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Abstract  
 
Early identification of patients who require onward referral for social care can prevent delays 
to discharge from hospital. We introduce a machine learning (ML) model to identify potential 
social care needs at the first point of admission. The model performance is comparable to 
clinician’s predictions of discharge care needs, despite working with only a subset of the 
information available to the clinician. We find that ML and clinician perform better for 
identifying different types of care needs, highlighting the added value of a potential system 
supporting decision making. We also demonstrate the ability for ML to provide automated 
initial discharge need assessments, in the instance where initial clinical assessment is 
delayed. Finally, we demonstrate that combining clinician and machine predictions, in a 
hybrid model, provides even more accurate early predictions of onward social care 
requirements and demonstrates the potential for human-in-the-loop decision support 
systems in clinical practice.  
 
Introduction 
 
A critical task for hospital care teams is to promptly identify patients who require onward care 
support. For patients in need of onward care, whether at home or in care homes, any delays 
in assessment, choice, or access prevent discharge from hospital1. Delays to discharge lead 
to poor patient outcomes, including increased risk of hospital-acquired infection, decreased 
mobility, physical deterioration, worsening mental health, and cognitive deconditioning2-5. 
Operationally, medically fit patients occupying bedspace create substantial problems for 
patient flow; increasing pressure across ambulatory services and urgent care systems6. In 
the UK, the National Health Service (NHS) is under significant pressure, with a backlog of 
7.6 million patients waiting for treatment and a median waiting time of 15 weeks7. Bedspace 
is at critical levels, with occupancy consistently exceeding 93% through last winter in NHS 
England8. As of January 2024, 14,436 patients a day (14% of bed capacity) remained in 
hospital while being ready to leave9.  
 
Despite the majority of patients being discharged without the need for additional support 
(85% as of December 20226), the driving reason for discharge delay is the need for onward 
care following an illness or injury. For patients in UK hospitals for seven days or more, 65% 
of discharge delays are attributed to waiting for arrangement of care at home (25%), short-
term reablement (22%) and permanent care or a nursing home (18%). In NHS England, 
these onward needs are organised into four distinct ‘Discharge Pathways’ as shown in 
Figure 1. Community services face significant issues with both staffing and funding, 
ultimately leading to problems with capacity and response times1,10. Internal processes at 
hospitals also cause delay, including delay in assessment or decision-making, 
misidentification of care requirements, transfer between clinical specialities11, and lower 
discharge rates at weekends12. It is critical that care requirements can be assessed and 
identified as early as possible to avoid delay. In-line with University Hospitals Southampton 
(UHS) NHS standard operating procedure, an initial discharge assessment should be made 
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within the first 24 hours of hospital admission13.In practice, this initial planning is provided for 
less than 50% of patients. Awaiting completion of assessment was listed as the primary 
reason for discharge delay for 20% of NHS patients14, likely exacerbated by workload and 
inability to identify potential care requirements.  

 
Figure 1: Discharge pathways of increasing health and social care requirements. 
Percentages represent NHS targets for patients discharged on each pathway.  

The aim of this paper is to demonstrate the potential for machine learning to support the 
early and accurate identification of onward care needs. Early identification creates the 
possibility to release a large proportion of capacity back into the system (both care hours 
wasted when a patient is too unwell to leave the hospital, and in social worker hours collating 
details regarding the patient’s most current functional ability).  
 
First, we introduce an explainable machine learning model to predict patients' potential 
discharge care needs at the point of admission to hospital. Learning from historical best 
practice, supervised machine learning has been validated in a variety of clinical settings15 
including cancer diagnosis16, sepsis prediction17 and emergency admissions18.  The 
prediction is made based on basic, digitally available patient information (e.g., age, arrival 
mode, admission route, chief complaint, history of prior spells and prior discharge needs) at 
the first point of admission. Using machine learning explanations, we can also identify the 
most important factors to review when assessing a patient’s onward care needs.  
 
Second, we consider a human-machine hybrid model which updates the machine learning 
prediction based on the clinician’s own initial assessment of discharge requirements. 
Machine learning algorithms naturally have capacity to capture more complex trends in data 
but are intrinsically limited by the inability to capture important contextual domain knowledge 
(e.g., visual cues of patient or conversation with patient or family). A hybrid approach 
combining human and machine predictions integrates both contextual domain knowledge 
and complex data mining to best identify potential discharge requirements and reduce 
likelihood of delay. 
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Methods 
 
Data 
 

 
Figure 2: Cohort selection diagram. Darker arrows and boxes correspond to selection of the core cohort, while 
lighter arrows and boxes (grey) correspond to excluded spells (which may be used for auxiliary purposes, as 
described). 

