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Abstract. Breast Magnetic Resonance Imaging (MRI) examinations routinely include contrast-agent based 15 

dynamic contrast-enhanced (DCE) acquisitions. Expanding the accessibility and personalization of breast MRI 16 

might be supported amongst others by advancing non-contrast-enhanced MRI, such as virtual dynamic contrast-17 

enhanced techniques (vDCE) utilizing neural networks. This IRB-approved retrospective study includes n=540 18 

breast MRI examinations acquired on a single 3T MRI scanner. Two 2D U-Net architectures were trained using 19 

non-contrast-enhanced MRI acquisitions including T1w, T2w and multi-b-value diffusion weighted imaging 20 

acquisitions as inputs and either a single (SCO-Net) or multiple (MCO-Net) time points of a DCE series as ground 21 

truth. The neural networks predicted a vDCE series corresponding to five consecutive DCE time points. Across all 22 

time points, no significant differences in structural similarity index (SSIM) could be found between the SCO-Net 23 

and MCO-Net, both achieving a mean SSIM of 0.86. For peak-signal-to-noise-ratio and normalized root-mean-24 

square error, significantly better results could be observed for the MCO-Net reaching scores of 24.42dB and 25 

0.087 respectively. Comparison of manual segmentations of findings on DCE and vDCE images reached a DICE 26 

score of 0.61 and an intersection over union (IoU) of 0.47 without significant differences between SCO-Net and 27 

MCO-Net. These findings suggest a technical feasibility of generating vDCE image series from unenhanced input 28 

acquisitions using neural networks. However, the analysis does not allow drawing any conclusion on the clinical 29 

assessment of lesion specific curve kinetics, which need to be assessed prior determining on the feasibility of 30 

deriving diagnostically meaningful enhancement characteristics in individual lesions. 31 

Keywords: Contrast-enhanced MRI, Breast MRI, Deep Learning. 32 
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1 Introduction 1 

Dynamic contrast-enhanced (DCE) Magnetic Resonance Imaging (MRI), a core element of 2 

multiparametric breast MRI examinations, acquires several T1-weighted (T1w) images before and after 3 

gadolinium-based contrast agent (GBCA) administration. This acquisition commonly employs intervals 4 

of 60-90 seconds in between the acquisitions, enabling assessment of enhancement characteristics in 5 

tissue and suspicious lesions [1]. Despite its diagnostic accuracy, DCE MRI has certain drawbacks when 6 

considered for specific diagnostic applications, especially in the context of breast cancer screening in 7 

healthy persons: GBCA administration is associated to direct and indirect costs [2], multi-time point 8 

DCE breast examinations commonly occupy significant scanner time [3,4] and despite a contextual 9 

comparatively high safety profile, GBCA administration have been reported to be associated with 10 

certain side effects like allergic reactions and the "symptoms associated to gadolinium exposure" 11 

(SAGE) complex [5]. Additionally, the use of GBCAs contributes to environmental gadolinium pollution 12 

with GBCA contamination affecting surface waters [6-8]. 13 

Due to these factors, there's a growing interest in breast MRI approaches reducing GBCA 14 

administration in the screening context, yet providing visual characteristics of contrast-enhanced 15 

acquisitions by generating artificial contrast-enhanced images from non-enhanced acquisitions. Such 16 

methods were previously shown in breast studies [9-12], albeit deriving only one of the multiple time 17 

points considered in DCE breast MRI. 18 

However, technically such methods might allow as well for generating images reflecting different 19 

time points of dynamic acquisitions by training distinct networks for each time points acquired over 20 

several minutes. This assumption is supported by several studies using different post-contrast 21 

acquisition intervals as training data. For example, in Chung et al. 90-second intervals [9], in Müller-22 

Franzes et al. 60-second intervals [11], and in Kim et al. both 60 and 90 seconds [10] were used. These 23 

variations thus fuel and support the hypothesis of a principal possibility to predict post-contrast images 24 

across a series of time points in an individual patient. Furthermore, Zhang et al. [13] showed that 25 

besides synthesizing multiple different MRI sequences a feasibility to synthesize DCE in breast MRI is 26 

given. However, resulting in unsatisfying outputs as stated by the authors [13]. 27 

