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Previous presentations: Portions of this investigation were presented as a platform presentation at the 

annual meeting of the American College of Medical Genetics and Genomics in Salt Lake City, Utah, 

March 2023. 
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Abstract 

Purpose. There is clear evidence that deleterious germline variants in CHEK2 increases risk for breast and 

prostate cancers; there is limited or conflicting evidence for other cancers. Genomic ascertainment was 

used to quantify cancer risk in CHEK2 germline pathogenic variant heterozygotes.   

Patients and Methods. Germline CHEK2 variants were extracted from two exome-sequenced biobanks 

linked to the electronic health record:  UK Biobank (n= 469,765) and Geisinger MyCode (n=170,503). 

Variants were classified as per American College of Medical Genetics and Genomics 

(ACMG)/Association for Molecular Pathology (AMP) criteria. Heterozygotes harbored a CHEK2 

pathogenic/likely pathogenic (P/LP) variant; controls harbored benign/likely benign CHEK2 variation or 

wildtype CHEK2. Tumor phenotype and demographic data were retrieved; to adjust for relatedness, 

association analysis was performed with SAIGE-GENE+ with Bonferroni correction.  

Results. In CHEK2 heterozygotes in both MyCode and UK Biobank, there was a significant excess risk of 

all cancers tested, including breast cancer (C50; OR=1.54 and 1.84, respectively), male genital organ 

cancer (C60-C63; OR=1.61 and 1.77 respectively), urinary tract cancer (C64-C68; OR=1.56 and 1.75, 

respectively) and lymphoid, hematopoietic, and related tissue cancer (C81-C96; OR=1.42 and 2.11, 

respectively). Compared to controls, age-dependent cancer penetrance in CHEK2 heterozygotes was 

significantly younger in both cohorts; no significant difference was observed between the penetrance of 

truncating and missense variants for cancer in either cohort. Overall survival was significantly decreased 

in CHEK2 heterozygotes in UK Biobank but there was no statistical difference in MyCode.  

Conclusion. Using genomic ascertainment in two population-scale cohorts, this investigation quantified 

the prevalence, penetrance, cancer phenotype and survival in CHEK2 heterozygotes. Tailored treatment 

options and surveillance strategies to manage those risks are warranted.  
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Introduction 

CHEK2 (OMIM 604373) is a tumor-suppressor gene that encodes CHK2 (Serine/threonine protein 

kinase), involved in DNA repair in response to cellular DNA damage.1 There is clear evidence that 

deleterious germline variants in CHEK2 heterozygotes are associated with an increased risk for female 

breast and prostate cancers; however, elevated risks for a variety of other cancers (e.g., colorectal, kidney, 

bladder, leukemia/lymphoma and thyroid) have been claimed but there is minimal, biased or conflicting 

evidence.2 In general, germline pathogenic truncating variants (PTV) (e.g.,  c.1100del p.(Thr367fs)) are 

associated with an increased risk of cancer. In contrast to PTV, pathogenic missense variants (PMV) in 

CHEK2 have more variable effects, mainly dependent on whether a critical protein domain is affected. 

According to a study by Dorling et al.3, approximately 60% of rare PMV in CHEK2 are associated with a 

lower risk of developing cancers compared to PTV. This suggests that the impact of PMV on cancer 

susceptibility is not uniform, but rather depends on the specific location and nature of the variants. To 

date, most work on quantifying risk from a germline variant in a cancer-predisposition gene has arisen 

from the well-established phenotype-first approach, in which individuals (and families) are ascertained 

from their presentation due to a clinical problem. 

Genomic ascertainment is the inversion of the traditional phenotype-first approach4. With genomic 

ascertainment, germline variation of interest is identified, and phenotype status is then obtained from 

medical records to estimate variant prevalence and disease penetrance and characterize the phenotype. In 

principle, this should permit a less-biased estimate of the phenotypic spectrum, expressivity and 

penetrance of a deleterious variant or set of variants. Ascertainment biases still exist depending on how 

the cohort was recruited (healthier volunteer vs. clinical (health system or hospital) vs. true population 

sampling) that will influence risk estimates. 

 In this study, we used genomic ascertainment to quantify cancer risk for heterozygotes with germline 

pathogenic CHEK2 variants.  We analyzed electronic health record (EHR) in two population-based 
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cohorts (UK Biobank (UKBB) and Geisinger MyCode) to estimate the prevalence, age-dependent 

penetrance, cancer risk and survival of CHEK2 pathogenic heterozygotes compared to controls.  

Materials and Methods 

Cohorts and relatedness 

From the UK Biobank, germline variants were obtained from field 23157, population level exome OQFE 

variants, and pVCF format, final exome release. Human subjects’ protection and review was through the 

North West Multi-centre Research Ethics Committee. Exome sequencing on UKBB samples has been 

described.5,6 The data was accessed January 2023; the number of unrelated participants was determined 

by R package ukbtools, “ukb_gene_samples_to_remove” function.  

