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Abstract

Understanding how risk factors interact to jointly influence disease risk can provide insights
into disease development and improve risk prediction. We introduce survivalFM, a machine
learning extension to the widely used Cox proportional hazards model that incorporates es-
timation of all potential pairwise interaction effects on time-to-event outcomes. The method
relies on learning a low-rank factorized approximation of the interaction effects, hence over-
coming the computational and statistical limitations of fitting these terms in models involving
many predictor variables. The resulting model is fully interpretable, providing access to the
estimates of both individual effects and the approximated interactions. Comprehensive evalu-
ation of survivalFM using the UK Biobank dataset across ten disease examples and a variety
of clinical risk factors and omics data modalities shows improved discrimination and reclas-
sification performance (65% and 97.5% of the scenarios tested, respectively). Considering
a clinical scenario of cardiovascular risk prediction using predictors from the established
QRISK3 model, we further show that the comprehensive interaction modelling adds predic-
tive value beyond the individual and age interaction effects currently included. These results
demonstrate that comprehensive modelling of interactions can facilitate advanced insights
into disease development and improve risk predictions.

Introduction

Risk prediction models are needed in modern preventive medicine to identify individuals at high risk of
disease before clinical symptoms manifest. The ability to predict disease risk is particularly important
in managing complex diseases, such as cardiovascular disease, chronic kidney disease, and diabetes,
where early intervention can substantially alter patient outcomes. However, accurately predicting dis-
ease risk is challenging due to the inherent complexity of most human diseases, which arise from the
interplay of genetic, environmental, and lifestyle factors. Traditional methods in survival analysis,
such as the widely used Cox proportional hazards regression [1], assume linear effects of predictor
variables on time-to-event outcomes. This assumption may lead to oversimplified models that over-
look the complex interplay among predictors, potentially missing important biological insights and
limiting risk prediction accuracy.
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The accuracy of time-to-event prediction models can be improved by incorporating interaction
terms, a well-established concept in epidemiology to assess the joint effects of predictors on outcomes
[2, 3]. For instance, interaction terms have been shown to be relevant in cardiovascular disease (CVD)
risk prediction, where the effects of other risk factors can vary depending on age [4, 5, 6, 7]. However,
incorporating these terms in multivariable prediction models typically requires prior hypotheses about
which interactions to include. As the number of potential interaction terms increases quadratically
with the number of predictor variables in consideration, inclusion of all potential interactions quickly
becomes impractical without targeted hypotheses to guide the selection. Therefore, prior multivari-
able prediction models have typically been constrained to a restricted set of interaction terms known to
alter outcome associations, such as those involving age. This limits the discovery of new, potentially
relevant interactions. Another commonly employed strategy is to perform statistical testing of indi-
vidual interaction terms, but this can miss interactions that only become relevant for prediction in the
presence of other variables. This challenge becomes particularly pronounced with modern biomedical
datasets, which can contain hundreds of potential predictors. While machine learning survival analy-
sis extensions like random survival forests [8] and deep survival models [9, 10] can capture complex
non-linearities and interactions in the underlying data, they often compromise interpretability, which
is crucial when the goal is to inform clinical decision-making or to obtain insights into the risk factors
underlying disease development.

To enhance possibilities to understand and model the joint effects of risk factors on time-to-event
disease outcomes, we here present survivalFM, a methodological extension to the Cox proportional
hazards model that incorporates estimation of all potential pairwise interaction effects among predictor
variables. The method is based on an efficient strategy of learning the interaction effects using a
low-rank factorized approximation, a concept taken from factorization machines (FMs) [11] and here
applied to survival analysis. survivalFM combines the factorization of the interaction effects with an
efficient quasi-Newton optimization algorithm, thereby overcoming the computational and statistical
challenges of fitting comprehensive interaction effects in time-to-event prediction models involving
many variables. The resulting model is fully interpretable, providing access to the estimates of both
individual effects and the approximated interactions. We demonstrate the performance of survivalFM
across various data modalities and disease outcomes using data from the UK Biobank. We further
highlight an application in a clinical cardiovascular risk prediction scenario and show that survivalFM
can learn predictive interaction effects which improve identification of high-risk individuals. While
we highlight applications in disease risk prediction, the method is generally applicable to modelling
any type of time-to-event outcomes.

Results

Overview of survivalFM

Figure 1 presents an overview of survivalFM. We developed survivalFM to estimate all potential
pairwise interaction effects among input variables for right-censored survival data, such as time to
disease onset. It is based on the widely used proportional hazards model [1] which relates the time
until an event occurs to a set of predictor variables through a hazard function of the form:

h(t|x) = h0(t) exp(f(x)) (1)

where h(t|x) represents the hazard for an individual at time point t, with the baseline hazard
function h0(t) describing the time-varying hazard and the partial hazard exp(f(x)) quantifying the
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impact of the predictor variables x on the baseline hazard. In the standard formulation of the Cox
proportional hazards model, the partial hazard exp(f(x)) is assumed to be parametrized by a linear
combination of the predictor variables f(x) = �>x, with � giving the weights for the individual
variables.