Our study therefore investigates neural networks' ability to predict contrast enhancement for 28 

creating virtual dynamic contrast-enhanced (vDCE) breast MRI at various time points. It assesses two 29 

methods: using five separate networks for each time point (single-channel output - SCO-Net) and 30 

another using a single network with five time points as output channels (multi-channel output - MCO-31 

Net), with the latter potentially benefiting by learning the dependencies of cross-time point latency 32 

information within a single training step. Both approaches were quantitatively assessed across the 33 
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entire breast and in segmentations of findings, including delineation comparisons between second 1 

time point DCE and vDCE images, akin to Chung et al.'s work [9]. 2 

2 Materials and Methods 3 

2.1 Dataset 4 

This IRB approved retrospective study includes n=540 clinically indicated breast MRI examinations of 5 

female patients (mean age: 52±12 years) acquired between 2017 and June 2020 at University Hospital 6 

Erlangen, Germany. Acquisitions were conducted on a single 3 Tesla MRI scanner (MAGNETOM Skyra 7 

Fit, Siemens Healthineers, Erlangen, Germany) with a dedicated 18-Channel breast coil (Siemens 8 

Healthineers, Erlangen, Germany). The dataset was randomly split on patient level into training, 9 

validation and an independent test set with n=377, n=81, and n=82 examinations, respectively. 10 

Each examination included pre-contrast T1w, T2-weighted (T2w), multi-b-value (b-values: 0, 750 11 

and 1500 s/mm²) diffusion weighted imaging (DWI) and T1w subtraction series after administration of 12 

GBCA (T1w-sub) at five consecutive time points. The acquisition of T1w-sub began 20 seconds after 13 

GBCA injection with each scan lasting 60 seconds. Detailed acquisition parameters are provided in 14 

Table 1. 15 

Table 1. MRI Sequence Parameter. Repetition time (TR), echo time (TE), inversion recovery time (IR), field of view 16 

(FoV). 17 

Parameter T1w T2w DWI 

TR [ms] 5.97 3570-5020 6290-9660 
TE [ms] 2.46 60-70 66-70 
IR [ms] - 230 220-250 
FoV [mm x mm] 360x360-430x430 340x340-430x430 350x220-430x270 
Slice thickness [mm] 1.5-1.8 4 4 

No. Averages 1 2 
3 – b-value 50 

8 – b-value 750 
20 – b-value 1500 

 18 

2.2 Data Preprocessing and Binary Masking 19 

The DICOM files were transformed to NIfTI format using dcm2niix tool [14], followed by 20 

preprocessing using in-house Python (version 3.9.10) scripts utilizing SimpleITK framework (version 21 

2.2.1) including resampling, intensity normalization, intensity clamping and rescaling. 22 

All images’ field of view (FoV) was resampled to match the FoV of DWI acquisitions as well as 23 

common spatial dimensions with an in-plane matrix of 448x280 and n=96 slices. Z-score normalization 24 
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was applied individually on T1w, T2w and different DWI acquisitions. To maintain the intensity uptake 1 

over time in T1w-sub normalization was applied to the entire series. Intensities were clamped at 2 

boundaries of -1 and 15, to minimize outlier impact. Finally, T1w, T2w and the DWI acquisitions were 3 

scaled to a [0, 1] domain, while T1w-sub volumes were scaled to a [-1,1] domain. 4 

Binary breast volume masks were calculated from T1w data using an in-house developed algorithm 5 

based on mean thresholding of multiple maximum intensity projections (MIP) in slice (z-) direction. 6 

Each slice of T1w data was processed into individual MIPs of adjacent slices (nslices) to account for 7 

varying anatomical shapes, as defined in Equation (1). MIPs were then binarized using mean 8 

thresholding followed by binary dilation with a 5-pixel diameter disk-shaped kernel and a binary closing 9 

operation to ensure homogeneous masks. The resulting masks were stored in NIfTI format with the 10 

same spacing, direction and origin of the T1w data. This algorithm was also previously described in 11 

Liebert et al. [15]. 12 

 13 

 