Geisinger is an integrated health system serving patients in Northeastern and Central Pennsylvania. All 

Geisinger patients are eligible to participate in the MyCode Community Health Initiative, a system-wide 

biorepository of blood and DNA samples for broad research purposes.7 Over 85% of Geisinger patients 

agree to participate and provided genomic data that are linked to their health records, which consist of 

routinely collected diagnosis, procedures, medication, and laboratory results, collected as part of their 

healthcare. This study was approved by the Geisinger Institutional Review Board. MyCode DNA samples 

were exome sequenced by the Regeneron Genetics Center using IDT exon capture probes as previously 

described.8 This study was approved by the Geisinger Institutional Review Board. In the Geisinger 

MyCode cohort, we included individuals over 18 years of age (n=167,050 with available exome data).  To 

remove related individuals while maintaining the largest possible cohort, kinship pairs up to 3rd degree 

relatives (minimum PI_HAT = 0.1875) were used to create a graph of all relatives. Custom functions 

employing the network library in python were used. For each connected component (i.e., family), the 

node (i.e., patient) with the greatest number of edges (i.e., relatives) was removed. This was repeated until 

no edges remain in the connected component. 

Variant filtering and CHEK2 pathogenicity classification  
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Variants were filtered on the following quality metrics: Allelic Balance of Heterozygotes (ABHet) 

between 0.2 and 0.8, Genotype Quality >30, total read depth>5. All variants that pass quality metrics 

were annotated using snpEFF9, ANNOVAR10, ClinVar11 (database retrieved 09-23-2022), and InterVar 

(v.2.1.3)12. Variants were classified as pathogenic (P), likely pathogenic (LP), variant of uncertain 

significance (VUS), likely benign (LB), benign (B) using guidelines from the American College of 

Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP).13 Final 

variant annotation was based on a hierarchical classification of ClinVar followed by InterVar14.  

“Heterozygotes” were defined as individuals who harbor a CHEK2 P/LP variant, whereas controls 

included individuals who harbor canonical or B/LB CHEK2 variation. CHEK2 VUS were excluded. In 

this analysis, “All” refers to all CHEK2 P/LP variants, “PTV” refers to predicted CHEK2 truncating P/LP 

variants and “PMV” refers to pathogenic missense CHEK2 P/LP variants. There were eight individuals 

and six individuals who harbored biallelic CHEK2 variants in UKBB and MyCode, respectively; they 

were included in the All group, but were excluded from analyses of PTV and PMV. There was no 

individual who carried more than two P/LP variants in either UKBB or MyCode. 

Cancer phenotype and vital status query 

Tumor phenotype and demographic data (age, sex, body mass index (BMI), alcohol consumption, 

smoking history, and race) were obtained for both heterozygotes and controls. Demographic comparisons 

were completed using Student T-test for continuous variables and Fisher’s exact test for binary variable. 

Clinical phenotypes of neoplasms were obtained using International Classification Diseases (ICD) 

diagnosis codes: ICD9 and ICD10 for UKBB, ICD10-Clinical Modification (CM) for MyCode data. The 

Geisinger Cancer Registry was also queried, which contains information on all patients diagnosed with 

cancer at a Geisinger facility; the Cancer Registry (field 40006 and 40013) and Death Registry data for 

UKBB (field 40001) were also utilized.  

Power to detect predisposition to common and rare cancers in UK Biobank and MyCode 
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Power estimates were performed by adapting formulas from Chow et al.15 to a cohort study setting with 

the assumption of non-biased ascertainment.  

Supplemental Figure 1 shows power as a function of presumed true odds ratio for a range of cancer rates 

in the UK Biobank and MyCode cohorts using cohort-specific All, PTV and PMV CHEK2 heterozygote 

prevalence from Table 1. For All, PTV and PMV CHEK2 heterozygotes, there is 100% power in both 

UK Biobank and MyCode to detect common cancers (³5% cancer rate, which include many sex-specific 

cancers such as female breast and prostate) with an odds ratio of >2.  For All, PTV and PMV CHEK2 

heterozygotes, there is ³80% power to detect rare cancers (³1% cancer rate) with an odds ratio of >2.  For 

All CHEK2 heterozygotes, there is >80% power to detect very rare cancers (³0.1%) with an odds ratio of 

>2.7 in both MyCode and UKBB; there is less power in the PTV- and PMV-specific cohorts. 

Cancer risk estimate 

Cancer prevalence was modeled using logistic regression with carrier status for All, PTV, and PMV as the 

main set of explanatory variables and age, sex, smoking history, alcohol consumption and BMI as 

covariates. For sex-specific cancers (C51-C58 for female; C60-C63 for male) prevalence was analyzed 

only with female or male controls. Multiplicity issues were addressed using Bonferroni adjustment at 

family-wise error rate of α=0.05. To correct for relatedness, we used SAIGE-GENE+ version 1.1.6.2. 

