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Abstract 24 

Purpose: 25 

To develop an automated system for assessing the quality of Fundus Autofluorescence 26 

(FAF) images in patients with inherited retinal diseases (IRD). 27 

Methods:  28 

We annotated a dataset of 2445 FAF images from patients with Inherited Retinal 29 

Dystrophies which were assessed by three different expert graders. Graders marked images 30 

as either gradable (acceptable quality) or ungradable (poor quality), following a strict grading 31 

protocol. This dataset was used to train a Convolutional Neural Network (CNN) classification 32 

model to predict the gradability label of FAF images. 33 
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Results: 34 

Retinograd-AI achieves a performance of 91% accuracy on our held-out dataset of 133 35 

images with an Area Under the Receiver Operator Characteristic (AUROC) of 0.94, 36 

indicating high performance in distinguishing between gradable and ungradable images. 37 

Applying Retinograd-AI to our full internal dataset, the highest proportion of gradable images 38 

was found in the 30-50 years age group, where 84.3% of images were rated as gradable, 39 

while the lowest was in 0-15 year olds, where only 45.2% of images were rated as gradable. 40 

83.4% of images from male patients were rated as gradable, and 90.6% of images from 41 

female patients. By genotype, from the 30 most common genetic diagnoses, the highest 42 

proportion of gradable images was in patients with disease causing variants in PRPH2 43 

(93.9%), while the lowest was RDH12 (28.6%). Eye2Gene single-image gene classification 44 

top-5 accuracy on images rated by Retinograd-AI was 69.2%, while top-5 accuracy on 45 

images rated as ungradable was 39.0%. Retinograd-AI is open-sourced, and the source 46 

code and network weights are available under an MIT licence on GitHub at 47 

https://github.com/Eye2Gene/retinograd-ai  48 

Conclusions: 49 

Retinograd-AI is the first open-source AI model for automated retinal image quality 50 

assessment of FAF images in IRDs. Automated gradability assessment through Retinograd 51 

AI enables large scale analysis of retinal images, which is an essential part of developing 52 

good analysis pipelines, and real-time quality assessment, which is essential for deployment 53 

of AI algorithms, such as Eye2Gene, into clinical settings. Due to the diverse nature of IRD 54 

pathologies, Retinograd-AI may also be applicable to FAF imaging for other conditions, 55 

either in its current form or through transfer learning and fine-tuning. 56 
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Introduction 58 

 59 

Inherited Retinal Dystrophies (IRDs) are genetically determined disorders of the retina, 60 

which collectively represent a leading cause of blindness in children and the working-age 61 

population. IRDs encompass a wide range of conditions with 280 different associated genes 62 

identified so far (Georgiou et al., 2024; Lee et al., 2023; Pontikos et al., 2020). Retinal 63 

imaging, using various imaging modalities, allows accurate phenotyping, which is important 64 

in the diagnosis and follow-up of IRDs. 65 

 66 

Fundus autofluorescence (FAF) imaging is particularly important in this regard since it can 67 

yield data relating to the outer retina and retinal pigment epithelium (RPE). For instance, an 68 

increased autofluorescent signal (hyper autofluorescence) can result from the accumulation 69 

of autofluorescent material, such as lipofuscin, or from the loss of either photoreceptor outer 70 

segments or macular luteal pigment, which usually absorbs the incoming short wavelengths 71 

(Daich Varela et al., 2021). Similarly, loss of autofluorescence can be associated with the 72 

loss of RPE. Particular patterns of autofluorescence are associated with certain IRDs, such 73 

as the hyper autofluorescent flecks that are usually associated with Stargardt disease (Pichi 74 

et al., 2018).  75 

 76 

The quality of imaging data is a critical factor for developing AI models and in particular 77 

during selection of scans for training AI models such as Eye2Gene and AIRDetect (Nguyen 78 

et al., 2023; Pontikos et al., 2022; Woof et al., 2024). Image quality significantly influences 79 

model performance and uncertainty metrics in image classification or segmentation. Poor 80 

quality images frequently cause AI model failures, whereas clinicians would disregard these 81 

as ungradable or request repeat imaging. 82 

 83 

Image gradeability refers to if an image is sufficient for a human (or AI) specialist to make an 84 

informed decision on the basis of the image. Although gradability is technically distinct from 85 

image quality, these aspects are highly correlated and in the literature the terms are often 86 