𝑛𝑠𝑙𝑖𝑐𝑒𝑠(𝑠𝑙𝑖𝑐𝑒) =

{
 
 

 
 

[0, 6] 𝑖𝑓 𝑠𝑙𝑖𝑐𝑒 ≤ 3
[𝑠𝑙𝑖𝑐𝑒 − 3, 𝑠𝑙𝑖𝑐𝑒 + 3] 𝑖𝑓 3 < 𝑠𝑙𝑖𝑐𝑒 < 9
[𝑠𝑙𝑖𝑐𝑒 − 3, 𝑠𝑙𝑖𝑐𝑒 + 3]

[90, 96]
[𝑠𝑙𝑖𝑐𝑒 − 8, 𝑠𝑙𝑖𝑐𝑒 + 8]

𝑖𝑓 87 < 𝑠𝑙𝑖𝑐𝑒 < 93
𝑖𝑓 𝑠𝑙𝑖𝑐𝑒 ≥ 93
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

2.3 Neural Network Architecture and Training 14 

Two 2D U-net architectures, were implemented, both consisting of three encoder and three decoder 15 

stages with a bottleneck layer in-between. Detailed information of the composition of each layer is 16 

presented in Figure 1. 17 

In SCO-Net, five individual networks were trained each predicting a single time point of the DCE 18 

series. MCO-Net utilized a five-channel output representing the whole DCE time series. The networks 19 

were trained using native T1w, T2w and the multi-b-value DWI series as inputs and T1w-sub series as 20 

targets. Inspired by Chen et al.[16] the loss function was a combination of structural similarity index 21 

metric (SSIM)[17] and L1-norm as shown in the Equation (2) below. 22 

 23 

 𝐿(𝑦𝑖 , 𝑦𝑖′) = (1 − 𝑆𝑆𝐼𝑀(𝑦𝑖 , 𝑦𝑖′)) + 𝐿1(𝑦𝑖 , 𝑦𝑖′) (2) 

   

Training utilized all slices of the datasets with ADAM optimizer and a batch size of 30 random slices. 24 

A dedicated workstation (Linux Ubuntu 20.04, AMD Ryzen Threadripper PRO 3945WX 3.4Ghz, 64GB 25 

RAM) with one Nvidia Quadro RTX 6000 GPU-card with 24GB RAM was used. The networks were 26 

trained for 35 epochs without early stopping. Experiments were implemented using PyTorch (version 27 

1.13.1), PyTorch-Lightning (version 1.8.6) and MONAI (version 0.8.0) frameworks. 28 
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 1 

Fig. 1.  Schematic overview of 2D-Unet Architectures. Left: Architecture for SCO-Net. Right: Architecture for 2 

MCO-Net. Both networks use 5 images as input channels. In SCO-Net, five individual networks were trained, each 3 

using a different time point of the DCE series as ground-truth. The MCO-Net uses each time point of the DCE 4 

series as a channel of the ground truth. Encoder stages consisted of two blocks of either a 1×1 or 3×3 convolution 5 

(Conv) layers followed by a batch normalization (BN) layer and a leaky rectified linear unit (LReLU) layer. Each 6 

decoder stage incorporates a concatenation with features of the encoder to represent the skip connections. The 7 

decoder stages on the 2nd and 1st level consisted of two 3×3 Conv layers followed by a BN layer and a LReLU 8 

layer. The deepest encoder and decoder stage and the bottleneck contain an additional dropout layer with a 9 

probability of 0.5. For encoder down-sampling, 2×2 Conv with a stride of 2 were used. Decoder up-sampling was 10 

performed using 2×2 transposed Conv with a stride of 2. After the final decoder stage, a 1x1 Conv was performed 11 

followed by a tanh operation in order to map the predictions to the expected output channels and [-1, 1] domain. 12 

2.4 Performance Evaluation 13 

The vDCE series were quantitatively evaluated on the holdout test set using the following metrics also 14 

used in previous literature: SSIM, peak signal-to-noise-ratio (PSNR), normalized root mean square error 15 

(NRMSE) and median symmetric accuracy (MEDSYMAC) which addresses robust analysis of symmetric 16 

prediction errors [10,12,18,19]. These metrics were calculated for both the whole image volume and 17 

separately for bounding boxes placed around segmented target findings as detailed below. 18 

