel 4a, hereafter referred to as 

Android) were collected. As a medical concept, skin tone measurements have yet to be 

extensively investigated, and standardized concepts for skin tone at various locations are 

currently absent in the OMOP vocabulary. Therefore, skin tone concepts were created for this 

study; all the skin tone and skin temperature measurements were transformed into a long format 

and incorporated into the OMOP “measurement” table. These novel concepts were captured as 

OMOP’s “unit_concept_id” with skin tone at a specific location as “measurement_concept_id.” 

(e.g., measurement: unit: ) Additionally, skin temperature was measured at the same locations 

using one clinical-range [clinical-range, 34-42.9 C°] temperature measurement device and one 

general-range [general-range, -32 - 500 C°] temperature measurement device. Figure 3 

visualizes a few selected clinical features for one hospitalized patient   
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Cell phone images 

 

To prevent the potential leak of Protected Health Information (PHI) for biometric imaging data, 

we released processed cell phone image data from 10 out of 16 body locations, excluding any 

territory containing finger, palm, or toe prints. With images missing due to other reasons 

described below, the open-source data files contain 1227 Android images and 1211 iPhone 

images. Images from biometric locations may be processed by the investigative team with code 

sharing and after IRB consent. 

 

Missing data 

Missing data occurred occasionally in the cell phone data collection and two spectrophotometer 

devices due to technical issues or patient refusal. Twenty-nine patients are missing Variable 

Spectro 1 Pro measurements, and eight patients are missing Konica Minolta CM700d 

measurements. Detailed missingness rates for skin tone measurements can be found in Table 

1. In the merged EHR clinical data, missingness occurred in vital signs and laboratory test 

values when no value was found within the set windows.   
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Discussion 

 

The ENCoDE project linked patients’ skin tone measurements across different body locations 

and patients' EHR data. It pioneers the evaluation of skin tone as a medical concept to enhance 

health disparity research. Precise skin tone measurement can help identify patients' biological 

skin color independently of their self-identified race. Our project is the first open-source dataset 

connecting skin tone from various measurement devices and methods on different body 

locations with 128 patients’ EHR data. This includes 167 skin tone features per location from 

multiple devices across 16 body locations, enabling the investigation of skin-associated health 

disparities with real-world clinical evidence. The dataset also includes images from smartphone 

devices, which allows for exploration of the feasibility of cell phone data collection as this can 

scale for cost-effectiveness. This project has the potential to develop more equitable AI tools to 

address biases and disparities associated with patients' skin tone on medical devices. Such 

measurements promote diversity, equity, and inclusivity, contributing to advancements in 

personalized care. 

 

 

By connecting skin tone measurements with patient EHR data, potential opportunities arise for 

researchers to investigate healthcare disparities associated with skin tone beyond pulse 

oximeter bias, such as temporal temperature measurement. 27 We mapped our dataset to the 

OMOP CDM for easy integration with other data sources. Due to the limited funding and 

resources, we couldn’t run this study in a multi-center setting with a larger population. Our vision 

is to create a community that can participate in providing feedback and create opportunities for 

collecting a multi-center dataset. Having a standard for collecting this new data is critical.  This 

is why we chose a long format for all of our structured data and converted it into the OMOP 
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format for a simplified, broader integration with other databases. The OMOP CDM standardizes 

healthcare data representation across diverse systems, enabling large-scale analytics and 

research. It has proven effective in converting from other data formats, such as MIMIC-IV. 28,29 

 

In our dataset, the skin tone features from different measurement tools are measured together. 

The tools range from sophisticated but not commonly available spectrophotometers to widely 

used mobile phones and inexpensive print cards. However, in the most recent FDA guidelines, 

only the Monk SkinTone Scale (MTS) and Individual Typology Angle (ITA) are evaluated for 

capturing skin tone as a medical concept. 22 We measured over 167 skin tone features on 

different skin locations and put them side by side, creating opportunities for a thorough 

investigation of the advantages and disadvantages of various methods for measuring patients’ 

skin tone.  