Covariates include using PC1-4, current age, sex, smoking, alcohol use and BMI.16 To further help guard 

against inaccurate p-values and confidence interval coverage for associations arising from very low 

prevalence of rare cancers, cancers where there were less than five cases among heterozygotes were 

excluded from any analyses.  

Kaplan-Meier, cancer penetrance and mortality in individuals with cancer 

Kaplan-Meier survival analyses were used to estimate all-cause mortality, penetrance of pathogenic 

CHEK2 variants for cancer, and overall survival for individuals with cancer in MyCode and UKBB 
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cohorts. In the MyCode cohort, only events occurring 3 months or after in Geisinger facilities are 

included in survival analyses. Data was truncated to individuals with current age < 85. Hazard ratios were 

computed using Cox Proportional-Hazards (coxph) model adjusting for age, self-reported race, sex, 

smoking history, alcohol consumption and BMI, using Log-rank test for equality to compare differences 

between the curves for controls and variant groups. Coxph also adjusted for relatedness by clustering 

genetically inferred family units. All the analyses were conducted using R version 4.1.2.  

Results 

Prevalence and demographics of All, PTV and PMV CHEK2 heterozygotes in MyCode and UK Biobank 

Table 1 shows the prevalence of All, PTV and PMV CHEK2 heterozygotes in both cohorts. (The sum of 

PTV and PMV is less than All total due to the presence of non-canonical splice-site variants; 

Supplemental Table 1 provides details on the variants) The relatedness (up to the third degree) of the 

MyCode and UKBB cohorts is ~30% and ~10% respectively; Table 1 also shows the heterozygote 

prevalence in the unrelated fraction of the two cohorts. Supplemental Table 2 lists demographics and 

covariates between All, PTV and PMV heterozygotes and controls. There were 305,330 controls (65%) in 

UKBB and 152,662 controls (91%) in MyCode. 

Significant excess risk for cancers of the breast, male genital organ, urinary tract and lymphoid, 

hematopoietic, and related tissues in CHEK2 heterozygotes in both MyCode and UKBB.  

Figure 1A displays statistically significant association of pathogenic CHEK2 All, PTV and PMV for 

organ system groupings of cancer in MyCode. The odds ratios and Bonferroni-corrected p-values for the 

association between CHEK2 heterozygotes for organ system groupings of cancer ICD codes are shown. 

In All CHEK2 heterozygotes, there was a significant excess risk (Bonferroni-adjusted SAIGE p-value) of 

all cancers, breast cancer (C50), male genital organ cancer (C60-C63), urinary tract cancer (C64-C68), 

thyroid and other endocrine gland cancer (C73-C75), and lymphoid, hematopoietic, and related tissue 

cancer (C81-C96). (Of all the C50 codes observed in CHEK2 heterozygotes, 155 and 225 (99.4, 99.1%) 
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were in females and, 1 and 2 (0.6, 0.8%) were in males in MyCode and UK Biobank, respectively.) 

Supplemental Figure 2 displays the odds ratio for the MyCode cohort for All, PTV and PMV CHEK2 

heterozygotes for all organ system groupings of cancer ICD codes. Figure 1B displays the odds ratio for 

the UKBB cohort for All, PTV and PMV CHEK2 heterozygotes for organ system groupings of cancer 

ICD codes with a significant excess of risk. In All CHEK2 heterozygotes, there was a significant excess 

risk (Bonferroni-adjusted SAIGE p-value) of developing all cancers, breast cancer (C50), male genital 

organ cancer (C60-C63), urinary tract cancer (C64-C68), cancer from the secondary and unspecified sites 

(C76-C79), and lymphoid, hematopoietic, and related tissue cancer (C81-C96).  In contrast to MyCode, 

there was a non-significant excess risk to develop thyroid and other endocrine gland cancer (C73-C75). 

Supplemental Figure 3 displays the odds ratio for the UKBB cohort for All, PTV and PMV CHEK2 

heterozygotes for all organ system groupings of cancer ICD codes. 

Specific cancers related to All, PTV and PMV CHEK2 heterozygotes  

Figure 2A shows the specific types of cancer in the MyCode cohort with an excess risk from the 

significant organ-system analysis shown in Figure 1A. Of note is the significant excess risk for prostate 

cancer (C61), kidney cancer (C64), bladder cancer (C67), thyroid cancer (C73), and lymphoid leukemia 

(C91) in All heterozygotes.  Supplemental Figure 4 displays the odds ratio for the MyCode cohort for 

All, PTV and PMV CHEK2 heterozygotes for all specific types of cancer from all organ system 

groupings of cancer ICD codes. Supplemental Table 3 lists the case counts and percentages for PMV, 

PTV and All cohorts and fold-enrichment (vs. controls) for each of the ICD10 diagnostic codes in 

MyCode. 