Additionally, high frequency error norm (HFEN) was calculated only for whole images volume, as target 19 

finding sizes were too small in some cases for the calculation. Differences in mean values per time 20 

point and subject between the two network architecture approaches were evaluated using a two-way 21 

Repeated Measurements Anova, with the pingouin Python framework (version 0.5.3). 22 

To assess the proposed techniques' effectiveness in depicting contrast uptake, segmentations were 23 

conducted on n=48 subjects of the test set with findings that stood out against background tissue in 24 

the DCE acquisitions including 8 BI-RADS<=2 cases (ranging from 5.0-31.4mm) and 40 BI-RADS>2 cases 25 

(ranging from 4.7-85.1mm). Per patient, the largest appearing finding was volumetrically segmented 26 

in DCE and both vDCE methods at the second time point using 3D Slicer Software (version:4.11) [20] 27 

carried out by a medical student (>2 years’ experience) under a single radiologist's (>10 years’ 28 

experience) guidance. Segmentations were compared using following metrics: DICE score, Intersection 29 
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over union (IoU), Hausdorff Distance (HD), and segmentation volume (segV). Additionally, the contrast-1 

to-noise ratio (CNR) was evaluated using a bounding box with a one-pixel offset around segmentations. 2 

Statistical analysis was performed using a one-way Repeated Measures ANOVA with scipy (version 3 

1.9.1) considering a p-value<0.05 as significant. 4 

3 Results 5 

3.1 Binary Masking 6 

Figure 2 displays the results of breast volume masking on corresponding T1w slices for a representative 7 

case. The masks successfully include the whole breast tissue while the air around the patient is 8 

excluded as well as parts of the thorax, and most of the lung and heart tissue. 9 

 10 

Fig. 2. Exemplary case of the breast volume masking for ten different slice positions is displayed. T1w slices and 11 

the corresponding binary mask overlay (yellow) are shown. The mask correctly excludes air around the body and 12 

large parts of the lungs. Whereas the breast tissue is fully included with an additional offset around the outer 13 

breast contours to ensure no important information is counted as background 14 

3.2 Neural Network Performance 15 

Generated vDCE images were evaluated on similarity and error metrics for both SCO-Net and MCO-16 

Net on the holdout test set. Mean values across all five time points are presented in Table 2. SCO-Net 17 

reached marginally higher values for SSIM and marginally lower values for PSNR and HMI in the image 18 

volume and mean NRMSE and HFEN values were lower for MCO-Net and MEDSYMAC higher. In the 19 

segmentations, MCO-Net showed higher similarity and lower error metrics compared to SCO-Net 20 

except MEDSYMAC. 21 

 22 

 23 

 24 
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Table 2. Mean (±Std) similarity and error metrics of vDCE in image volume and segmentations of SCO-Net and 1 

MCO-Net. 2 

 Image Volume Segmentation 

 SCO-Net MCO-Net SCO-Net MCO-Net 
SSIM (↑) 00.864±0.025 00.863±0.026 00.591±0.133 00.596±0.131 
PSNR [dB] (↑) 24.288±2.379 24.424±2.416 22.065±3.448 22.204±3.395 
HMI (↑) 00.694±0.066 00.701±0.066 01.476±0.741 01.481±0.737 
NRMSE (↓) 00.089±0.015 00.087±0.016 00.174±0.049 00.173±0.049 
MEDSYMAC (↓) 00.020±0.011 00.022±0.012 00.106±0.032 00.105±0.032 
HFEN (↓) 00.796±0.079 00.780±0.073 - - 
SSIM – structural similarity index measure, PSNR – peak signal to noise ratio, HMI – histogram mutual information, 

NRMSE – normalized root mean square error, MEDSYMAC – median symmetric accuracy, HFEN – high frequency 

error norm. 

