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Abstract 23 

COVID-19 mortality rates have varied dramatically across the globe. Yet the reasons behind 24 

these disparities remain poorly understood. While recent research has linked gut microbes to 25 

these variations, the role of oral bacteria, a main port of entry for the coronavirus, remains 26 

unexplored.We investigated the relationship between oral microbiota and COVID-19 mortality 27 

rates across eightcountries. Raw sequencing data of 16S rRNA regions from oral microbiota in 28 

244 healthy subjects from eight countries were obtained from public databases. We employed a 29 

generalized linear model (GLM) to predict COVID-19 mortality rates using oral microbiota 30 

composition. GLM revealed that high abundances of hydrogen sulfide (H₂S)-producing bacteria, 31 

particularly Treponema, predicted low COVID-19 mortality rates with a markedly low p-value. 32 

Unsupervised clustering using a combination of LIGER and t-SNE yielded four oral microbiome 33 

"orotypes." Orotypes enriched in H₂S-producing bacteria coincided with lower mortality rates, 34 

while orotypes harboring Haemophilus or Rothia were associated with increased vulnerability. 35 

To validate our findings, we analyzed influenza mortality data from the same countries, 36 

observing similar protective trends. Our findings suggest that oral bacteria-produced H₂S may 37 

serve as a critical initial defense against SARS-CoV-2 infection.H₂S from oral bacteria may 38 

prevent infection through antiviral activity, blocking ACE2 receptors, suppressing cytokines, and 39 

boosting antioxidants. This highlights the oral microbiome's role in COVID-19 outcomes and 40 

suggests new preventive and therapeutic strategies. 41 

Keywords : COVID-19, Oral bacteria, COVID-19 mortality rates, Treponema, 42 

H2S  43 
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Abbreviation 44 

COVID-19: Coronavirus disease 2019  45 

SARS-CoV-2: Severe Acute Respiratory Syndrome Coronavirus 2  46 

GLM: Generalized linear model 47 

LIGER: Linked Inference of Genomic Experimental Relationships  48 

H2S: Hydrogen sulfide 49 

t-SNE: t-distributed Stochastic Neighbor Embedding  50 

NCBI: National Center for Biotechnology Information  51 

RNA: Ribonucleic Acid  52 

DNA: Deoxyribonucleic acid  53 

RSV: Respiratory syncytial virus 54 

Nrf2: nuclear factor erythroid 2–related factor 2  55 
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Introduction  56 

Why did COVID-19 hit some countries harder than others?[1]. This remains one of the 57 

pandemic's most perplexing questions—a critical piece of the puzzle for future pandemic 58 

preparedness [1] [2]. Conventional risk factors like age and comorbidities like diabetes and 59 

obesity fail to fully explain this aspect [2] [3]. Emerging research implicates the human 60 

microbiome as a potential arbiter of COVID-19 outcomes [3]. Researchers have shown that low 61 

levels of certain gut bacteria, such as Collinsella, predict high COVID-19 mortality rates. 62 

Collinsella produces ursodeoxycholate, which may prevent infection and mitigate acute 63 

respiratory distress syndrome by suppressing cytokine storm syndrome[3]. 64 

What about the oral microbiota—the second largest microbial community in the body [4], 65 

SARS-CoV-2's first contact point[5] and our frontline defense against respiratory 66 

viruses[6]?Exploring this overlooked aspect could further illuminate why some individuals 67 

succumb to the virus while others remain resilient[7]. Intrigued by this possibility, we 68 

hypothesize that dynamic interaction between the virus and specific oral microbiome may confer 69 

varying degrees of susceptibility or resilience to COVID-19 across populations. 70 

To test this hypothesis, we analyzed the relationship between oral bacterial composition in 244 71 

healthy subjects from eight countries and their respective COVID-19 mortality rates. Our 72 

findings reveal a negative correlation between four H2S-prodcing genera and COVID-19 73 

mortality, suggesting a potential protective role for this oral commensal. To validate these 74 

findings, we further analyzed influenza mortality rates in the same countries, confirming similar 75 

protective trends and strengthening the generalizability of our results to respiratory viral 76 

infections.  77 
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Materials and Methods 78 