In many applications, understanding how variables may interact to jointly impact the hazard rate
can provide additional value beyond their independent linear effects. However, directly fitting all
potential pairwise interaction terms in a multivariable prediction model quickly becomes challenging
due to the quadratic increase in the number of interaction terms as a function of the number of input
variables. Hence, we propose survivalFM, an extension which adds an approximation of all pairwise
interaction effects using a factorized parametrization approach (Figure 1a-b):

f(x) = �>x+
X

1i 6=jd

�̃i,jxixj = �>x+
X

1i 6=jd

hpi,pjixixj (2)

where h·, ·i denotes the inner product and d denotes the number of predictor variables. The first
part contains the linear effects of all predictor variables in the same way as in the standard formulation
of the Cox proportional hazards model. The second part contains all pairwise interaction effects
between the predictor variables xi and xj . However, instead of directly estimating the interaction
effects �i,j , the factorized parametrization approximates the effects using an inner product between
two low-rank latent vectors �̃i,j = hpi,pji. The parameter vectors pi 2 Rk and pj 2 Rk are the
row vectors of a low-rank parameter matrix P 2 Rd⇥k (Figure 1a). Hence, this results in much
fewer parameters to estimate, as the rank of the factorization is typically much lower than the total
number of predictor variables (k ⌧ d). With this approach, we avoid the statistical and computational
problems that would be encountered with direct estimation of all interactions terms in the presence
of many predictor variables, while still maintaining interpretability. The idea of using factorized
parametrization strategy originates from factorization machines (FMs) [11], originally proposed for
regression and classification tasks in the context of recommender systems. For more details of the
model and the fitting procedure, see Methods.

Study population, disease outcomes and data modalities

To evaluate whether survivalFM could improve risk prediction models and provide new insights on the
joint effects of risk factors on disease onset, we performed analyses using data from the UK Biobank.
This cohort comprises a total of approximately 500,000 participants from the UK, enrolled in 21 re-
cruitment centers across the country. The UK Biobank is renowned for its comprehensive phenotyping
and molecular profiling, including routine blood biomarkers and advanced ’omics measurements such
as genomics and metabolomics. Baseline characteristics of the study population and a summary of the
datasets studied here are summarized in Supplementary Table 1. As disease outcomes, we considered
the 10-year incidence of ten example diseases, selected to comprise common diseases and diseases
which can benefit from intervention if identified early (Supplementary Tables 2 and 3), excluding
participants with a prior record of the disease at baseline.

To assess the performance across different data modalities, we considered four different prediction
scenarios that incorporate an array of predictors ranging from traditional clinical predictors to more
advanced omics-based data sources (Figure 1c, Methods). In the first scenario, we started from a
set of standard cardiovascular risk factors included in the ASCVD risk estimator plus [12], widely
recognized in various primary prevention scores. Since these factors have been shown to be predictive
beyond cardiovascular diseases [13, 14, 15], we included them as standard risk factors across all
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analyzed disease examples. We then added sets of more complex data layers to these standard risk
factors (Figure 1c). In the second scenario, we added a comprehensive set of hematologic and clinical
biochemistry measures to the standard risk factors; in the third scenario, we incorporated a wide
range of metabolomic biomarkers, recently shown promise as an assay to inform on multidisease risk
[13, 16]; and finally, we included a set of polygenic risk scores for both disease and quantitative traits
[17], which have gained interest for their potential to enhance risk prediction models by providing
complementary information to traditional risk factors [18, 19, 20].

survivalFM improves risk prediction across various diseases and data modalities

The practical utility of any risk prediction model is determined by its ability to stratify risk and iden-
tify high-risk individuals. We evaluated the ability of survivalFM to predict future disease risk and
benefit from the comprehensive interaction terms by comparing its performance to standard linear
Cox proportional hazards regression (Figure 1b), employing L2 (Ridge) regularization in both meth-
ods to control model complexity and prevent overfitting (Methods). The performance of the models
was evaluated in 10-fold cross-validation, using 20% validation set within each cross-validation cycle
to optimize regularization parameters. Analyses were consistently applied across the same sets of
predictor variables and fixed cross-validation folds.

By modelling the comprehensive interactions present in the underlying data, survivalFM improved
the discriminatory performance across a majority of the studied examples as measured by concordance
index (C-index; Figure 2). Specifically, statistically significant improvements were noted in 26 of
the 40 evaluated scenarios (65%), with a mean improvement in concordance index (�C-index) of
0.005. Minor improvements were noted in another 12 out of 40 (30%) of scenarios (mean �C-index
0.001). Importantly, none of the studied examples demonstrated a statistically significant decrease in
performance with survivalFM, highlighting the robustness of survivalFM. Absolute values for the C-
indices are detailed in Supplementary Table 4, demonstrating good discriminative performance across
all models with C-indices in the range 0.72–0.93. Moreover, all models were well calibrated across
the UK Biobank cohort (Supplementary Figures 2-5).

Given that even modest improvements in the C-index at the population level can substantially
affect individual risk predictions, we also evaluated the model performance using continuous net re-
classification improvement (NRI), which has been shown to provide complementary information on
risk model performance [21, 22]. The continuous NRI quantifies the extent to which the model appro-
priately increases the predicted probabilities for subjects who experience events and decreases them
for those who do not. This metric is particularly useful in the absence of established clinical thresholds
for high-risk groups, as it quantifies the improvement in risk prediction without relying on predefined
risk cutoffs and thus facilitates comparisons across different diseases.