 3 

Furthermore, similarity and error metric values separated per time point for each of the above-4 

described setups are presented in Figure 3. It can be noted that the later time points result in 5 

significantly higher SSIM and HMI values and lower PSNR. These trends are visible both in the image 6 

volume and segmentations. Error metrics show significantly lower values for later timepoints. 7 

The metrics in Table 2 and Figure 3 indicate a generally worse performance inside segmentations 8 

compared to image volume. SSIM indicated no statistically significant (p>0.05) differences between 9 

SCO-Net and MCO-Net in image volume. However, all other metrics showed significant effects (p<0.05) 10 

between the two approaches. Significant differences (p<0.05) were found for SSIM, PSNR, HMI and 11 

MEDYSMAC across different time points and approaches in image volume. NRMSE and HFEN showed 12 

non-significant differences (p>0.05) across different time points. 13 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.07.24311608doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.07.24311608
http://creativecommons.org/licenses/by/4.0/


8 

1 

Fig. 3. Similarity metrics for vDCE SCO-Net and MCO-Net in image volume as well as segmented findings are 2 

presented. SSIM values show an increase and PSNR values a decrease for later time points both for the volume 3 

and segmentations. 4 

In Figure 4 five consecutive time points of three representative cases of both vDCE approaches and 5 

of the original DCE series are shown. In both vDCE approaches the localization of the lesion is well 6 

correlating with the DCE images as well as the signal intensity uptake over time.  7 
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1 

Fig. 4. (A) - Exemplary case of a 60- to 70-year-old patient with a histopathologically confirmed malignant lesion 2 

in the right breast. (B) - Exemplary case of a 60- to 70-year-old patient with a histopathologically confirmed non-3 

mass enhancement in the left breast. (C) Exemplary case of a 50- to 60-year-old patient having a cyst in the left 4 

breast. Respectively for each case: Top: DCE series, Middle: vDCE SCO-Net, Bottom: vDCE MCO-Net. In each series 5 

the depiction of the lesions is visible with an increasing signal intensity over time. In (A) stronger lesion 6 

enhancement can be observed in the DCE image when compared to the vDCE approach. A weaker enhancement 7 

appears for the 4th time point of the vDCE SCO-Net when compared to both the vDCE MCO-Net and DCE series. 8 

(C) shows a false-positive enhancement in both vDCE approaches as cyst do not enhance in DCE series. 9 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.07.24311608doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.07.24311608
http://creativecommons.org/licenses/by/4.0/


10 

3.3 Evaluation of Ability to Depict Target Findings 1 

Figure 5 displays three lesions with its corresponding segmentations performed on DCE as well as vDCE 2 

SCO-Net and MCO-Net. The lesion shapes and location appear similarly. However, this also shows how 3 

lesion depiction appears differently for the different approaches. 4 

 5 

Fig. 5. Segmentation differences of lesions. Top: DCE image, Middle: vDCE SCO-Net, Bottom: vDCE MCO-Net. (A) 6 

represents a malignant lesion, (B) a non-mass enhancement and (C) a malignant lesion. 7 

Table 3 shows the quantitative evaluation of segmentation correctness using SCO-Net and MCO-Net 8 

for vDCE generation. MCO-Net shows marginally higher mean DICE scores and IOU values and a lower 9 

HD. For the original DCE series a CNR=2.483±1.350 could be reached. This wasn’t significantly different 10 

from the CNR values reached by both of the vDCE approaches. No significant changes (p>0.05) were 11 

observed between SCO-Net and MCO-Net for any of the investigated segmentation metrics. Figure 6 12 

shows the Bland-Altman plot for the segmented volume segV. 13 

Table 3. Quantitative Mean (±Std) Segmentation Metrics 14 

Metric SCO-Net MCO-Net 

DICE Score (↑) 0.605±0.210 0.610±0.213 
IoU (↑) 0.465±0.211 0.471±0.216 
HD (↓) 09.454±10.709 09.179±10.650 

CNR (↑) 2.103±1.438 2.161±1.525 
IoU – intersection over union, HD – Hausdorff Distance, CNR – contrast-to-noise ration 

 15 
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 1 

Fig. 6. Bland-Altmann plot compares findings’ segV in the 2nd time point of the DCE and vDCE series. An increase 2 

in variation in larger segmentations for both vDCE approaches, not meeting the DCE segV observed similarly for 3 