 

Additionally, we also included smartphone photos measured in a controlled lighting 

environment. As one of the most accessible devices, smartphones have great potential to be 

used as a tool for AI healthcare applications. 30,31 The advantage of smartphone images as a 

measurement for skin tone is the broad availabilities of the device as well as the abundance of 

datasets currently available. However, most current datasets focus on facial skin instead of skin 

location for medical applications such as fingers and palms.  With the image data collected by 

smartphones across different body locations made available and linked with skin tone 

measurements from multiple scales and devices, potential work can create or validate equitable 

AI tools that utilize smartphone image data as affordable devices.  

 

One limitation of our study is the relatively small number of patients from a single medical center 

due to limited resources. In the future, we aim to expand this dataset to include a larger sample 

size. Another limitation is the need for repeated measurements at the same scale and location. 
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For administered scales, the measurer’s interpretation might have resulted in bias in the 

dataset. This design choice was made to maximize the patient sample size, given the 

constraints of staff and resources. In the future, we also seek to study the effect of the 

measurer’s race and sex on objective skin color measurements. Repeated measurements could 

take multiple days to complete, likely resulting in significant missing data due to the 

unpredictability of the clinical environment. A separate reliability experiment was conducted with 

a single patient across multiple days, which suggests inter-rater measurement variability for 

patient skin tone was much less than inter-patient variation in skin tone, even for the less 

precise administered visual scales. 15 Another limitation is that our skin color data are measured 

with specific lighting that might not be reproducible in other environments. This is mitigated 

using devices that directly provide controlled illumination (e.g., spectrophotometer and 

colorimeter, and to a lesser extent, mobile phones). 

 

 

 

 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 8, 2024. ; https://doi.org/10.1101/2024.08.07.24311623doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.07.24311623


Conclusions 

 

The ENCoDE project provides the first openly shared dataset focused on skin tone 

measurements and linked to patients’ EHR data to study pulse oximetry bias. One hundred fifty-

five skin tone features are collected, measuring different aspects of skin tone for each of the 16 

body locations. Cell phone images for non-biometric body locations are collected further to 

investigate the relationship between images and curated features. The dataset is mapped to the 

OMOP Common Data Model, allowing ease of reusability and harmonization for future multi-

center datasets.  This dataset could potentially assist the collaboration between medical 

researchers and the medical AI communities to identify and combat skin tone-associated 

disparities, as well as provide more exploration that can guide regulatory bodies in evaluating 

pulse oximetry devices.    
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Tables 

Table 1. Characteristics of the study cohort 

 

Demographic information for all 128 patients, along with their skin tone measurements, were 

grouped by race. The group “Other” contains patients who self-identify as Asian (n= 5), 

American Indian / Alaskan natives (n= 6), More than two races (n= 2), and Unknown race (n= 

2).  
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  Grouped by Race 

  Missing Black Other White Overall 

n   57 15 56 128 

Ethnicity, n (%) 

Not 

Hispanic/Latino 

0 

57 (100.0) 12 (80.0) 52 (92.9) 121 (94.5) 

Hispanic/Latino  1 (6.7) 3 (5.4) 4 (3.1) 

Unknown  2 (13.3) 1 (1.8) 3 (2.3) 

Gender, n (%) Female 0 23 (40.4) 3 (20.0) 25 (44.6) 51 (39.8) 

Oximeter location,  

n (%) 

Finger 

(include missing) 

0 

54 (94.7) 14 (93.3) 56 (100.0) 124 (96.9) 

Forehead 1 (1.8)   1 (0.8) 

Toe 2 (3.5) 1 (6.7)  3 (2.3) 

First ICU, n (%) MICU 7 9 (16.4) 3 (20.0) 12 (23.5) 24 (19.8) 
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SICU 30 (54.5) 9 (60.0) 29 (56.9) 68 (56.2) 

other ICU 16 (29.1) 3 (20.0) 10 (19.6) 29 (24.0) 