used interchangeably (Huynh et al., 2024). Manually grading images is laborious and 87 

subjective, which highlights the need for automated gradability assessment to filter out poor-88 

quality imaging data. This is crucial for selecting images for training AI models and for using 89 

these models to assess biomarkers in clinical trials. These approaches are also necessary 90 

for deployment of AI systems in the real world setting by employing automated grading as a 91 

pre-filtering step to assess whether repeat imaging is necessary and prevent propagation of 92 

decisions based on unreliable data. 93 

 94 
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Several AI models for retinal image quality assessment of colour fundus images have been 95 

developed (Abdel-Hamid, 2021; Abramovich et al., 2023; Chan et al., 2021; Shi et al., 2022; 96 

J. Tang et al., 2022), as well as a few for assessing the quality of Spectral domain OCT (SD-97 

OCT) images (Z. Tang et al., 2024; Wang et al., 2019). However, no models currently exist 98 

for other modalities such as fundus autofluorescence (FAF), and none have been specifically 99 

developed for the gradability of IRDs. 100 

 101 

Assessment of gradability of retinal scans from IRD patients poses unique challenges due 102 

IRDs having a range of phenotypes depending on the gene involved. For example, large 103 

areas of abnormal retina can often obstruct features such as the retinal vasculature, or 104 

decreased autofluorescence can render regions darker than usual. Distinguishing these 105 

pathological features from other imaging artefacts is challenging, but is crucial for reliable 106 

grading and the proper functioning of AI models. Hence, in addition to their application to 107 

IRDs, IRD datasets may be a good starting point for developing more general gradability 108 

assessment models, as they encompass a wide range of different conditions and 109 

pathologies, and affect patients across all age ranges. 110 

 111 

We present Retinograd-AI, the first retinal image gradability assessment tool for FAF 112 

imaging and the first specifically developed for all types of IRDs. Retinograd-AI is a deep 113 

neural network (DNN) based classifier trained and validated on over 2400 FAF images from 114 

patients seen at Moorfields Eye Hospital (MEH), annotated by three expert graders. 115 

 116 

Methods 117 

Dataset 118 

Our training dataset was drawn from a dataset of a total of 136,631 FAF images from 4,554 119 

IRD patients from Moorfields Eye Hospital (MEH), captured using the Heidelberg Spectralis 120 

imaging platform. From this dataset, 2445 images were selected at random and then 121 

labelled by a team of three graders (G1, G2, G3), with 815 images assigned to each grader. 122 

All graders were research fellows with over 5 years’ experience in medical retina, and had 123 

extensive experience with grading FAF scans for IRDs. Annotation was performed using two 124 

defined criteria for image quality, as outlined in Table 1. This annotation was done over the 125 

course of three weeks using an instance of the Label Studio tool (Tkachenko et al., 2020-126 

2022), which was hosted on our online grading platform (grading.readingcentre.org). 127 
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Table 1: Definition of the quality assessment criteria. 129 

Assessment Criteria Feature Visibility 

Gradable 

(acceptable 

quality to a 

grader) 

Image is sufficient 

to yield a grade 

with >50% certainty 

Discrimination of the optic disc is clear and vascular arcades 

are visible in over ¾ of their extent. 

No opacities/shadowing impairing clear visibility of critical 

structures like the foveal and peri-foveal areas. 

Ungradable 

(un-acceptable 

quality to a 

grader) 

Image is not 

sufficient to yield a 

grade. 

One or more anatomical features impossible to discern. 

 130 

 131 

a 

   

b 

   

 132 

Figure 1: Example images annotated as a.) gradable (acceptable quality), and b.) 133 

ungradable (poor quality) 134 

 135 

 An additional 133 images were selected as a held-out test set, ensuring no patient overlap 136 

with the training set, each of which were annotated by all three graders. This was used to 137 

measure intergrader agreement and evaluate our algorithm. In cases where not all graders 138 

agreed on the same label for a given image, the most common label was used for the 139 

purposes of model evaluation. This approach helped ensure consistency and reliability in the 140 

evaluation process. 141 
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Model Development 142 