SCO-Net and MCO-Net. Overall, there is a systematic bias of -1.49 for vDCE approaches indicating 4 

underestimation of finding sizes, although this bias diminishes for smaller segmentations. Outlier segmentation 5 

case is shown in Figure 5 (C). 6 

4 Discussion 7 

This study evaluates the technical feasibility of generating a vDCE series for breast MRI comprising 8 

individual images for each time point post GBCA injection using two neural network approaches. One 9 

approach was trained on tissue characteristics at a specific time point, blinded to information of other 10 

time points (SCO-Net), while the other was trained to consider the entire dynamic cycle (MCO-Net), 11 

potentially benefiting from exploring cross-timepoint latency information. Both approaches depicted 12 

image characteristics similar to DCE images. MCO-Net showed a higher performance with significant 13 

differences across metrics except the SSIM compared to SCO-Net, in both image volume and 14 

segmented benign and malignant findings.  15 

For SCO-Net, lowest SSIM scores and highest error metrics were observed for the 1st time point of 16 

the DCE series, gradually increasing towards the later time points. The SCO-Net trained for the 2nd DCE 17 

series time point, which correlates to an acquisition approx. 80 seconds after GBCA administration, 18 

reached a mean SSIM of  0.864±0.025 aligning with prior studies by Chung et al. [9] and Kim et al. [10], 19 

both trained networks on contrast-enhanced breast MRI data acquired approx. during this timeframe. 20 

Mean SSIM scores across all time points (0.84-0.87) align with previously noted literature values of 21 

0.76-0.91 [9,10,12,13,18], while PSNR scores 23.64-25.37dB fall to lower end of previously noted 22 

literature ranges of 23.18-54.8dB [10,12,13,18]). 23 

Despite minimal metric differences, a more homogenous tissue appearance over time points was 24 

observed when using MCO-Net (see Figure 4). The MCO-Net approach aimed to incorporate contextual 25 

information of time dependency of contrast-enhancement during training. It utilizes the 26 

interdependent information of various post-contrast images and their time dependency of different 27 
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tissue compartments in the breast. The MCO-Net achieved higher PSNR and lower error metrics 1 

compared to SCO-Net and non-significant differences in SSIM. The improvement in SSIM and error 2 

metrics over time might correlate with higher signal in later time points. Despite this higher signal, the 3 

increased noise level in tissue, decreased PSNR due to its sensitivity to noise. 4 

Compared to Chung et al.’s study [9], our segmentations yielded a lower DICE coefficient between 5 

DCE and vDCE approaches. This might be attributed to including more challenging cases with all 6 

findings independent of malignancy or mass/non-mass enhancement type. Incorporating 7 

segmentations into the loss function, as demonstrated by Chen et al. [16], may enhance performance 8 

on finding-delineation and signal intensity representation. However, in this study, neither network 9 

approach significantly outperformed the other in regards of comparing manual segmentations. 10 

Utilizing 2D Networks increased dataset size and reduced resources needed for training networks 11 

with high resolution images. Still, the images showed high inter-slice homogeneity in z-direction. 12 

Exploring 3D architectures for vDCE prediction might further improve capabilities of such technique by 13 

incorporating information of adjacent slices. 14 

Our study has limitations, including the absence of a qualitative reader study to assess clinical 15 

applicability, evaluations on enhancement kinetics over time and a potential segmentation bias. 16 

Further clinical evaluations should be pursued in future research with larger cohorts. Additionally, the 17 

study's reliance on data from a single MRI scanner model limits the generalizability of our findings, 18 

emphasizing the need for research incorporating diverse equipment. Future work should also 19 

investigate which MRI sequences are required for vDCE generation, in analogue to investigation of 20 

Liebert et al. [21] to further explore dependency on acquisition techniques and generalizability. 21 

5 Conclusion 22 

In conclusion, providing a neural network information on tissue enhancement kinetics during training 23 

in form of additional input channels, like in MCO-Net approach, significantly improved metrics for 24 

generating a time-dependent series of vDCE breast MRI images from unenhanced acquisitions. Further 25 

research in this area might be justified based on these findings and should incorporate individual 26 

assessment of lesion specific enhancement characteristics as clinically relevant targets. 27 
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