In terms of the continuous NRI, survivalFM yielded significantly improved resclassification in
39 out of 40 (97.5%) of the studied examples, with a mean continuous NRI of 37%. Therefore,
despite the relatively modest improvement magnitudes in the C-indices, the continuous NRI indicated
notable positive changes in individual risk predictions. For instance, type 2 diabetes modelled using
clinical biochemistry and blood counts data demonstrated the highest continuous net reclassification
improvement of 94% (95% CI 92%-96%), corresponding to 33% (95% CI 32%-35%) of events and
61% (95% CI 60%-61%) of non-events having improved risk estimates (Supplementary Figure 6).
Similarly, chronic liver disease models demonstrated notable improvements across all data modalities,
with continuous net reclassification improvements ranging between 17%-88%.

These findings suggest that the interaction terms carry additional predictive information across
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various disease and data modalities and survivalFM can model this residual contribution. While the
extent of improvement varied depending on the specific disease and dataset under study, improvements
were consistently observed across multiple disease areas and data types.

Disease-specific interaction profiles

A key advantage of survivalFM is that despite introducing a more complex layer of non-linearity
through the interaction terms, it still maintains interpretability and transparency of how the model
predictions are made. Analysis of the estimated interaction effects revealed that in many cases there
was a diverse interaction landscape contributing to these predictions, demonstrating that the observed
performance gains are likely to stem from the cumulative benefit of many small interaction effects
rather than a few prominent ones (examples shown in Supplementary Figures 7-11). Here, we will
highlight a few examples with the most notable performance gains.

Inclusion of interaction terms was particularly advantageous in liver-related conditions, such as
when predicting alcoholic liver disease or liver fibrosis and cirrhosis using standard risk factors or
metabolomic biomarkers. In both liver disease models derived using standard risk factors, among the
most prominent interactions were those among different cholesterol measures, cholesterol-lowering
medication, and sex (Supplementary Figures 7-8). These results suggest that the joint effects of these
risk factors further explain the risk of chronic liver disease outcomes beyond their additive linear
effects. The model for alcoholic liver disease also highlighted interactions with white ethnic back-
ground, suggesting variation in risk factor profile by ethnicity. Additionally, smoking status was
highly weighted both individually and in the interactions, aligning with the earlier research suggesting
that smoking may exacerbate the influence of the other risk factors in the development chronic liver
diseases [23].

In the case of liver disease models derived using metabolomics biomarkers, both alcoholic liver
disease and liver fibrosis and cirrhosis models weighted highly interactions across various amino acids
along with their individual effects (Supplementary Figures 9-10). These observations align with pre-
viously reported changes in amino acid metabolism related to chronic liver diseases [24, 25], with
these results suggesting that the associations of amino acids with the chronic liver disease outcomes
are also characterised by complex joint effects. Furthermore, both models emphasized a strong inter-
action between acetate and glutamine, with acetate having a notably pronounced interaction profile
in the model for alcoholic liver disease. Given the known roles of acetate and glutamine in alcohol
metabolism and lipid accumulation in the liver [26, 27], these findings indicate that the joint presence
of high levels of both these metabolites indicates an even higher risk of chronic liver diseases.

A contrasting example was type 2 diabetes modelled using clinical biochemistry and blood counts
data, which obtained the highest observed continuous NRI. Unlike the other examples, analysis of the
model coefficients revealed that the model weights were predominantly concentrated around glycated
hemoglobin (HbA1c) and its interactions across the other variables (Supplementary Figure 11). The
highest interaction weight was attributed to the interaction between HbA1c and glucose, which was
negatively weighted despite their positive individual effects. This likely reflects the fact that the si-
multaneous elevation of both HbA1c and glucose does not increase risk additively but rather relates to
them being correlated measures of blood glucose regulation and overall glycemic control. Addition-
ally, the model highlighted positively weighted interactions of HbA1c with age, white ethnicity, and
urate levels, indicating these factors together might amplify the risk. In contrast, interactions between
HbA1c and reticulocyte count and body mass index were negatively weighted.
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survivalFM benefits from large training data sizes

To understand the impact of training data size on model performance and the ability of survivalFM
to leverage interaction terms, we conducted analyses with models trained on varying-sized subsets of
the training data. Throughout these analyses, the test and validation sets were held fixed, allowing
us to analyze how changes only in the number of training individuals influence model performance.
Figure 3 shows the discriminatory performance of survivalFM as a function of the number of training
individuals for the input dataset involving standard risk factors (results for the other predictor sets
are shown in Supplementary Figures 12-14). These results demonstrate a clear dependency on large
sample sizes to uncover predictive interaction terms, with survivalFM generally requiring at least
50,000 individuals in training to outperform standard Cox regression. The discriminatory performance
of survivalFM shows a positive trend and increasing gap to standard Cox regression with increasing
sample sizes, although the gains often begin to plateau at the upper end of the sample size range.

survivalFM improves prediction performance in a clinical cardiovascular risk predic-

tion scenario

To explore whether comprehensive interaction modeling via survivalFM could also refine well-established
clinical risk prediction models, we conducted analyses in a clinical CVD risk prediction setting using
predictors from the QRISK3 model [5]. QRISK models are Cox proportional hazard models used for
predicting the patient’s 10-year risk of CVD, recommended by the healthcare guidelines in the UK.
The latest version, QRISK3 from 2017 [5], incorporates a variety of risk factors and comorbidities,
along with a set of their interaction terms with age.