Figure 2B shows the specific types of cancer in the UKBB cohort with an excess risk from the organ-

system analysis shown in Figure 1B.  Of note is the significant excess risk for prostate (C61), kidney 

cancer (C64), and bladder cancer (C67) in All and PTV heterozygotes. There was significant increased 

risk for diffuse non-Hodgkin lymphoma (C83), other and non-specified types of non-Hodgkin lymphoma 
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(C85) and lymphoid leukemia (C91) in All heterozygotes, whereas peripheral and cutaneous T-cell 

lymphomas (C84) were exclusively associated with PMV heterozygotes. Supplemental Figure 5 

displays the odds ratio for the UK Biobank cohort for All, PTV and PMV CHEK2 heterozygotes for all 

specific types of cancer from all organ system groupings of cancer ICD codes. Supplemental Table 3 

lists the case counts and percentages for PMV, PTV and All cohorts and fold-enrichment (vs. controls) for 

each of the ICD10 diagnostic codes in UK Biobank. 

Age-dependent penetrance differs significantly in All, PTV and PMV CHEK2 heterozygotes vs. controls, 

but not between CHEK2 PTV vs. PMV heterozygotes 

Compared to controls, age-dependent penetrance in All CHEK2 variants for all cancers was significantly 

different in both MyCode (adjusted HR: 1.26 [95%CI 1.17-1.36], P-value: 6.1x10-10) and UKBB 

(adjusted HR 1.31 [95%CI 1.24-1.40], P-value: 2.0x10-16) (Figures 3A and 4A). CHEK2 PMV or PTV 

heterozygotes alone were at higher risk for all cancers tested compared to controls in both MyCode and 

UKBB. In MyCode, for PMV (vs. controls) the adjusted HR: 1.24 [1.13-1.35], p value=2.71x10-06; in 

UKBB, for PMV (vs. controls) the adjusted HR: 1.17 [1.06-1.30], p-value=1.56x10-3. In MyCode, for 

PTV (vs. controls) adjusted HR: 1.30 [1.13-1.50], p value=2.1x10-4; in UKBB for PTV (vs. controls) the 

adjusted HR:1.34 [1.23-1.45], p-value=1.67x10-12. There was no significant difference in the penetrance 

of CHEK2 PTV vs. PMV for cancers in MyCode (univariate HR: 1.06 [0.90-1.25], P-value=0.47) and the 

UKBB (adjusted HR 1.15 [95%CI 1.00-1.33], P-value: 0.05).  

All-cause mortality was significantly increased in All heterozygotes compared to controls in UKBB but 

not MyCode 

All-cause mortality was significantly increased in All heterozygotes in UKBB (adjusted HR 1.21 [95%CI 

1.08-1.37], P-value: 1.51E-3) but not in MyCode (adjusted HR 1.09 [95%CI 0.96-1.24], P-value: 0.20) 

(Figures 3B and 4B). There was no significant difference in all-cause mortality in PTV and PMV 
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heterozygotes in UKBB (adjusted HR 1.24 [95%CI 0.97-1.60], P-value: 0.10) and MyCode (adjusted HR 

1.06 [95%CI 0.80-1.41], P-value: 0.67).  

All-cause mortality amongst individuals with cancer was not significantly increased in All heterozygotes 

compared to controls in UKBB and MyCode 

There was no statistical difference between All heterozygotes and controls in both MyCode (adjusted HR 

1.08 [95%CI 0.90-1.30], P-value=0.43) and the UKBB (adjusted HR 1.12 [95%CI 0.98-1.29], P-value: 

0.11) cohorts for all-cause mortality in individuals with cancer. There were no significant differences 

between PTV and PMV heterozygotes in either the MyCode (adjusted HR 1.20 [95%CI 0.81-1.78], P-

value=0.35) or UKBB (adjusted HR 1.33 [95%CI 0.98-1.80], P-value: 0.07) cohorts (Figure 3C and 4C). 

Discussion 

In this investigation, familial relationship-adjusted, Bonferroni-corrected genomic ascertainment of two 

population-based, exome-sequenced, EHR-linked cohorts was used to quantify risk of cancers arising 

from pathogenic/likely pathogenic germline variants in CHEK2. Notably, given the stated assumptions 

about participant ascertainment, both cohorts had high power to detect elevated risk (OR>2) in all but the 

rarest cancers. Genomic ascertainment quantifies risk based on genotype (not phenotype) and thus may 

reduce risk inflation arising from cancer ascertainment (case/family recruitment) by personal and/or 

family medical history.  