 
We used a pseudonymised version of routinely collected data on patient admissions and 
hospital spells at UHS between 1st January 2017 and 1st January 2023. Cohort selection is 
described in Figure 2, which we briefly summarise here. Patient history is computed from 
757,421 spells (including 503,542 outside of study period). Discharge planning information is 
managed by the Application Express (APEX) system which was introduced into UHS 
working practice as of 19th August 2019 before being widely adopted at the Trust by 1st June 
2020. APEX records discharge planning information, including expected discharge date, 
predicted discharge pathway and additional notes about complex care needs. This 
accounted for 94,490 spells from which patient discharge history is computed. The main 
cohort used in modelling is 51,754 once short spells and those without planning information 
are removed. 
 
We use the NHS England Discharge to Assess pathways as a multi-class target for our 
machine learning models (as shown in Figure 1). Introduced as best practice in 2016, this 
framework ranges from reablement and rehabilitation to short-term care, with longer-term 
needs for care and support assessed at a point of optimal recovery19,20. Other than in 
exceptional circumstances, no patient should be discharged directly into a permanent care 
home for the first time without first exhausting home first as a least restrictive discharge 
venue or discharging into a temporary placement. These pathways represent an ordinal 
mapping from care acuity and are encoded 0-3 when used in feature engineering to 
summarise patient’s discharge histories. We take the last discharge pathway registered in 
APEX by the clinical team before discharge. In Figure 2, we show the actual distribution of 
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discharge pathways throughout the study period for training and validating our machine 
learning model. The overall distribution of pathways is significantly different to NHS 
guidelines as found in Figure 1 (i.e., Pathway 0: 69.4%, Pathway 1: 12.8%, Pathway 2: 
10.9%, Pathway 3: 7.0%). In the right panel of Figure 2, we note a shift in the proportion of 
spells discharged on Pathways 1 and 3 around March 2022, likely reflective of discharge 
policy change.  
 

 
Figure 3: Overall distribution of discharge pathways (left) and monthly average for each pathway (right) 
throughout the study period. Visual representations of the separation of the study data into training, patient test 
and temporal test sets is also given on the right. 

 
For our study cohort (i.e., period in which we train and validate our models), we select spells 
that occurred between 1st January 2021 and 1st January 2023, with corresponding APEX 
discharge planning information. This ensures we can collect patient history over a 4-year 
baseline and a discharge history over the prior six months. We remove short spells (i.e., less 
than two days) leaving 51,754 for modelling. Most short spells do not require discharge 
planning and hence are not the target for prediction. We note, however, that including spells 
(≤2 days) does not significantly change the performance of our model. The general 
characteristics of our study cohort stratified by discharge pathway are given in Table 1. 
 
  

Pathway 0 
 
Pathway 1 

 
Pathway 2 

 
Pathway 3 

Age Group 

18-44 6333 (17.7%) 209 (3.17%) 99 (1.76%) 181 (5.02%) 

45-64 11385 (31.9%) 929 (14.1%) 558 (9.92%) 406 (1.13%) 

65-84 15955 (44.6%) 3302 (50.0%) 3039 (54.0%) 1638 (45.4%) 
85+ 2062 (5.77%) 2162 (32.7%) 1928 (34.3%) 1383 (38.3%) 
Gender 

Female 16260 (45.3%) 3751 (56.8%) 3212 (57.1%) 2029 (56.1%) 
Male 19644 (54.7%) 2855 (43.2%) 2414 (42.9%) 1585 (43.8%) 
Elective Spell 

Yes 9059 (25.2%) 251 (3.80%) 279 (4.96%) 78 (2.16%) 

No 26848 (74.8%) 6355 (96.2%) 5347 (95.0%) 3537 (97.8%) 
Admission via ED 

Yes  17745 (49.4%) 5450 (82.5%) 4493 (79.9%) 3019 (83.5%) 

No  18162 (50.6%) 1156 (17.5%) 1133 (20.1%) 596 (16.4%) 
Has Spell History 

Yes  23433 (65.2%) 5861 (88.7%) 4454 (79.2%) 2951 (81.6%) 

No 12474 (34.7%) 745 (11.2%) 1172 (20.8%) 664 (18.3%) 
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Has Discharge History 
Yes  7863 (21.9%) 3562 (53.9%) 2183 (38.8%) 1706 (47.2%) 

No  28044 (78.1%) 3044 (46.0%) 3443 (61.1%) 1909 (52.8%) 
Table 1: Descriptive statistics of the study cohort spells stratified by final discharge pathway. Values are spell 
count (percentage). Percentage is normalised by column-wise (i.e., by discharge pathway).  