We aimed to determine if comprehensive modelling of the interaction terms among the QRISK3
risk factors using survivalFM could improve the model’s ability to predict cardiovascular risk. The
endpoint was defined as 10-year incidence of composite CVD, including coronary heart disease, is-
chemic stroke, and transient ischemic attack, and including both fatal and non-fatal events (Supple-
mentary Table 5, Methods). Following the exclusion criteria from the QRISK3 derivation study, we
excluded participants with prior CVD diagnoses and those on a cholesterol-lowering medication at the
study entry. The baseline characteristics of the study population in this clinical prediction scenario are
detailed in Supplementary Table 6.

To ensure a fair comparison of the models, we retrained the QRISK3 model in the UK Biobank
considering the same set of risk factors (Methods). As prior research has shown QRISK3 to sys-
tematically overestimate CVD risk in the UK Biobank [28], retraining the model ensures an accurate
calibration for this cohort. We evaluated three models of increasing complexity: 1) a standard Cox
regression model with linear terms only, 2) a Cox regression model incorporating linear terms and age
interaction terms from the QRISK3 model, and 3) a survivalFM model including linear terms and all
potential factorized pairwise interaction terms.

In terms of discrimination performance measured by C-index, survivalFM showed statistically
significant improvements over the compared models (Figure 4a, Supplementary Table 7). Specifically,
it improved the discrimination performance by 0.0018 (95% CI 0.0013-0.0023) over the standard Cox
model with linear terms only, and by 0.0014 (95% CI 0.0010-0.0019) over the Cox model including
the also the current age interaction terms from QRISK3. Notably, the inclusion of age interaction terms
from QRISK3 improved the discrimination performance by 0.0004 (95% CI 0.0000-0.0008) over the
model with linear terms only. Hence, modelling the comprehensive interactions using survivalFM
more than four times improved the discrimination performance gains compared to only incorporating
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the currently included age interactions.
To further assess how well the models reclassified individuals into appropriate risk categories, we

computed categorical net reclassification improvements (NRI) at the guideline recommended 10% ab-
solute risk threshold [29]. Incorporating the currently included age interaction terms from QRISK3
resulted in an overall NRI of 0.66% (95% CI 0.40%-0.93%) compared to the model with linear terms
only (Figure 4b). The results for survivalFM showed a greater overall NRI of 1.47% (95% CI 1.12%-
1.82%), again demonstrating further gains beyond the currently included age interaction terms. sur-
vivalFM accurately reclassified 3.18% of individuals who experienced an event into the high-risk
category, while it inappropriately reclassified a smaller portion of 1.71% of non-events as high-risk
(Supplementary Table 7). These improvements are also visible in the reclassification plots (Figure 4c)
showing how the individual predictions change with the inclusion of new model terms. All models
were well calibrated (Supplementary Figure 15a) and exhibited broadly similar distributions across
the risk spectrum (Supplementary Figure 15b).

Analysis of the model coefficients from survivalFM revealed a broad array of interactions con-
tributing to the CVD predictions. The ratio of total cholesterol to HDL cholesterol demonstrated the
most pronounced interaction profile among all predictor variables (Figure 5). This suggests that the
effect of the cholesterol ratio on CVD risk is influenced by the presence of other risk factors. For
example, the interaction weight for the cholesterol ratio with prevalent atrial fibrillation was negative,
despite both factors having positive individual weights. This suggests that these variables capture
partly overlapping aspects of cardiovascular risk. Atrial fibrillation is often associated with a broader
cardiovascular risk [30], which could already be reflected in the elevated cholesterol ratio. This may
thus imply that when both risk factors are present, they do not independently add to the risk. Compar-
ing the estimated effects for the model terms overlapping between survivalFM and the standard Cox
regression model with linear and age interaction terms from QRISK3, the shared terms exhibited very
similar weights, with correlation of 0.97 between the estimated effects by the two methods (Supple-
mentary Figure 16). This shows that despite the introduction of complex interactions, the fundamental
risk associations remain broadly consistent.

Discussion

Accurate prediction of disease onset and prognosis is essential to realize preventative medicine. In this
study, we have introduced survivalFM, a new machine learning method for multivariable time-to-event
prediction. The method extends the widely used Cox proportional hazards regression by estimating
all potential pairwise interaction effects among predictor variables on time-to-event outcomes, such
as disease onset. We have shown that estimating these comprehensive interaction effects improves
risk prediction and refines individual risk predictions across a range of common diseases, providing
more nuanced insights into the interplay among factors underlying disease risk. Since survivalFM
generalizes to other use cases, we expect this method to find applications in precision medicine and
benefit survival modelling in large studies involving many predictors.