 143 

For training and evaluation of our Retinograd-AI model, we divided the data into training and 144 

pre-test sets in a stratified way, ensuring a similar proportion of each class in both sets by 145 

assigning patients to each split to avoid any overlap. 146 

 147 

We employed an Inception Resnet v2 network architecture with imagenet pretrained weights 148 

for the network. The model was trained using the Adam optimizer and cross-entropy loss, 149 

with class reweighting applied to account for dataset imbalance between the two classes. 150 

Horizontal flipping and random rotations to increase variability of data in line with standard 151 

data augmentation practices. We have trained the model for 20 epochs, taking the best 152 

performing weights determined by the validation loss as evaluated on the pre-test data. A full 153 

list of hyper-parameter settings is given in Supplementary Table 1. 154 

Results 155 

The average intergrader agreement was 0.69 as measured by Cohen’s Kappa (McHugh, 156 

2012). A full breakdown of inter-grader agreement is given in Supplementary Table 2. 157 

 158 

We evaluated Retinograd-AI on the held-out test set and compared its predictions to the 159 

grader labels, viewing the problem as a binary classification task with ‘gradable’ being the 160 

positive class and ‘ungradable’ being the negative class. 161 

 162 

The model achieved an accuracy of 91% (CI95=85.7-95.5%) on the held-out test set, with 163 

precision of 0.96 (0.923-0.991) and recall of 0.93 (0.873-0.973). The corresponding 164 

confusion matrix is given in Table 2. The Area Under the Receiver-Operator Characteristic 165 

(AUROC) was 0.94 (Figure 2). Model-grader agreement (Cohen-Kappa) was 0.69, which 166 

was the same as the inter-grader agreement. 167 

  168 
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Table 2: Model confusion matrix. Comparison of model predictions with ground-truth grader 169 

labels. 170 

 Model Prediction 

Gradable Ungradable 

Grader 
Label 

Gradable 104 8 

Ungradable 4 17 

 171 

172 

Figure 2: Receiver operator characteristic curve for the model predictions on the held-out 173 

test set. 174 

 175 

To understand how demographics might affect image quality, we applied Retinograd-AI to 176 

our full dataset of 136,631 FAF images, collected as part of the Eye2Gene study, to obtain 177 

Retinograd-AI predictions for each image. This enabled us to examine the relationship 178 

between image quality and various other data attributes such as patient age and sex, and 179 

Eye2Gene classification accuracy. 180 

  181 
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Table 3: Comparison of patient age with gradability 182 

Age range % Gradable 

0-15 45.2% 

15-30 70.5% 

30-50 84.3% 

50-70 82.7% 

70+ 80.7% 

 183 

We observed a mild effect of age on Retinograd-AI assessed image quality, with the highest 184 

proportions of gradable images in the 30-50 year old patients, with slightly higher proportion 185 

of ungradable images in older patients, and significantly higher proportions in younger 186 

patients, particularly in the under-15s (Table 3), which matched expectations. There was 187 

also a large difference between male and female patients with images being rated as 188 

gradable 83.4% of the time for male patients, and 90.6% for female patients. This difference 189 

may be due to the inclusion of X-linked IRDs (XLRP, CHM) in the dataset, which affects 190 

males more severely than carrier females, leading to more advanced retinal changes and 191 

overall poorer image quality in males. There was also substantial variation in image quality 192 

across different patient genotypes, with the highest proportion of gradable images were 193 

found in patients with a disease-causing variant in PRPH2, with 93.9% of images were rated 194 

as gradable, and the lowest being RDH12 where only 28.6% of images were rated as 195 

gradable (Figure 3). 196 

 197 

To assess how image quality affects the performance of AI models, we compared the 198 

Retinograd-AI assessed image gradeability to the gene-classification accuracy of a single 199 

FAF module of Eye2Gene (Nguyen et al., 2023; Pontikos et al., 2022), evaluating at image-200 

level rather than patient-level. We found that images classified as gradable by Retinograd-AI 201 

had a top-5 gene classification accuracy of 69.2%, while images classified as ungradable 202 

had a substantially lower accuracy of 39.0%. Figure 4 shows how gene-classification 203 

accuracy compares with the raw probability output of Retinograd, showing that higher 204 

gradeability score corresponds with higher gene-classification accuracy. 205 

  206 
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207 
Figure 3: Percentage of images rated as gradable by Retinograd-AI across the 30 most 208 

common genetic diagnoses. Significant differences can been seen between genes. 209 