Predictions of discharge pathways are made at the very first point of admission (i.e., before 
information relating to care speciality or planned treatment is made available), with each 
patient characterised by basic patient descriptors (e.g., age, ethnicity), admission method 
(e.g., if the patient was admitted as GP referral or through ED), information collected in the 
emergency department (if applicable) and histories from prior spells and discharge plans. 
Prediction at this stage helps early identification of elevated onward care needs, ensuring 
transfer of care teams can triage earlier and have additional time to organise social care, 
which has significant lead times. 
 
All numerical variables were used directly as input to the model, whereas categorical 
variables are target-encoded21,22. We provide a more detailed description of our encoding in 
Supplementary Methods Section 1.1 and the full list of features in Supplementary Table 1. In 
Figure 3 we show the distribution of the most prevalent categories for a selection of features 
used in modelling, stratified by the final discharge pathway for the spell. The electronic 
health records used by our models are available to review by clinicians and are used in 
regular practice. Our model did not have access to any free text fields in the electronic health 
records. Analysis was performed in Python 3.9.5 using standard packages including 
numpy23, matplotlib24 and pandas25.  
 

 
Figure 4: Frequency of most common categories in the following features: Admission Method (top left), Arrival 
Transport (middle left), Attendance Source (bottom left), Previous Care Speciality – i.e., from prior spell (top right) 
and Prior Discharge Pathway (bottom right). The stacked bar shows the total frequency of the category with each 
bar stratified by final pathway. 

Ethics and data governance 
 
This study was approved by the University of Southampton’s Ethics and Research 
Governance Committee (ERGO, and approval was obtained from the Health Research 
Authority. All methods were carried out following relevant guidelines and regulations 
associated with the Health Research Authority, and NHS Digital. The research was limited to 
the use of previously collected, non-identifiable information. Informed consent was waived by 
the University of Southampton’s Ethics and Research governance committee, University of 
Southampton, University Road, Southampton, SO17 1BJ, United Kingdom and the Health 
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Research Authority, 2 Redman Place, Stratford, London, E20 1JQ, UK. Data was 
pseudonymised (and, where appropriate, linked) before being passed to the research team. 
The research team did not have access to the pseudonymisation key. 
 
Modelling 
 
We trained our classifier based on 29,084 unique spells (56.2% of total) and defined a 
validation set (7272; 14.0%) grouped at the patient level. To quantify the performance of our 
classifier we define two holdout test sets to consider how the model would operate in 
different circumstances. First, we define a patient holdout test set (i.e., multiple spells 
relating to a patient cannot be split between holdout and training). This contains 9177 spells 
(17.7%) from 1st January 2021 to 30th September 2022. Second, we define a 3-month 
temporal holdout (6221; 12.0%) which contains all spells from 1st October 2022 to 1st 
January 2023. This is designed to test the real-world performance of the model (i.e., where it 
is trained on historical hospital data and deployed in the same environment). While the 
temporal holdout best emulates how a model may be deployed, there is a risk of data 
leakage (i.e., if multiple spells of a given patient are correlated). A patient holdout tests the 
performance for patients whose prior spells were not included in the original training. For 
readability, we follow the results for our patient holdout test set in the main text, while also 
presenting results of the temporal holdout test set in the Supplementary Materials. 
 
For our machine learning model, we used XGBoost with a ‘multi-softmax’ 
objective26,27.Gradient-boosted trees are a popular choice for large tabular data, which 
includes a variety of continuous, binary, and categorical data. Tree-based models can also 
naturally deal with missing data consistently (i.e., through the creation of splits of whether 
data is missing or not rather than imputation), which is important for routinely collected 
clinical data, as here. Despite gradient-boosting algorithms excelling at extracting signal from 
data, they are prone to overfitting. To help avoid this, model hyperparameters were selected 
using five-fold cross-validation grouped at the patient level (i.e., individual patients cannot 
appear in different folds). On training, we also defined 50 early stopping rounds (i.e., when 
the train set performance metrics become better than the validation set) to prevent 
overfitting.  We provide more detailed information on our choice of XGBoost and 
hyperparameter tuning28 in Supplementary Materials Section 1.2 with Supplementary Table 
2 giving the final hyperparameters. 
 