Dataset 79 

To investigate the potential association between oral microbiota composition and COVID-19 80 

mortality rates, this study utilized publicly available healthy oral microbiome datasets from the 81 

National Center for Biotechnology Information (NCBI). The analysis encompassed data from 82 

eight countries: the United States, Australia, Brazil, Italy, Sweden, Saudi Arabia, Egypt, and 83 

Russia. These datasets were selected based on their accessibility and comprehensive coverage, 84 

corresponding to accession numbers PRJNA606501, PRJNA384402, PRJNA256234, 85 

PRJNA267483, PRJNA598825, PRJNA227796, PRJNA292800, and PRJDB5153. COVID-19 86 

mortality data, quantified as cumulative deaths per million population as of February 9, 2021, 87 

were obtained from 'https://ourworldindata.org/'. This timeframe was chosen to precede the 88 

widespread distribution of vaccines, thereby minimizing potential confounding effects of 89 

vaccination campaigns on mortality rates. To maintain the integrity and breadth of the analysis, 90 

no filtering criteria based on age or sex were applied to the datasets. This approach preserved a 91 

diverse and representative subject range, allowing for a more comprehensive examination of the 92 

potential relationship between oral microbiota and COVID-19 mortality across different 93 

populations. 94 

Taxonomic Analysis of oral microbiota 95 

To classify the oral microbiota, OmicsBox (version 3.0.29) developed by BioBam 96 

Bioinformatics, utilizing the Kraken2 tool, was employed. Kraken2 performs taxonomic 97 

classification by analyzing k-mers in DNA short reads and querying a comprehensive database 98 

of species-specific k-mer information. This approach allowed for thorough and detailed 99 
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taxonomic profiling, covering both metabarcoding (16S rRNA gene) and metagenomic 100 

sequencing reads, thus ensuring robust and accurate taxonomic identification. 101 

Generalized Linear Model (GLM) Analysis 102 

To investigate the relationship between oral microbiota composition and COVID-19 mortality, 103 

Generalized Linear Models (GLMs) were employed. The 15 most abundant genera served as 104 

predictors, with COVID-19 mortality as the outcome variable(Fig 1). Model selection was 105 

performed using Akaike Information Criterion (AIC), comparing Gaussian, Gamma, and Inverse 106 

Gaussian distributions. The optimal model (Gamma distribution) was used to identify significant 107 

associations between specific genera and mortality rates. 108 

LIGER-tSNE Analysis 109 

A combination of Linked Inference of Genomic Experimental Relationships (LIGER) and t-110 

distributed stochastic neighbor embedding (t-SNE) was employed in our analysis to explore and 111 

visualize the complex oral microbiome structures across different populations (Fig 1). This 112 

LIGER-tSNE combination was found to be a powerful tool for dimensionality reduction and 113 

clustering, allowing subtle patterns in the oral microbiome data that might have been overlooked 114 

by traditional analysis methods to be discerned. This innovative approach, originally developed 115 

for single-cell RNA sequencing data, proved highly effective in identifying distinct oral 116 

microbiome orotypes and their relationship to COVID-19 mortality rates.  117 
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Results 118 

Generalized Linear Model (GLM) Analysis 119 

16S rRNA sequencing data from 244 healthy subjects across eight countries (Table 1) were 120 

analyzed to examine the effects of oral microbiota on COVID-19 mortality rates. Relative 121 

abundance analysis at the genus level (Fig 2) revealed Streptococcus, Prevotella, Veillonella, 122 

Fusobacterium, and Haemophilus as the most prevalent genera. 123 

Using GLM, COVID-19 mortality rates were predicted with the 15 most abundant genera, with 124 

the Gamma distribution yielding the lowest AIC.  GLM results (Fig 3) highlighted a marked 125 

negative predictive value of Treponema abundance for COVID-19 mortality rates (p < 0.001). 126 