Clinically, this investigation confirms the significantly increased risk for breast and prostate cancers (as 

well as all cancers, collectively), although the observed risk tends to be even lower (OR<2) than previous 

estimates, especially for PTV (typically OR>2).2 Interestingly, in neither cohort was a significant excess 

risk for “malignant neoplasms of digestive organs” ( majority were colorectal cancers) observed for All, 

PTV or PMV (Supplemental Table 3). Published risk estimates for colorectal cancer from CHEK2 PTV 

are more modest (OR ~2) and conflicting than those for female breast cancer and prostate cancer; higher 

estimates of risk are driven by studies of multiplex families.17 Published risk for colorectal cancer from 
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CHEK2 PMV tend to be even lower (OR<2) or non-significant.2,18 Given this, a recent ACMG review and 

clinical practice guideline on management2 concluded that CHEK2 heterozygosity is not clinically 

actionable for colorectal cancer risk in isolation and to offer surveillance as per family history. In contrast, 

current National Comprehensive Cancer Network (NCCN) guidelines recommend colorectal cancer 

screening for individuals who carry CHEK2 P/LP variants. 

(https://www.nccn.org/professionals/physician_gls/pdf/genetics_colon.pdf) Our observations in this study 

of non-significant colorectal risk are congruent with the ACMG recommendations. In summary, although 

additional confirmation is needed for breast, prostate and colorectal cancers, genomic ascertainment 

showed generally lower (or non-significant) risk than previously reported for All, PTV and PMV in 

CHEK2. 

This work provides substantial evidence from both cohorts of significant increased risk for kidney cancer, 

bladder cancer and CLL (lymphoid leukemia). In this investigation, Bonferroni correction was applied to 

organ-system groupings and not specific cancer types. Thus, other cancers may be enriched in CHEK2 

heterozygotes; Supplemental Table 2 lists counts of cancer types in controls and All, PTV and PMV 

heterozygotes.  Recent ACMG clinical practice guideline on management of CHEK2 heterozygotes2 

concluded that there was likely an increased risk for kidney cancer but that larger studies with appropriate 

controls were needed. Several publications found a range of risk (OR=3; hazard ratio =10.8)18-21; other 

investigations had non-significant findings.22 As with breast and prostate cancers in this study, genomic 

ascertainment resulted in lower risk estimates (OR<2) for kidney cancer than previous studies and was 

remarkably consistent across the two cohorts. A 2023 ACMG review and clinical guidance for CHEK2 

heterozygotes2 noted a single publication of non-significant CHEK2-associated bladder cancer23 but 

deemed this evidence insufficient to make recommendations; more recent publications have found 

additional evidence of a CHEK2-bladder cancer association.24,25 Genomic ascertainment in this study 

revealed similarly increased bladder cancer risk in both cohorts (especially in PTV). In summary, this 
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evidence of increased risk for both renal and bladder cancers should prompt the development of clinical 

management recommendations for surveillance and intervention for these cancers. 

In both cohorts there was significantly elevated risk for lymphoid and hematopoietic neoplasms 

collectively (C81-C96); across all the subtypes of these malignancies, only CLL (lymphoid leukemia) had 

significantly elevated risk (>2) in both cohorts. Reports of increased risk of hematologic malignancy 

(especially CLL) in CHEK2 heterozygotes date from 200626,27 but were conflicting and/or based on highly 

ascertained families. A 2022 investigation using a PheWAS approach in an earlier version of UKBB 

reported an excess risk (OR>3) for leukemia and plasma cell neoplasms in CHEK2 P/LP heterozygotes.28 

To date with current approaches (e.g., CBC, physical exam) there is limited evidence-based actionability 

for surveillance for increased risk of leukemia, however with developing methods (e.g., methylation 

profiling of circulating tumor DNA) this may improve. Outcomes and tailored treatment options for 

CHEK2-associated CLL merit investigation. 

A significant excess of malignancies of thyroid and other endocrine tumors (C73-C75) was observed in 

MyCode but not UK Biobank; this was almost entirely driven by thyroid tumors (C73) and, unlike most 

other associations, by CHEK2 PMV. Previous studies have been conflicting or limited by small numbers 

or single-country ascertainment.18,22,29 The recent ACMG review and clinical guidance for CHEK2 

heterozygotes2 did not find sufficient evidence to support a clear association for thyroid cancer and did 

not recommend surveillance. Genomic ascertainment of DICER1-associated thyroid disease (e.g., goiter) 

also found significant differences in DICER1 heterozygotes (vs. controls) in MyCode but not UK 

Biobank and may reflect the different medical cultures in the US and UK in approaches to medical 

imaging of the thyroid.30 Conversely, there was a significant excess risk of “malignant neoplasms of ill-

defined, secondary and unspecified sites” (C76-C79) in UK Biobank but not MyCode.  

Numerous other associations have been observed for specific cancers for CHEK2 heterozygotes including 

sarcoma, stomach, male breast, melanoma, endometrial and testicular cancer2. For more common cancers 
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(endometrial, skin), there was no evidence of association for these in either cohort. For some rarer cancers 

(male breast, testicular) the two cohorts were likely underpowered (Supplemental Figure 1); for others 

(sarcoma, stomach) there may be both a power issue and a survival bias in ascertainment given the 

aggressive nature of these cancers.  