Our results from UK Biobank revealed that survivalFM can identify predictive interaction terms,
which are missed when using standard Cox proportional hazards regression. This ability to uncover
predictive interaction terms extended across various disease outcomes and data modalities. Impor-
tantly, survivalFM consistently matched or surpassed the performance of the standard Cox regression
model. This robustness is by design, as survivalFM separates linear effects from interaction effects
and, by appropriate tuning of model hyperparametrs, can assign negligible weight to non-contributory
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interaction effects while emphasizing predictive ones. These findings highlight the utility of sur-
vivalFM in refining risk prediction models across various prediction scenarios, including models de-
rived from traditional clinical predictors and modern omics data types.

Our results further showed that survivalFM can add predictive value in practical clinical risk
prediction scenarios, such as in CVD risk prediction using predictors from the established QRISK3
model. CVD remains as the leading cause of mortality worldwide [31], making accurate risk strat-
ification critical for healthcare providers to allocate preventive measures effectively. Applying sur-
vivalFM to QRISK3 risk factors improved both discrimination and reclassification at the clinically
recommended 10% risk threshold, more than doubling the performance gains obtained from the cur-
rent model’s age-related interaction terms alone. For context, while a recent study [18] reported a
1.3% net reclassification improvement by adding a polygenic risk score to a CVD prediction model
in a similar scenario involving QRISK3 risk factors, survivalFM achieved a comparable improvement
by optimizing the use existing clinical variables.

A key strength of survivalFM is that despite introducing non-linearity through the comprehensive
interaction terms, it maintains interpretability by providing the estimated effects for both the individ-
ual terms and the approximated interactions. This is unlike many other advanced machine learning
techniques, which often lack transparency. Another advantage of survivalFM is a straightforward
training process, which only involves optimizing the regularization parameters and setting the rank
for factorizing the interaction parameters. We anticipate the accompanying R package will facilitate
rapid adoption of the method in other prediction studies.

Interpretation of the trained models suggested that in many cases numerous small interaction ef-
fects collectively enhanced the prediction accuracy, highlighting the importance of modeling the entire
interaction landscape. However, we also showed that capturing these interaction effects generally re-
quires a large sample size. This can limit the method’s applicability in smaller cohorts and settings
with lower sample sizes. Therefore, future studies in adequately powered cohorts are needed to assess
the consistency of the identified interactions and gains in prediction accuracy across diverse popula-
tions. Whilst large sample size is needed, many biobank initiatives are emerging with clinical and
omics data at scale. Our results indicate such initiatives could be used as a base for discovering and
replicating comprehensive risk factor interactions that are missed by conventional statistical methods.

The generalizable nature of survivalFM makes it applicable also to other data modalities than those
highlighted in this paper. For instance, comprehensive modelling of interactions across omics data
modalities could provide valuable insights into the molecular interplay behind disease risk. Another
use case could be studies of protein interaction patterns in relation to disease onset. Recent studies
in UK Biobank have demonstrated the strong promise proteomics data in predicting various diseases
[32, 33, 34]. Given that proteomics data in UK Biobank comprises around 3 000 measured proteins,
the number of potential interactions is in millions. While the current sample size of 50 000 with
proteomics data in UK Biobank is at the lower limit for comprehensive interaction modelling, with a
sufficient sample size, survivalFM could be used to uncover protein interactions predictive of disease
onset and potentially provide further insights for personalized treatment strategies.

In conclusion, survivalFM provides an advancement in survival analysis, enhancing disease risk
prediction by effectively incorporating comprehensive interaction terms. Our findings provide a foun-
dation for future research and translation of risk prediction models, emphasizing the importance of
interaction effects in understanding disease development and refining risk prediction models.
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Methods

survivalFM: Extending the proportional hazards model with factorized interaction terms

Survival data

Throughout this paper, we assume right-censored survival data. This means that the outcome consists
of two variables: the event of interest (here, disease onset) and the time from the beginning of the study
period until either to the occurrence of the event, patient loss to follow-up, or end of the duration of
follow-up (i.e. right censoring). The survival dataset D consists of tuples D = {(xi, ti, �i)}N

i=1, where
xi represents a vector of predictor variables for the individual i, ti marks the observed time to the
event of interest or to the point of censoring, and �i is an indicator function which denotes whether ti
corresponds to an actual event occurrence (�i = 1) or censored observation (�i = 0).

Model formulation

We base survivalFM on the widely used proportional hazards model [1] which relates the time until
an event occurs to a set of predictor variables through a hazard function of the from:

h(t|x) = h0(t) exp(f(x)) (3)

where h0(t) is a shared baseline hazard function that varies over time, and exp(f(x)) is a partial
hazard that describes the effects of the predictor variables on the baseline hazard. In the standard
formulation of the Cox proportional hazards model, the partial hazard exp(f(x)) is assumed to be
parametrized by a linear combination of the variables of the individual, f(x) = �>x, with � rep-
resenting the coefficients or parameters of the model assigning weights to the individual variables
xi.

In this study, in addition to the individual effects of the variables, we propose to add an approxima-
tion of all pairwise interaction terms using a factorized parametrization of the coefficients, following
the approach originally introduced along with factorization machines [11] in the context of recom-
mender systems:

f(x) = �>x+
X

1i 6=jd

�̃i,jxixj = �>x+
X

1i 6=jd

hpi,pjixixj (4)

where h·, ·i denotes the inner product. The first part contains the linear effects of the predictor
variables in the same way as in the standard formulation of the Cox proportional hazards model. The
second part contains all pairwise interactions between the predictor variables xi and xj . However,
instead of directly estimating the interaction weights �i,j , the factorized parametrization approximates
the coefficients using an inner product between two latent vectors �̃i,j = hpi,pji. The low-rank factor
vectors pi 2 Rk and pj 2 Rk are collected into a parameter matrix P 2 Rd⇥k (Figure 1a). Rank k is
a hyperparameter that defines the dimensionality of the factor vectors, and usually the optimal rank of
the factorization is much lower than the number of input predictors (k ⌧ d).