Campylobacter, Gemella, and Selenomonas also showed negative correlations, albeit less 127 

significant. 128 

Linked Inference of Genomic Experimental Relationships (LIGER) Analysis 129 

Non-negative matrix factorization via LIGER identified four distinct oral microbiome clusters, 130 

termed "orotypes" (Fig 4A). For every orotype, the mean relative abundances of the top 15 131 

genera are calculated in (S3 Table). The most abundant 5 genera in each orotype are given in 132 

Supplementary Table 1(S2 Table).. orotype distribution varied across countries in relation to 133 

COVID-19 mortality rates (Fig 4B). High mortality countries (e.g., Italy, USA) predominantly 134 

exhibited orotypes 2 and 3, while low mortality countries (e.g., Australia, Russia) showed a 135 

higher prevalence of orotype 4 (Fig 4B).Countries with intermediate mortality rates displayed a 136 

mixed distribution.Analysis of COVID-19 mortality rates across orotypes (Fig 4C) revealed a 137 

decreasing trend from orotypes 1 to 4, although not statistically significant (p = 0.203, 138 
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Jonckheere-Terpstra trend test, Fig 4D). Notably, Treponema relative abundance significantly 139 

increased from orotypes 1 to 4 (Fig 4E; p = 0.033, Jonckheere-Terpstra trend test, Fig 4F). 140 

Other Genera of Interest and Combined Analysis 141 

Analysis of Campylobacter, Gemella, and Selenomonas individually revealed no significant 142 

trends across orotypes (Figs S1a-f). However, combined analysis of Treponema, Gemella, 143 

Campylobacter, and Selenomonas demonstrated a highly significant increasing trend from 144 

orotypes 1 to 4 (p = 7.198e-05, Jonckheere-Terpstra trend test, Figs S1g-h), suggesting a 145 

potential synergistic effect of these bacteria. 146 

Validation with Influenza Mortality Data 147 

To validate these findings, influenza mortality rates in these eight countries (taken from 148 

'https://ourworldindata.org/' (2019)) were analyzed, given the similarities between COVID-19 149 

and influenza as respiratory viral illnesses. The influenza mortality chart (Fig S2) demonstrates 150 

that orotype 4 is linked to lower mortality rates in influenza, mirroring the trends observed with 151 

COVID-19. This further substantiates the potential protective role of orotype 4-associated 152 

microbial composition in respiratory viral infections.  153 
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Discussion  154 

This study uncovers a fascinating link between specific oral bacteria—Treponema, Gemella, 155 

Campylobacter, and Selenomonas—and lower COVID-19 mortality rates (Fig 3). The unifying 156 

characteristic of these bacteria is their production of hydrogen sulfide (H₂S), a molecule now 157 

implicated as a pivotal protective agent against respiratory viral infections. Our data reveal a 158 

striking pattern in oral microbial communities. Those dominated by Haemophilus (orotype 1) or 159 

Rothia (orotype2) appear to be associated with increased vulnerability to SARS-CoV-2 (S2 160 

Table). In contrast, communities enriched with H₂S-producing bacteria (orotypes 3 and 4) exhibit 161 

a protective effect. 162 

This pattern echoes recent findings by Ren et al., who observed a similar association between 163 

Gemella and Rothia abundance in the upper respiratory tract of healthy individuals and COVID-164 

19 patients, respectively. Wu et al. (2021) also reported significant microbiome alterations in 165 

COVID-19 patients, including elevated Rothia mucilaginosa levels in both oral and gut samples. 166 

Interestingly, this potential protective role of H₂S aligns with previous research on gut 167 

microbiota, where Collinsella, another H₂S-producing bacterium, was identified as a protective 168 

factor against COVID-19 [3] [8].  169 

The H₂S-producing capacity of the identified bacteria is notable. Treponema species, particularly 170 

Treponema denticola, are notable for their high H₂S production capacity due to multiple 171 

cysteine-degrading enzymes, potentially explaining their strong negative correlation with 172 