Overall, pathogenic germline CHEK2 All, PTV and PMV are common, but the conferred excess cancer 

risk is, with few exceptions, less than an OR of 2. In addition, the lack of significant difference between 

CHEK2 All heterozygotes and controls in all-cause mortality in individuals with cancer suggests that 

germline CHEK2-associated cancer is not clinically more aggressive than non-CHEK2-associated cancer. 

The degree of risk from PTV and PMV overlap considerably with risk of PMV generally lower. The 

clinical relevance of this may be debatable since penetrance for cancer, all-cause mortality and all-cause 

mortality in individuals with cancer was not significantly different between PMV and PTV in both 

cohorts.  

There are limitations to these retrospective analyses. MyCode and UK Biobank are predominantly of 

European ancestry. Copy-number (deletions) in CHEK2 were not evaluated due to limited data 

availability in UK Biobank. Enrollment in the two cohorts was subject to ascertainment biases as 

individuals with conditions leading to death or disabilities would be less likely to participate. The 

“healthy volunteer” bias (compared to the UK population) of the UK Biobank has been documented 31  

In summary, we quantified cancer risk and survival in CHEK2 heterozygotes using the novel genome-first 

approach in two well-powered cohorts. Our findings inform clinical care by supporting current 

recommendations for prostate and breast cancer surveillance and provide definitive evidence of increased 

risk for renal, bladder, and CLL in heterozygotes with pathogenic CHEK2 variants. Tailored treatment 

options and surveillance strategies to manage those risks are needed. 
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Figures  

Figure 1.  Odds ratio for All, PTV and PMV CHEK2 heterozygotes for organ system groupings of 

cancer ICD codes with a significant excess of risk in MyCode (panel A) and UK Biobank (panel B). 

CI: 95% confidence interval; OR: odds ratio; PMV: pathogenic missense variant; PTV: pathogenic 

truncating variant 

Figure 2. Odds ratio for All, PTV and PMV CHEK2 heterozygotes for specific cancers in the organ 

system groupings of cancer ICD codes with a significant excess of risk in MyCode (panel A) and UK 

Biobank (panel B). CI: 95% confidence interval; OR: odds ratio; PMV: pathogenic missense variant; 

PTV: pathogenic truncating variant 

Figure 3. Penetrance of pathogenic CHEK2 variants for cancer and all-cause mortality in MyCode. 

Panel A: Time-to-cancer (penetrance); Panel B: All-cause mortality; Panel C: All-cause mortality for 

individuals with cancer.  PMV: pathogenic missense variant; PTV: pathogenic truncating variant. 

Figure 4.  Penetrance of pathogenic CHEK2 variants for cancer and all-cause mortality in UK 

Biobank. Panel A: Time-to-cancer (penetrance); Panel B: All-cause mortality; Panel C: All-cause 

mortality for individuals with cancer.  PMV: pathogenic missense variant; PTV: pathogenic truncating 

variant 
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Supplemental Figures  

Supplemental Figure 1. Power as a function of risk (odds ratio) in MyCode (Panel A, C, E) and UK 

Biobank (Panels B, D, F) for a range of cancer rates. Prevalence data from cohort-specific ALL (Panels 

A, B) pathogenic truncating variants (PTV) (Panels C, D) and pathogenic missense variants (PMV) 

(Panels E, F) CHEK2 heterozygotes (Table 1). Dark gray line represents 80% power, and light gray line 

represents 90% power. 

Supplemental Figure 2.  Odds ratio for All, PTV and PMV CHEK2 heterozygotes for organ system 

groupings of cancer ICD codes in MyCode. Red font represents significant cancers. CI: 95% confidence 

interval; OR: odds ratio; PMV: pathogenic missense variant; PTV: pathogenic truncating variant  

Supplemental Figure 3.  Odds ratio for All, PTV and PMV CHEK2 heterozygotes for organ system 

groupings of cancer ICD codes in UK Biobank. Red font represents significant cancers. CI: 95% 

confidence interval; OR: odds ratio; PMV: pathogenic missense variant; PTV: pathogenic truncating 

variant  

Supplemental Figure 4. Odds ratio for All, PTV and PMV CHEK2 heterozygotes for all specific cancers 

in the organ system groupings of cancer ICD codes in MyCode. Red font represents significant cancers. 