Parameter estimation

Following the standard Cox proportional hazards regression, we estimate the model parameters ✓
using a partial likelihood function L(✓|D). For each individual who experiences an event at time t,
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their likelihood contribution is the ratio of the hazard of that individual to the cumulative hazard of all
other individuals at risk at the same time point, multiplied across all individuals with event occurrence.
Formally, this can be expressed as follows:

L(✓|D) =
Y

i:�i=1

h0(t) exp(f(xi))P
j2R(ti)

h0(t) exp(f(xj))
=

Y

i:�i=1

exp(f(xi))P
j2R(ti)

exp(f(xj))
(5)

where xi denotes the vector of predictor variables for an individual i, ti is the observed event time
for individual i and R(ti) denotes the risk set at time ti. Being in the risk set essentially means that
the individual has not had an event yet or that their censoring date has not passed yet. Here, f(x)
corresponds to the log-risk function from eq. (4) containing the individual effects and all pairwise
interaction terms in a factorized form. As the baseline hazard function h0(t) is assumed to be shared
across all individuals, it cancels out when calculating the partial likelihood, hence eliminating the need
for its specification, a key feature of the Cox proportional hazards model rendering it semi-parametric.

To find the optimal parameters ✓ = {�, P}, instead of maximizing the partial likelihood, one can
equivalently minimize the negative log-likelihood to obtain a more convenient formulation. Taking
the logarithm of the partial likelihood function yields a log-likelihood function of the form:

l(✓|D) = log(
Y

i:�i=1

exp(f(xi))P
j2R(ti)

exp(f(xj))
) =

X

i:�i=1

0

@f(xi) � log

0

@
X

j2R(ti)

exp(f(xj))

1

A

1

A (6)

To overcome overfitting in scenarios involving many predictor variables, one can include regular-
ization terms. Here, we consider L2 regularization (Ridge). Hence, the regularized learning problem
is given by:

argmin
�,P

� 2

n
l(✓|D) + �1||�||22 + �2||P||22 (7)

where �1 and �2 are the regularization parameters for the individual effects and the factorized in-
teractions, respectively. Using separate regularization parameters for the individual effects and the
interactions allows for individual penalization of these two parts. The log-likelihood is scaled by a
factor of 2/n for convenience and to follow the definition from the popular glmnet R package [35],
used for the standard Cox regression comparison in this study.

Gradient of the negative log-likelihood function l(✓|D) with respect to the model parameters ✓ =
{�, P} is given by:

@

@✓
l(✓) =

X

n:�n=1

@

@✓

0

@f(xi|✓) � log

0

@
X

j2R(ti)

exp(f(xj |✓))

1

A

1

A (8)

=
X

n:�n=1

0

@@f(xi|✓)
@✓

�
P

j2R(ti)
@f(xj |✓)

@✓ exp(f(xj |✓))P
j2R(ti)

exp(f(xj |✓))

1

A (9)

where

@f(x|✓)
@✓

=

(
xi if ✓ is �i

xi
Pn

j=1 pj,fxj � pi,fx2
i if ✓ is pi,f

(10)
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The sum
Pn

j=1 pj,fxj is independent of i and thus can be precomputed [11]. In addition, the
gradients of the L2 regularization terms are given by @

@✓�||✓||22 = 2�✓.
To solve (7), we use an efficient BFGS (Broyden–Fletcher–Goldfarb–Shanno) quasi-Newton al-

gorithm [36, 37, 38, 39], as implemented in the base R stats package [40]. In contrast to the standard
Newton-Raphson method, the BFGS algorithm uses an approximation of the Hessian to determine the
search direction. Due to the factorization of the interaction parameters, the number of estimated pa-
rameters remains moderate even in the presence of many predictor variables, making the computation
of the Hessian approximation feasible. Empirical evidence from our analyses indicated that alterna-
tive stochastic gradient descent (SGD)-based optimization methods, commonly employed in machine
learning, were not as effective here.

Study population

The UK Biobank is a comprehensive prospective cohort study serving as a major globally available
health research resource. It includes data from approximately half a million participants aged 37-73,
representing a sample from the general UK population. The participants were recruited through 22
assessment centers throughout England, Wales, and Scotland between 2006 and 2010. The follow-
up is still ongoing. Further details of the study protocol and data collection are available online
(https://www.ukbiobank.ac.uk/media/gnkeyh2q/study-rationale.pdf) and in the literature [41]. The
UK Biobank study was approved by the North West Multi-Centre Research Ethics Committee and
all participants provided written informed consent. In this study, the data was accessed under UK
Biobank project ID 147811.