COVID-19 mortality[9] [10].Gemella species such as Gemella morbillorum, while less studied 173 

in this context, has been identified as a H₂S producer, albeit at lower rates compared to some 174 
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other oral bacteria[9]. Campylobacter species, particularly C. rectus, and Selenomonas thrive in 175 

anaerobic conditions and are known H₂S producers[9].  176 

But how exactly does H₂S exert its protective effects?Its antiviral properties, previously 177 

demonstrated against other RNA viruses including influenza and respiratory syncytial virus 178 

(RSV) infections [11] [12], likely extend to SARS-CoV-2. These include direct antiviral 179 

activity[12], modulation of viral entry via ACE2 and TMPRSS2 receptors[13], (Fig 5)  anti-180 

inflammatory effects[12], prevention of cytokine storm[14],and enhancement of antioxidant 181 

defenses through the Nrf2 pathway [15] (Fig-5).  Our findings are consistent with recent clinical 182 

observations showing higher serum H₂S levels in COVID-19 pneumonia survivors [16], 183 

reinforcing its potential as both a prognostic marker and therapeutic target. Furthermore, the 184 

validation of our results using influenza mortality data strengthens the broader implications of 185 

our findings, suggesting that the protective effect of H2S producing bacteria extends beyond 186 

COVID-19 to other respiratory viral infections.  187 

Despite our promising findings, our study has several limitations. The observational nature of 188 

this study precludes establishing causality. Reliance on existing datasets may introduce biases, 189 

and the precise mechanisms of H₂S protection warrant further investigation. Additionally, 190 

individual variations in oral hygiene and diet could not be controlled. These limitations highlight 191 

the need for longitudinal studies, controlled experiments, and clinical trials. 192 

In conclusion, our study identifies a novel association between H₂S-producing oral bacteria and 193 

reduced COVID-19 mortality, underscoring the oral microbiome's potential role in modulating 194 

respiratory viral infection outcomes. This work paves the way for innovative approaches in the 195 

fight against respiratory viral diseases, including the exploration of H₂S-based therapeutics and 196 

probiotics.   197 
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List of legend 249 

Table legend 250 

Table 1: Eight 16S rRNA-seq datasets from eight countries and the mortality rates of COVID-251 

19. 252 

Figure legend 253 

Fig.:1 The methodology for this bioinformatics pipeline  (a) Healthy oral microbiome data was 254 

obtained from the National Center for Biotechnology Information (NCBI). (b) This data was 255 

processed and analyzed using OmicsBox software. (c) The most abundant bacterial genera were 256 

identified. (d) COVID-19 mortality rate data from Our World in Data was incorporated (e) A 257 

statistical model (Generalized Linear Model) was used to analyze the relationship between the 15 258 

most abundant genera and COVID-19 mortality. (f) A specialized technique called LIGER, 259 

typically used for analyzing single-cell RNA sequencing data, was applied to classify the oral 260 

microbiota of 244 healthy individuals into four distinct groups, termed "orotypes". 261 

Fig 2: Genera level abundance of health oral metagenomic  262 

Fig 3: Plot of p-values of 15 genera in a generalized linear model (GLM) to predict the COVID-263 

19 mortality rates. 264 

Fig 4 (a) Unsupervised clustering of oral microbiota in 244 healthy subjects in ten countries by 265 

LIGER generated 4 orotypes. Each subject is plotted with t-SNE and is color-coded by its 266 

orotype.  (b) Fractions of orotypes 1 to 4 in eight countries. eight countries are sorted in 267 

descending order of the COVID-19 mortality rates per million, which are indicated in 268 

parentheses. (c) The t-SNE plot is color-coded by the COVID-19 mortality rates in eight 269 
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countries.  (d) Mean and standard error of the COVID-19 mortality rates in orotypes 1 to 4. p = 270 

0.203 by Jonckheere-Terpstra trend test.  (e) The t-SNE plot is color-coded by the relative 271 

abundance of genus Treponema. (f) Mean and standard error of the relative abundance of 272 

genus Treponema in orotypes 1 to 4. P = 0.033by Jonckheere-Terpstra trend test.   273 