CI: 95% confidence interval; OR: odds ratio; PMV: pathogenic missense variant; PTV: pathogenic 

truncating variant 

Supplemental Figure 5. Odds ratio for All, PTV and PMV CHEK2 heterozygotes for all specific cancers 

in the organ system groupings of cancer ICD codes in UK Biobank. Red font represents significant 

cancers. CI: 95% confidence interval; OR: odds ratio; PMV: pathogenic missense variant; PTV: 

pathogenic truncating variant  
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Supplemental Tables 

Supplemental Table 1. List of all variants found in the study 

Supplemental Table 2. Demographics of CHEK2 heterozygotes vs. controls 

Supplemental Table 3. Case counts and percentages for PMV, PTV and All cohorts and fold-enrichment 

(vs. controls) for each of the ICD10 diagnostic codes in MyCode and UK Biobank. 
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Table 1. Prevalence of All, pathogenic truncating variants (PTV) and pathogenic missense variants (PMV) CHEK2 in adult heterozygotes in UK 

Biobank and Geisinger MyCode. The sum of PTV and PMV is less than All total due to presence of non-canonical splice-site variants. 

Cohort Individuals/Prevalence 
(95%CI) 

All CHEK2 P/LP Variants Pathogenic Truncating 
Variants (PTV) 

Pathogenic Missense 
Variants (PMV) 

UK Biobank – related 
and unrelated 
(n=469,765) 

Number of individuals 3,232 1,847 1,290 

Prevalence 1/145 (1/140 – 1/150) 1/254 (1/243 – 1/266) 1/364 (1/344 – 1/384) 

UK Biobank – 
unrelated (n=437,645) 

Number of individuals 3,171 1,825 1,268 

Prevalence 1/138 (1/133-1/142) 1/239 (1/229-1/251) 1/345 (1/326-1/364) 

MyCode – related and 
unrelated (n=167,050) 

Number of individuals 3,153 913 2,221 

Prevalence 1/52 (1/51 – 1/54) 1/183 (1/171 – 1/195) 1/75 (1/72 – 1/78) 

MyCode – unrelated 
(n=109,730) 

Number of individuals 2,489 728 1,751 

Prevalence 1/43 (1/41 – 1/44) 1/150 (1/140-1/162) 1/62 (1/59-1/65) 
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Controls(%) Heterozygotes(%) OR [95% CI]

1.050

UK Biobank

34,160(22.40)
34,160(22.40)
34,160(22.40)

5,004(3.28)
5,004(3.28)
5,004(3.28)

4,443(7.49)
4,443(7.49)
4,443(7.49)

2,632(1.72)
2,632(1.72)
2,632(1.72)

1,840(1.21)
1,840(1.21)
1,840(1.21)

3,107(2.04)
3,107(2.04)
3,107(2.04)

Controls(%)

864(27.40)
609(27.40)
247(27.1)

156(4.95)
105(4.73)
49(5.37)

142(11.66)
106(12.08)
36(10.74)

84(2.66)
53(2.39)
31(3.40)

66(2.09)
49(2.21)
16(1.75)

91(2.88)
60(2.70)
31(3.40)

Heterozygotes(%)

1.33[1.18−1.49]
1.38[1.11−1.71]
1.30[1.12−1.49]

1.54[1.18−2.00]
1.45[1.07−1.97]
1.73[1.10−2.73]

1.61[1.21−2.15]
1.68[1.22−2.31]
1.46[0.84−2.54]

1.56[1.11−2.2]
1.35[0.89−2.05]
2.16[1.23−3.78]

1.76[1.2−2.56]
1.86[1.21−2.85]
1.45[0.69−3.06]

1.42[1.03−1.95]
1.3[0.88−1.92]
1.74[1.01−3.01]

OR [95% CI]

2.15E−10
2.84E−07
1.09E−04

2.45E−05
1.05E−02

0.01

2.05E−04
6.90E−04

0.96

3.76E−03
0.7

0.03

9.11E−04
1.11E−03

1

0.04
1

0.06

Adjusted
SAIGE p−value

C81−C96 Malignant neoplasms, stated or presumed to be primary, of lymphoid, haematopoietic and related tissue

C73−C75 Malignant neoplasms of thyroid and other endocrine glands

C64−C68 Malignant neoplasms of urinary tract

C60−C63 Malignant neoplasms of male genital organs

C50 Malignant neoplasm of breast

All Cancers

0.3 1.0 3.0

Odds ratio (log10)

Geisinger

All (n=3,153)
PMV (n=2,221)
PTV (n=913)

A.