Model performance was evaluated independently for both temporal and patient holdout test 
sets using Micro F1 Score and One-Vs-Rest (OVR) Area Under the Receiver Operating 
Curve (AUROC) and Average Precision (AP) for each target class.  
 
Model Explanations 
 
An important part of machine learning in a clinical setting is the ability to attribute why a 
given recommendation has been made to the user. Explanations enable users to understand 
the machine learning decision making process and helps identify data which should be 
reviewed before making the final decision. While machine learning models are often 
described as ‘black boxes’, there are various methods to interpret and explain the predictive 
process.  
 
We attribute the fractional contribution of each input feature to individual pathway predictions 
using Shapley values (i.e., Shapley Additive exPlanations; SHAP29,30). One strength of 
SHAP is that explanations are 1) locally accurate (i.e., each pathway prediction can be 
explained) and 2) globally consistent (i.e., explanations can be consistently aggregated 
across multiple predictions). This flexibility is critical in a medical environment where 
explanations are important on a local (i.e., for each patient) and global (i.e., to understand 
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the operating circumstances of the model) level. We use the TreeExplainer31,32 
implementation of SHAP designed for tree-based algorithms. 
 
Clinical Pathway Updates 
 
As part of the standard operating procedure at UHS, an initial discharge assessment should 
be made within the first 24 hours of hospital admission, usually as part of the first consultant 
review13. In order to compare how the proposed machine learning model performs in relation 
to current practice, we consider all pathway assessments made within the first 24 hours 
post-admission by clinical care teams. In practice, this corresponds to all pathway updates 
registered on the APEX system. Multiple pathway updates within 30 minutes of each other 
are combined (retaining the most recent) as they are more likely to reflect administrative 
updates (e.g., opening the patient record with incomplete information) rather than distinct 
assessments. For the patient holdout test set this corresponds to 4283 updates across 4076 
spells (46.67%). For the temporal holdout test set (Results in Supplementary Materials) this 
corresponds to 2845 total updates for 2757 spells (45.73% of test set). 
 
Hybrid Model  
 
Machine learning is limited relative to humans by not being able to capture important 
contextual domain knowledge that is not easily captured in data (e.g., visual cues of a 
patient’s current state, conversations with family or carers). Despite this, machine learning 
models capture more complex trends in data than humans can retain, offering consistency 
and nuance in predictions. A hybrid approach combining human and machine predictions 
integrates domain knowledge and complex data mining to deliver a more powerful 
recommendation.  
 
For spells with an initial pathway prediction, a ‘hybrid’ recommendation based on this input 
and the machine learning class probabilities can be made. For this model, we made use of 
the Scikit-Learn implementation of a Logistic Regression, adapted to make multi-class 
predictions22. Logistic regression is a linear model which aims to classify outcomes through 
probabilities estimated by the logistic function. We implement optimised for ≤100 iterations 
using an L2 penalty with class weights inversely proportional to class frequencies. For both 
the XGBoost and ‘hybrid’ logistic regression models we define class weights inversely 
proportional to the number of the samples in a target class. This ensures our classifiers are 
tuned to be robust against class imbalance and are calibrated to better identify higher acuity 
pathways.  
 
Results 
 
Machine learning model performance 
 
In Figure 5, we consider the performance of our XGBoost model stratified by each target 
class. For each pathway, performance is evaluated using the Receiver Operating Curve 
(ROC; left) and the Precision-Recall (PR; right) Curve using a One-Vs-Rest strategy (i.e., 
each class is considered as binary with the rest of the predictions of the negative outcome). 
For both patient (top) and temporal (bottom) holdout test sets, performance is generally 
better for lower acuity care pathways (i.e., no care needs easier to identify than elevated 
care needs).  
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Figure 5: Performance of the machine learning model stratified by target class (i.e., discharge pathway) for the 
patient holdout test set. The performance for each target class is given by the receiving operator curve (left) and 
precision-recall curve (right) with the Area Under the ROC and Average Precision (over all recall thresholds) 
annotated respectively with 95% confidence intervals given in square brackets. Both ROC and PR are evaluated 
using a One-vs-Rest (OVR) strategy for each target class. An equivalent plot for the temporal holdout test set is 
given in Supplementary Figure 2.  