Fig 5: Proposed mechanisms of oral bacteria-produced hydrogen sulfide (H₂S) in protecting 274 

against SARS-CoV-2 infection. H₂S, produced by oral bacteria including Treponema, Gemella, 275 

Campylobacter, and Selenomonas, exhibits multifaceted protective effects against SARS-CoV-2. 276 

These include: (a) Direct antiviral activity, (b) Modulation of viral entry by altering ACE2 and 277 

TMPRSS2 receptors, (c) Anti-inflammatory effects and prevention of cytokine storm, and (d) 278 

Enhancement of antioxidant defenses through the Nrf2 pathway. These mechanisms, previously 279 

observed in other RNA viral infections, likely contribute to the potential protective role of H₂S-280 

producing oral bacteria against severe COVID-19 outcomes. 281 

Tables: 282 

Table 1: Eight 16S rRNA-seq datasets from Eight countries and the mortality rates of 283 

COVID-19. 284 

 285 

Dataset City, 

Country 

Accession 

number 

Mortality 

rate per 

milliona 

The number 

of samples 

Sequencing 

1 Australia PRJDB5153 35.26 18 16S rRNA (V3-

V4) 

2 Oklahoma, 

USA 

PRJNA292800 1429.6 57 16S rRNA 

3 Trento, Italy PRJNA227796 1551.22 14 16S rRNA 
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4 Sweden PRJNA598825 1188.41 12 16S rRNA (V3-

V4) 

5 Jazan, Saudi 

arabia 

PRJNA267483 175.84 12 16S rRNA 

6 Brazil, Sao 

Paolo, 

Piracicaba 

PRJNA606501 1075.33 104 16S rRNA 

(V1-3 and V4-5) 

7 Egypt PRJNA384402 86.95 17 16S rRNA 

8 Russia, 

Moscow 

PRJNA256234 536.22 10 16S rRNA 

 286 

  287 
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Figures 288 

 289 

 290 

Fig 1: The methodology for this bioinformatics pipeline  (a) Healthy oral microbiome data was 291 

obtained from the National Center for Biotechnology Information (NCBI). (b) This data was 292 

processed and analyzed using OmicsBox software. (c) The most abundant bacterial genera were 293 

identified. (d) COVID-19 mortality rate data from Our World in Data was incorporated (e) A 294 

statistical model (Generalized Linear Model) was used to analyze the relationship between the 15 295 

most abundant genera and COVID-19 mortality. (f) A specialized technique called LIGER, 296 

typically used for analyzing single-cell RNA sequencing data, was applied to classify the oral 297 

microbiota of 244 healthy individuals into four distinct groups, termed "orotypes".  298 
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 299 

Fig 2: Genera level abundance of health oral metagenomic 300 

 301 

 302 

Fig 3: Plot of p-values of 15 genera in a generalized linear model    (GLM) to predict the 303 

COVID-19 mortality rates. 304 

 305 
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 306 

Fig 4 (a):Unsupervised clustering of oral microbiota in 244 healthy subjects in ten countries 307 

by LIGER generated 4 orotypes. Each subject is plotted with t-SNE and is color-coded by 308 

its orotype. 309 

 310 

Fig 4 (b): Fractions of orotypes 1 to 4 in eight countries. eight countries are sorted in 311 

descending order of the COVID-19 mortality rates per million, which are indicated in 312 

parentheses.  313 

 314 
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 315 

Fig 4 (c): The t-SNE plot is color-coded by the COVID-19 mortality rates in eight 316 

countries.   317 

 318 

 319 

Fig 4 (d): Mean and standard error of the COVID-19 mortality rates in orotypes 1 to 4. p = 320 

0.203 by Jonckheere-Terpstra trend test.   321 

 322 
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 323 

 324 

Fig 4 (e): The t-SNE plot is color-coded by the relative abundance of genus Treponema.  325 