B. Adjusted
SAIGE p−value

Odds ratio (log10)

69,836(22.87)
69,836(22.87)
69,836(22.87)

12,439(4.07)
12,439(4.07)
12,439(4.07)

10,557(3.46)
10,557(3.46)
10,557(3.46)

4,351(1.43)
4,351(1.43)
4,351(1.43)

14,339(4.70)
14,339(4.70)
14,339(4.70)

5,030(1.65)
5,030(1.65)
5,030(1.65)

934(28.90)
344(26.67)
562(30.23)

227(7.02)
80(6.20)
139(7.53)

179(5.53)
58(4.50)
113(6.12)

77(2.38)
27(2.09)
49(2.65)

192(5.94)
66(5.12)
120(6.50)

108(3.34)
39(3.02)
65(3.52)

1.41[1.26−1.59]
1.28[1.06−1.55]
1.50[1.28−1.75]

1.84[1.49−2.27]
1.55[1.09−2.19]
2.05[1.57−2.69]

1.77[1.39−2.25]
1.52[1.01−2.30]
1.87[1.38−2.53]

1.75[1.24−2.46]
1.58[0.89−2.80]
1.92[1.25−2.94]

1.31[1.05−1.63]
1.13[0.78−1.64]
1.43[1.09−1.90]

2.11[1.58−2.82]
1.95[1.21−3.15]
2.19[1.51−3.17]

6.05E−15
2.19E−04
9.56E−12

2.47E−12
1.41E−02
4.49E−10

3.64E−09
0.14

4.13E−07

1.01E−04
0.84

2.68E−04

4.68E−03
1

2.95E−03

3.45E−09
4.70E−03
8.74E−07

C76−C79 Malignant neoplasms of ill−defined, secondary and unspecified sites

C64−C68 Malignant neoplasms of urinary tract

C60−C63 Malignant neoplasms of male genital organs

C50_Malignant neoplasm of breast

All Cancers

1 2 3

C81−C96 Malignant neoplasms, stated or presumed to be primary, of lymphoid, haematopoietic and related tissue
All (n=3,232)
PMV (n=1,290)
PTV (n=1,847)
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Controls(%) Heterozygotes(%) OR [95% CI]
Adjusted

SAIGE p−value UK Biobank

4222(7.12)
4222(7.12)
4222(7.12)

1202(0.79)
1202(0.79)
1202(0.79)

1477(0.96)
1477(0.96)
1477(0.96)

1370(0.90)
1370(0.90)
1370(0.90)

627(0.41)
627(0.41)
627(0.41)

Controls(%)

135(11.09)
101(11.51)
34(10.14)

39(1.24)
27(1.22)
12(1.31)

46(1.46)
27(1.22)
19(2.08)

57(1.81)
42(1.89)
14(1.53)

27(0.86)
19(0.86)
8(0.88)

Heterozygotes(%)

1.62[1.27−2.07]
1.69[1.27−2.24]

NA

1.58[1.03−2.41]
NA

1.76[0.83−3.75]

1.50[1.01−2.23]
NA.

2.34[1.254.38]

2.04[1.48−2.82]
2.15[1.47−3.14]

NA

2.08[1.17−3.69]
NA

2.21[0.78−6.22]

OR [95% CI]

1.04E−04
4.03E−04

NA

0.02
NA
0.28

0.1
NA

3.51E−03

6.60E−05
NA

7.61E−03
NA
0.53

1.050

Adjusted
SAIGE p−value

C91 Lymphoid leukemia

C73 Malignant neoplasm of thyroid gland

C67 Malignant neoplasm of bladder

C64 Malignant neoplasm of kidney, except renal pelviss

C61 Malignant neoplasm of prostate

0.5 1.0 3.0 5.0

Odds ratio (log10)

1.82E−05

All (n=3,153)
PMV (n=2,221)
PTV (n=913)

A.

B.

MyCode

9,978(3.27)
9,978(3.27)
9,978(3.27)

1,635(0.54)
1,635(0.54)
1,635(0.54)

2,707(0.89)
2,707(0.89)
2,707(0.89)

7,493(2.45)
7,493(2.45)
7,493(2.45)

6,072(2.00)
6,072(2.00)
6,072(1.99)

414(0.14)
414(0.14)
414(0.14)

1,363(0.45)
1,363(0.45)
1,362(0.45)

216(0.07)
216(0.07)
216(0.07)

1,533(0.50)
1,533(0.50)
1,533(0.50)

921(0.30)
921(0.30)
921(0.30)

650(0.21)
650(0.21)
650(0.21)

50(0.02)
50(0.02)
50(0.02)

170(5.27)
55(4.26)
107(5.79)

31(0.96)
11(0.85)
20(1.08)

45(1.40)
15(1.16)
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21(0.65)
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NA.

4.28E−03

2.66E−03
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0.01
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1
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1.22E−03
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C96 Other and unspecified malignant neoplasms of lymphoid, haematopoietic and related tissue

C92 Myeloid leukaemia 

C91 Lymphoid leukaemia

C85 Other and unspecified types of non−Hodgkin's lymphoma

C84 Peripheral and cutaneous T−cell lymphomas

C83 Diffuse non−Hodgkin's lymphoma

C81 Hodgkin's disease

C79 Secondary malignant neoplasm of other sites

C77 Secondary and unspecified malignant neoplasm of lymph nodes

C67 Malignant neoplasm of bladder

C64 Malignant neoplasm of kidney, except renal pelvis

C61 Malignant neoplasm of prostate
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