 210 

211 
Figure 4: Comparison of Eye2Gene FAF module top-5 gene classification accuracy 212 

compared with gradability probability (gradability score) from Retinograd-AI. All images were 213 

ranked by the probability output of Retinograd and divided into 5 buckets. For each bucket 214 

the per-bucket Eye2Gene classification accuracy, and standard error, were calculated and 215 

plotted. 216 
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Discussion 218 

 219 

Herein, we present Retinograd-AI, the first retinal image quality assessment model for FAF 220 

imaging and the first image quality assessment tool developed specifically for IRDs. We 221 

have open-sourced our algorithm to make it available to other researchers at 222 

https://github.com/Eye2Gene/retinograd-ai . 223 

 224 

Retinograd-AI enabled us to automatically annotate our entire database of FAF images in 225 

IRDs from Moorfields Eye Hospital, an otherwise unfeasible task to perform manually. These 226 

data enabled us to gain valuable insights into image quality variability in relation to 227 

parameters such as patient age, sex and genotype, which historically have been difficult to 228 

separate out due to previously-unquantified influences.  229 

 230 

As might be expected, we found that younger (0-15 year olds) and older (70+ year olds) age 231 

groups had a smaller proportion of gradable images than other age groups. For IRD 232 

genotypes, we found that genotypes which are earlier onset, affect the posterior pole such 233 

as RDH12 or cause widespread degeneration such as CRB1 had a lower proportion of 234 

gradable images. As did genotypes that tend to present with secondary cataract, severe 235 

phenotypes or high myopia such as MYO7A, NR2E3 and CACNA1F. Achromatopsia 236 

genotypes such as CNGB3 and CNGBA3 often have nystagmus and photoaversion which 237 

could also explain a lower proportion of gradable images in those genotypes. 238 

 239 

We were also able to confirm our hypothesis that image quality of FAF imaging has a 240 

significant impact on the performance of AI models such as Eye2Gene. This has significant 241 

implications for the deployment of AI models into clinical settings.  242 

 243 

Changes in the data quality between validation and real-world settings could have a large 244 

impact on model performance, leading to substantially lower real-world accuracy than 245 

expected, carrying implications for safety and efficacy.  246 

 247 

Automated image quality assessment tools, such as Retinograd-AI, can have an important 248 

role to play in addressing this, both by identifying variations in image quality between 249 

different settings and patient populations, as well as for pre-screening images at point of use 250 

to reject poor-quality images. 251 

 252 

Retinograd-AI can also be used in other scenarios where image quality is important, but 253 

expert feedback is not immediately available, for example, in collecting data for clinical trials. 254 
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In these cases Retinograd-AI can provide near real-time feedback to the operator about the 255 

quality of the captured images and whether it is sufficient for downstream analysis, or 256 

whether repeat imaging is recommended.  257 

 258 

Given the diversity in age and phenotypes of IRDs, Retinograd-AI is a robust starting point 259 

for building gradeability models for FAF imaging for other conditions where FAF is commonly 260 

used such as Geographic Atrophy and Central Serous Chorioretinopathy, potentially via 261 

transfer learning using Retinograd-AI weights as a starting point.  262 

 263 

We expect automatic gradability annotations to prove invaluable to future image 264 

classification and segmentation tasks as imaging quality is a significant confounder for many 265 

image-derived metrics.  266 

 267 

In the future, we aim to improve Retinograd-AI by incorporating additional data from other 268 

conditions, as well as extend our approach to further imaging modalities. 269 

 270 
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Supplementary 391 

 392 

Supplementary Table 1: List of hyperparameter settings used for training the neural 393 

network. 394 

Parameter Value 

Architecture inception_resnet_v2 

Batch size 4 

Image size (768,768) 

Train Epochs 20 (Early stopping as no validation loss 
improvement) 

Optimiser Adam 

Loss Weighted categorical cross-entropy 

Learning rate 1e-5 

Augmentations Horizontal flipping, Random rotations 

 395 

 396 

Supplementary Table 2: Inter-grader confusion matrix G1/2/3=Grader 1/2/3, G=Gradable, 397 

U=Ungradable 398 

Grader 1 vs 
Grader 2 

G2 Grader 1 vs 
Grader 3 

G3 Grader 2 vs 
Grader 3 

G3 

G U G U G U 

G1 G 110 7 G1 G 113 4 G2 G 110 5 

U 5 11 U 2 14 U 5 13 
 399 

 400 
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