 326 

 327 

Fig 4 (f): Mean and standard error of the relative abundance of genus Treponema in 328 

orotypes 1 to 4. P = 0.033by Jonckheere-Terpstra trend test.   329 

 330 

 331 
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 332 

 333 

Fig 5: Proposed mechanisms of oral bacteria-produced hydrogen sulfide (H₂S) in protecting 334 

against SARS-CoV-2 infection. H₂S, produced by oral bacteria including Treponema, Gemella, 335 

Campylobacter, and Selenomonas, exhibits multifaceted protective effects against SARS-CoV-2. 336 

These include: (a) Direct antiviral activity, (b) Modulation of viral entry by altering ACE2 and 337 

TMPRSS2 receptors, (c) Anti-inflammatory effects and prevention of cytokine storm, and (d) 338 

Enhancement of antioxidant defenses through the Nrf2 pathway. These mechanisms, previously 339 

observed in other RNA viral infections, likely contribute to the potential protective role of H₂S-340 

producing oral bacteria against severe COVID-19 outcomes.  341 

  342 
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Graphical Abstract 343 

 344 

  345 
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Supplementary Information 346 

 347 

 348 

Fig S1a: The t-SNE plot is color-coded by the relative abundance of 349 

genus Campylobacter.  350 

 351 

Fig S1b:  Mean and standard error of the relative abundance of 352 

genus Campylobacter in orotypes 1 to 4. P = 0.236 by Jonckheere-Terpstra 353 

trend test.   354 

 355 
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 356 

 357 

Fig S1c: The t-SNE plot is color-coded by the relative abundance of 358 

genus Gemella.  359 

 360 

 361 

Fig S1d: Mean and standard error of the relative abundance of genus Gemella 362 

in orotypes 1 to 4. P = 0.652 by Jonckheere-Terpstra trend test.  363 

 364 
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 365 

Fig S1e: The t-SNE plot is color-coded by the relative abundance of 366 

genus Selenomonas.  367 

 368 

 369 

Fig S1f: Mean and standard error of the relative abundance of 370 

genus Selenomona in orotypes 1 to 4. P = 0.859 by Jonckheere-Terpstra trend 371 

test.  372 

 373 
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 374 

Fig S1g: The t-SNE plot is color-coded by the relative combine abundance of 375 

genus Treponema, Gemella, Campylobacter, Selenomonas.  376 

 377 

 378 

Fig S1h: Mean and standard error of the relative combine abundance of 379 

genus Treponema, Gemella, Campylobacter, Selenomonas in orotypes 1 to 4.  p 380 

= 7.198e-05 by Jonckheere-Terpstra trend test.   381 

 382 

 383 

 384 
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 385 

 386 

Fig S2: Mean and standard error of the Influenza mortality rates in orotypes 387 

1 to 4. p = 4e - 04 by Jonckheere-Terpstra trend test.  388 

  389 
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Supplementary Table 1. Generalized linear model (GLM) to predict the COVID-19 390 

mortality rates with 15 oral bacteria  391 

 392 

Genera  P-value  Relative abundance 

(%)a  

Streptococcus  0.401 21.34 

Fusobacterium  0.354 11.18 

Veillonella  0.45 8.76 

Prevotella  0.439 11.84 

Hemophilus  0.644 3.86 

Rothia<high G+CGram-positivebacteria>  0.977 5.09 

Actinomyces  0.536 3.67 

Leptotrichia  0.829 2.97 

Prophyromonas  0.474 3.86 

Neisseria  0.742 3.26 

Corynebacterium  0.577 2.18 

Gemella  0.138 2.08 

Campylobacter  0.136 1.49 

Selenomonas  0.14 1.63 

Treponema  0.125 2.35 

aAverage relative abundance in 244 healthy subjects in eight countries 393 

 394 
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Supplementary Table 2: Most abundance genera in each orotype   396 