ICU LoS,  

median [Q1,Q3] 

 38 4.3 [2.0,11.1] 2.3 [0.9,3.1] 5.2 [2.4,8.7] 4.1 [1.8,9.3] 

Hospital LoS,  

median [Q1,Q3] 

 0 21.0 [9.0,39.0] 10.0 [5.5,13.5] 16.0 [7.8,33.0] 16.5 [8.0,33.2] 

# SaO2/SpO2 Pairs, 

median [Q1,Q3] 

 0 2.0 [1.0,4.0] 1.0 [1.0,2.0] 3.0 [1.0,6.2] 2.0 [1.0,5.0] 
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Table 2 Structured skin tone features. 

This table describes all the features of skin tone measurement we collected in our dataset. 

Measurement devices and methods include administered visual scales (Fitzpatrick Skin Type, 

Monk Skin Tone, and Von Luschan); reflectance colorimetry (Delfin SkinColorCatch, Kuopio, 

Finland); and reflectance spectrophotometry (Variable Spectro 1 Pro Bridge Set, Variable, Inc 

TN, USA. and Konica Minolta CM-700D Spectrophotometer, Tokyo, Japan).  

 

In “A-2deg-Red”, “A” is the white point of standard illuminants, “2deg” is the field of view, which 

is short for 2 degrees, and “Red” is the color representation.  
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Device (type) Measurement space Measurements Number of 

features 

Administered  

Visual  

Scales  

(card) 

Categorical skin tone 

scales 

Fitzpatrick scale 1 

Von Luschan's Chromatic Scale 1 

Monk SkinTone Scale 

 

1 

Delfin 

SkinColorCatch 

(colorimeter) 

CIE  L*a*b* 3 

Color Index Melanin Index; Erythema Index, 

Individual Typology Angle (ITA) 

3 

Konica 

Minolta 

CIE XYZ, xy, L*a*b*, L*C*h 10 

Hunter L*a*b* L*, a*, b* 3 
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CM700d 

(Spectrophotometer) 

Munsell color system Hue, value, Chroma 3 

Spectrum 400nm - 700nm, every 10nm 31 

Variable Inc. 

Spectro 1 Pro  

( 

Spectrophotometer)  

RGB, under different 

standard illuminants* 

i.e. A-2deg-Red1 

 

24 

CIE L*a*b, under different 

standard illuminants* 

 

i.e.F2-10deg-L* 24 

Hex, under different 

standard illuminants*  

 

Color codes (i.e., #907356) 8 

Spectrum 400nm - 700nm, every 10nm 31 

Processed from 

mobile devices 

(iPhone SE 2020, 

Google Pixel 4a) 

CIE  Average and standard division 

of the intensity for each 

channel in red, green, blue, and 

CIE L*C*H 

24 
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Figures  
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Figure 1. Data flow diagram and content 

The left side of the figure represents how data flows in the collection process. Firstly, EHR data 

are pulled from EPIC databases into REDCap, and patient skin data is collected at the bedside 

and stored in REDCap. Then, the data are de-identified before leaving Duke’s compute enclave 

PACE via an honest broker request. Lately, data has been transformed into an OMOP format. 

The right side of the figures provides a high-level view of the data content. Source content 

contains patient’ EHR tables and data from five different types of devices or collection methods. 

Output content contains tables and images in OMOP format.   
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Figure 2. Image processing 

This figure demonstrated how raw images were processed. (1) is the raw image taken with 

smartphone cameras. (2) The circle was calculated based on brightness represents the center 

of the image. (3) is the image output to the dataset, information inside the circle from (2) are 

kept. (4)-(6) are representations of how to derive image figures such as average red, green, and 

blue from the output image (3).  
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Figure 3. Sample data for a single patient 

 

This is a timeline plot of a single patient’s data selected at random. The gold star represents the 

SaO2 - SpO2 pair we collected before skin data collection. The dashed black line represents the 

beginning of skin data collection. EHR data are available before and after skin collection.  
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