Predictor variable sets

Standard risk factors As standard risk factors, we included predictors from the ASCVD risk es-
timator plus [42, 12], which are also commonly featured in other primary prevention tools. These
demographic and cardiovascular risk factors have been shown to be predictive of diseases beyond
CVD [13, 14, 15]. These included age, sex, ethnic background, systolic and diastolic blood pres-
sure, total, HDL, and LDL cholesterol, smoking status, prevalent type 2 diabetes (excluded from the
analyses related to type 2 diabetes), hypertension, and cholesterol-lowering treatment, further detailed
in Supplementary Table 8. This data was extracted from the data collected at the study’s initial re-
cruitment visit. Prevalent diabetes status was extracted from primary care records, hospital episode
statistics, and self-reported conditions during the initial assessment. These standard risk factors were
included in all models trained.

Clinical biochemistry and blood counts A comprehensive set of clinical biochemistry measures
were provided by UK Biobank for blood samples taken at the initial recruitment visit and have been
previously described in the literature [43, 44]. These included hematologic markers (complete blood
counts, white blood cell populations and reticulocytes) and a wide range of blood biochemistry mea-
sures covering established risk factors, diagnostic biomarkers and other chracterisation of phenotypes,
such as measures for renal and liver function. Nucleated blood cell counts were excluded from our
analyses due to over 99% of the cohort having these recorded as missing or zero. We also excluded
estradiol, rheumatoid factor and lipoprotein (a), due to a large portion of the cohort (>20%) having
these recorded as missing or under the limit of detection. The blood sample handling and storage
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protocol has been previously described in the literature [45]. A complete list of the included variables
is provided in Supplementary Table 9.

Metabolomics biomarkers The metabolomics data included 168 lipids and metabolites from a
high-throughput NMR metabolomics assay, available for the baseline blood samples from approxi-
mately 275,000 individuals in the UK Biobank. The metabolite data covers a wide range of small
molecules, such as amino acids, inflammation markers and ketones, as well as lipids, lipoproteins and
fatty acids. Percentage ratios calculated from these 168 original measures were excluded from our
analyses. Details of the metabolite data have been previously described [16]. A complete list of the
included metabolomics biomarkers is included in Supplementary Table 10.

Polygenic risk scores The polygenic risk score data included 53 polygenic risk scores (PRS) re-
leased by the UK Biobank and described in [17]. These included scores for both disease traits and
quantitative traits. In our analyses, we included only the standard PRS set obtained entirely from
external genome-wide association study (GWAS) data. As provided in the UK Biobank, the score
distributions were already centered at zero across all ancestries using a principal component-based
ancestry centering step. A complete list of the included variables is provided in Supplementary Table
11.

QRISK3 risk factors We matched the risk factors from the QRISK3 model with the corresponding
variables available in the UK Biobank. These variables were gathered during the baseline assessment
visit and included cholesterol levels measured from blood samples and prevalent disease diagnoses
obtained from linked hospital records, primary care data, and self-reported conditions. In instances
where an exact match for a QRISK3 model risk factor was unavailable in the UK Biobank, the closest
equivalent field was utilized. A complete list of the predictors and their corresponding UK Biobank
fields is provided in Supplementary Table 12.

Disease endpoint definitions

For the highlighted examples across different data modalities and 10-year incidence of ten different
disease outcomes, each of the outcomes was defined by the earliest occurrence in primary care, hospi-
tal episode statistics or death records, using the first occurrences data field from UK Biobank (category
1712). For lung cancer, we additionally included data from the cancer registry. The endpoints were
defined based on 3-character ICD-10 codes, detailed in Supplementary Table 2. Participants with a
previous diagnosis of the disease under study were excluded from the analysis of each endpoint.

The analysis of QRISK3 predictors focused on a 10-year composite CVD outcome, defined ac-
cording to the original QRISK3 derivation study [5], including coronary heart disease, ischemic stroke,
and transient ischemic attack. The ICD-10 codes used are detailed in Supplementary Table 5. We used
the earliest recorded date of cardiovascular disease on any of the three data sources (primary care, hos-
pital episode statistics and death records) as the outcome date, using the first occurrences data field
from UK Biobank (category 1712). Participants with a prior CVD diagnosis and those on a cholesterol
lowering medication at the start of the study were excluded from the analyses, following the exclusion
criteria from the original QRISK derivation study [5].
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Data partitions and preprocessing

The model training and testing was performed using a 10-fold cross-validation approach. In each
cross-validation cycle, one of the 10 folds at a time was set aside as a test set, aggregating the remaining
partitions to form a training set. From this training set, we randomly selected 20% to use as the
validation set. Within each of the 10 cross-validation loops, the individual test set remained untouched
throughout model development and the validation set was used for model hyperparameter selection.
After selecting the optimal hyperparameters, the validation and training sets were combined to train
the final model. All 10 obtained models were then evaluated on their respective test sets, and the
results from the test sets were aggregated for the final evaluation.

For data preprocessing, log-normally distributed continuous variables (concerning clinical bio-
chemistry markers, blood counts and metabolomics biomarkers) were log1p-transformed (i.e. taking
the logarithm of the given value plus one). Outliers exceeding 4 standard deviations from the mean
were winsorized. Continuous variables were scaled to zero mean and unit variance and categorical
variables were one-hot encoded. The means and standard deviations used for scaling were calculated
from the training set and subsequently applied to the validation and test sets. To maximize sample size
for the model training, missing values were imputed within the training set using k-nearest neighbors
(kNN) imputation (k = 10). To ensure no data leakage between the training, validation and test sets,
imputation was exclusively performed within the training set, sparing the validation and test sets from
the imputations. Hence, for the validation and test sets, only individuals with complete data available
were included.