 397 

orotype  Top 5 Genera  

1  Streptococcus, Prevotella, Veillonella, Fusobacterium, Haemophilus  

2  
Streptococcus, Fusobacterium, Prevotella, Rothia (high G+C Gram-positive 

bacteria), Veillonella  

3  Streptococcus, Fusobacterium, Prevotella, Veillonella, Actinomyces  

4  Streptococcus, Veillonella, Prevotella, Fusobacterium, Megasphaera  

 398 

  399 
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Supplementary Table 3. The mean relative abundances of 15 most prevalent 400 

genera for each orotype  401 

 402 

Genus  Orotype 1  Orotype 2  Orotype 3  Orotype 4  

Streptococcus  18.00%  35.33%  42.79%  5.60%  

Fusobacterium  13.91%  5.12%  4.22%  46.79%  

Veillonella  6.99%  19.50%  7.53%  5.76%  

Prevotella  9.86%  26.60%  10.87%  6.69%  

Haemophilus  4.51%  3.25%  10.03%  3.29%  

Rothia <high G+C Gram-positive 

bacteria>  

6.61%  4.24%  10.60%  2.77%  

Actinomyces  10.66%  2.07%  1.58%  3.56%  

Leptotrichia  5.64%  3.25%  2.56%  2.69%  

Porphyromonas  5.04%  3.13%  5.37%  8.68%  

Neisseria  5.00%  2.66%  7.17%  2.60%  

Corynebacterium  5.43%  1.53%  1.38%  1.97%  

Gemella  2.69%  2.14%  4.58%  1.59%  

Campylobacter  2.14%  1.12%  0.98%  4.64%  

Selenomonas  2.42%  1.90%  1.17%  3.03%  

Treponema  3.12%  1.86%  2.24%  6.78%  

 403 

  404 
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List of legend 405 

Supplementary information of legend 406 

Fig S1: (a) The t-SNE plot is color-coded by the relative abundance of 407 

genus Campylobacter.  (b) Mean and standard error of the relative abundance of 408 

genus Campylobacter in orotypes 1 to 4. P = 0.236 by Jonckheere-Terpstra trend 409 

test. (c)The t-SNE plot is color-coded by the relative abundance of genus Gemella. 410 

(d)Mean and standard error of the relative abundance of genus Gemella in orotypes 411 

1 to 4. P = 0.652 by Jonckheere-Terpstra trend test. (e)The t-SNE plot is color-412 

coded by the relative abundance of genus Selenomonas. (f)Mean and standard error 413 

of the relative abundance of genus Selenomona in orotypes 1 to 4. P = 0.859 by 414 

Jonckheere-Terpstra trend test. (g)The t-SNE plot is color-coded by the relative 415 

combine abundance of genus Treponema, Gemella, Campylobacter, Selenomonas. 416 

(h)Mean and standard error of the relative combine abundance of 417 

genus Treponema, Gemella, Campylobacter, Selenomonas in orotypes 1 to 4.  p = 418 

7.198e-05 by Jonckheere-Terpstra trend test.  419 

Fig S2: Mean and standard error of the Influenza mortality rates in orotypes 1 to 420 

4. p = 4e - 04 by Jonckheere-Terpstra trend test 421 

Supplementary Table 1: Generalized linear model (GLM) to predict the COVID-422 

19 mortality rates with 15 oral bacteria 423 
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Supplementary Table 2: Most abundance genera in each orotype   424 

Supplementary Table 3: The mean relative abundances of 15 most prevalent 425 

genera for each orotype  426 
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Table 1: Eight 16S rRNA-seq datasets fr
of COVID-19.

Dataset City, Country Accession number

1 Australia PRJDB5153

2 Oklahoma,
USA

PRJNA292800

3 Trento, Italy PRJNA227796

4 Sweden PRJNA598825

5 Jazan, Saudi arabia PRJNA267483

6 Brazil, Sao Paolo, 
Piracicaba

PRJNA606501

7 Egypt PRJNA384402

8 Russia,

Moscow

PRJNA256234

from Eight countries and the mortality rates

Mortality

rate per milliona 

The number of 
samples

Sequencing

35.26 18 16S rRNA (V3-V4)

1429.6 57 16S rRNA

1551.22 14 16S rRNA

1188.41 12 16S rRNA (V3-V4)

175.84 12 16S rRNA

1075.33 104 16S rRNA

(V1-3 and V4-5)

86.95 17 16S rRNA

536.22 10 16S rRNA
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Fig 3: Plot of p-values of 15 genera in
predict the COVID-19 mortality rates

in a generalized linear model (GLM) to
tes.
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Fig 4 (a):Unsupervised clustering of oral
countries by LIGER generated 4 orotypes. E
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Fig 4 (b): Fractions of orotypes
countries are sorted in descending
rates per million, which are indica

es 1 to 4 in eight countries. eight
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Fig 4 (c): The t-SNE plot is color-coded by thethe COVID-19 mortality rates in Eight countries.
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Fig 4 (d): Mean and standard error of the
= 0.203 by Jonckheere-Terpstra trend test

COVID-19 mortality rates in orotypes 1 to 4. p
st.
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Fig 4 (e): The t-SNE plot is color-coded by the relative abundance of genus Treponema.
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Fig 4 (f): Mean and standard error of the
orotypes 1 to 4. P = 0.033by Jonckheere-Terp

relative abundance of genus Treponema in
erpstra trend test.
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Fig 5: Proposed mechanisms of oral ba
hydrogen sulfide (H₂S) in protecting agains
infection.H₂S, produced by oral bacteria includ
Gemella, Campylobacter, and Selenom
multifaceted protective effects against SARS
include: (a) Direct antiviral activity, (b) Mod
entry by altering ACE2 and TMPRSS2 rece
inflammatory effects and prevention of cytokin
Enhancement of antioxidant defenses thro
pathway. These mechanisms, previously ob
RNA viral infections, likely contribute to
protective role of H₂S-producing oral bacteri
COVID-19 outcomes.  . 
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List of le

thodology for this bioinformatics pipeline  (a) Healthy o
 Information (NCBI). (b) This data was processed and an
a were identified. (d) COVID-19 mortality rate data from
inear Model) was used to analyze the relationship betwe
hnique called LIGER, typically used for analyzing singl
244 healthy individuals into four distinct groups, termed

 16S rRNA-seq datasets from Eight countries and the mo

level abundance of health oral metagenomic

values of 15 genera in a generalized linear model (GLM

ervised clustering of oral microbiota in 244 healthy sub
ed with t-SNE and is color-coded by its orotype.  (b) Fra
nding order of the COVID-19 mortality rates per million
OVID-19 mortality rates in Eight countries.  (d) Mean a
by Jonckheere-Terpstra trend test. (e) The t-SNE plot i

tandard error of the relative abundance of genus Trepone

f legend

 oral microbiome data was obtained from the National C
 analyzed using OmicsBox software. (c) The most abun

rom Our World in Data was incorporated (e) A statistical
tween the 15 most abundant genera and COVID-19 mort
gle-cell RNA sequencing data, was applied to classify th
ed "orotypes".

 mortality rates of COVID-19.

LM) to predict the COVID-19 mortality rates.

ubjects in ten countries by LIGER generated 4 orotypes.
Fractions of orotypes 1 to 4 in eight countries. eight coun
lion, which are indicated in parentheses. (c) The t-SNE p
n and standard error of the COVID-19 mortality rates in
t is color-coded by the relative abundance of genus Trep

onema in orotypes 1 to 4. P = 0.033by Jonckheere-Terps
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sed mechanisms of oral bacteria-produced hydrogen su

oral bacteria including Treponema, Gemella, Campy

nst SARS-CoV-2. These include: (a) Direct antiviral ac

receptors, (c) Anti-inflammatory effects and preventio

ough the Nrf2 pathway. These mechanisms, previously

protective role of H₂S-producing oral bacteria against s

sulfide (H₂S) in protecting against SARS-CoV-2 infecti

pylobacter, and Selenomonas, exhibits multifaceted pr

activity, (b) Modulation of viral entry by altering AC

tion of cytokine storm, and (d) Enhancement of anti

sly observed in other RNA viral infections, likely contr

severe COVID-19 outcomes.
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