Model hyperparameter tuning

In both the standard linear Cox regression and our proposed survivalFM method, we employed L2
(ridge) regularization to control model complexity and prevent overfitting. This requires tuning the
regularization parameter �. For survivalFM, we allowed differing regularization strengths for the lin-
ear (�1) and the interaction part (�2), to separately control the influence of main effects and interaction
effects. All regularization parameters were optimized by considering a series of equally spaced val-
ues on a logarithmic scale between {1, 1�4}. In addition, survivalFM requires setting the rank of the
factorization (k) for the interaction parameters, which was here set to k = 10.

Analysis of model performance

The standard linear Cox regression models used for the comparisons were trained using the glmnet
[46, 35] R package. Concordance indices (Harrel’s C-index) were computed using the R package
survival [47] and net reclassification improvements using the R package nricens [48].

Confidence intervals for all metrics were calculated with 1000 bootstrapping iterations. Statistical
inferences about differences were based on the distributions of bootstrapped performance difference
metrics by considering performances statistically significantly different when the 95% confidence
intervals did not overlap zero. All analyses were performed using R version 4.3.1 [40].

Code availability

The method developed in this study has been made available as an R-package and can be installed
from: https://github.com/aalto-ics-kepaco/survivalfm.
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Data availability

UK Biobank data are available to researchers upon application at https://www.ukbiobank.ac.uk/enable-
your-research/apply-for-access.
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Figure 1: Method overview and evaluation examples. a) A machine learning survival
analysis method, survivalFM, is developed to estimate linear and all pairwise interaction ef-
fects between predictor variables using factorized parametrization of the interaction terms
�i,j ⇡ hpi,pji. d denotes the number of predictor variables and k is a hyperparameter defin-
ing the rank of the factorization of the interaction terms. The rank of the factorization is
typically much lower than the number of predictor variables (k ⌧ d), enabling computation
of the interaction terms even in the presence of many input variables. b) The added value of
incorporating comprehensive interaction terms using survivalFM is assessed by comparing
the performance to the standard linear Cox proportional hazards regression. b) The perfor-
mance is evaluated in various disease prediction examples: i) case studies with four different
predictor sets, each applied to ten disease examples; ii) a clinical example using predictors
from the QRISK3 cardiovascular disease (CVD) risk evaluation tool.
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Figure 2: Comprehensive interaction modelling by survivalFM improves risk predic-
tion performance across various diseases and data modalities. Comparison of the pre-
dictive performance of survivalFM to standard linear Cox proportional hazards regression
in terms difference in concordance index (� C-index) and continuous net reclassification
improvement (NRI). Results are shown for ten disease examples (y-axis) across four data
modalities: a) standard risk factors (blue; included in all models), b) clinical biochemistry
and blood counts (red), c) metabolomics biomarkers (orange) and d) polygenic risk scores
(green). Horizontal error bars denote 95% confidence intervals (CIs), estimated with boot-
strapping over 1000 resamples. Sample sizes and event counts for each disease example
are provided in Supplementary Table 3.
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Figure 3: Comprehensive interaction modelling using survivalFM benefits from large
training data sizes. Impact of the size of the training dataset (x-axis) on the discrimination
performance as measured by concordance index (C-index; y-axis), comparing survivalFM
(blue) to standard Cox regression (gray). Results are shown for the input dataset consisting
of standard risk factors. Sample sizes and event counts for each example are provided in
Supplementary Table 3.
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Figure 4: Evaluation of survivalFM in a practical clinical cardiovascular risk prediction
scenario involving predictors from QRISK3. Performance of the models trained consid-
ering QRISK3 predictors for composite cardiovascular disease prediction (N = 344 292 with
complete data, 21 534 events). a) Discrimination performance evaluated using concordance
index (C-index) for three models: standard Cox regression with linear terms, standard Cox
regression with linear terms + age interaction terms from QRISK3 and survivalFM model
with linear terms + all factorized pairwise interactions. b) Categorical net reclassification im-
provements (NRI) at 10% absolute risk threshold, as compared to standard Cox model with
linear terms. Horizontal error bars denote 95% confidence intervals (CIs), estimated with
bootstrapping over 1000 resamples. c) Reclassification plots showing how the inclusion of
interaction terms in the more advanced models (y-axis, logarithmic scale) changes individ-
ual risk predictions, as compared to a standard linear Cox model (x-axis, logarithmic scale).
Black dotted vertical and horizontal lines show the 10% absolute risk threshold for the high
risk category.
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Figure 5: Estimated model coefficients from survivalFM model, trained considering
the risk factors from QRISK3 for cardiovascular disease risk prediction. The coeffi-
cients are shown as the average of the estimated coefficients across the ten models trained
during the cross-validation. Estimated coefficients for a) the linear effects � and b) the inter-
action effects given by the inner product of the factor vectors �i,j = hpi,pji. The dendrogram
shows a hierarchical clustering of the interaction profiles, using Euclidean distance as the
measure of similarity.
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