Performance stratified by pathway is shown further in Figure 6, which contains the confusion 
matrix for the patient holdout test set. Despite implementing sample weights (to balance the 
importance of predictions across pathways), the XGBoost model is best at identifying 
patients to be discharged on Pathway 0. Regardless, the model performs well at identifying 
patients in need of needing any elevated care needs (i.e., predicting pathways 1-3) as 
denoted by the PR curve of Pathway 0 in Figure 5. 

 

 

Figure 6: Confusion matrix for the patient holdout test set. The matrix shows the distribution of model prediction 
(columns) against the actual discharge (rows). In each square, the total counts and row normalised (i.e., by 
actual discharge) proportions are shown. An equivalent plot for the temporal holdout test set is given in 
Supplementary Figure 3. 

In Figure 6, we show the confusion matrix for the patient holdout test set demonstrating our 
model to be well tuned to identify higher acuity pathways. Despite this, we note distinct 
differences in class mixing between the patient holdout and the temporal holdout 
(Supplementary Figure 2). We find the temporal holdout has a slight bias towards Pathway 1 
with potential data drift towards the end of the study period (containing the temporal 
holdout). This is further justified in Figure 2 (right), where a shift around March 2022 leads to 
a higher proportion of patients discharged on Pathway 1 and a lower proportion of those 
discharged on Pathway 3. This highlights the need for data drift detection and frequent re-
evaluation of the machine learning model if deployed in practice.   
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Machine learning explanations 
 
Explainable machine learning enables the attribution of the most important features for 
prediction. Since SHAP is globally consistent, the relative contribution to prediction can be 
stratified by target class (by grouping all predictions of a given discharge pathway). In Figure 
7, we show the relative importance of admission characteristics (i.e., features) in predicting 
discharge needs. Features are grouped by types of information (e.g., Demographics, Patient 
History) and combined when encoding similar raw data (e.g., Previous Specialties is the sum 
of individual features ‘Last spell Specialty’ and ‘Dominant Specialty’). Supplementary Table 1 
lists all individual features, and Supplementary Figure 1 shows the importance of individual 
features without combination. 
 
We find that having a patient history (both in terms of spells and discharges) is the most 
significant factor in prediction, followed by the information collected at Triage in the ED. The 
importance of the Year of Admission reflects the importance of operational circumstances 
and policy at the given timeframe. Given that our study cohort contains periods still 
operationally disrupted by the COVID-19 pandemic, this is likely to contribute to this 
dependence.  
 
Having identified the most important features for prediction, it is important to ensure our 
model is well generalised in the case that any of this information is not available for a 
particular prediction. Performing a subgroup analysis, we find our model is robust for 
patients without discharge history (OVR AUROC: 0.834 [0.824 0.843]), spell history (0.843 
[0.827 0.859]), and for those which are not admitted via ED (0.849 [0.833 0.867]) compared 
with the overall model performance of 0.845 [0.838 0.852]. 

 
Figure 7: Relative importance of admission characteristics for predicting discharge pathway in the patient holdout 
test set. Importance is computed by normalised absolute SHAP values (i.e., larger values mean higher relative 
importance). The size of each complete bar shows the overall importance for prediction. Each bar is stacked so 
the importance for each discharge pathway can be identified (e.g., Arrival Transport is far more important for 
predicting pathway 0 than 1-3). Some features are grouped in categories (e.g., Discharge History contains a 
variety of different data encodings). An equivalent plot for the temporal holdout test set is given in Supplementary 
Figure 3.  

 
Comparison to clinical predictions and hybrid model 
We now compare our model to pathway predictions made by clinicians in-line with UHS 
standard operating procedure13. This corresponds to all pathway updates registered in APEX 
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by clinicians within 24 hours of admission, usually at the first consultant review. It is 
important to note that only 46.7% of spells (relative to Figure 6) have clinical assessments 
within 24 hours of admission.  
 

 
Figure 8: Receiving Operating Characteristic (left) and Precision-Recall (right) curves for each of the machine 
learning model (solid dark green), clinical pathway updates made with the first 24 hours of the spell (dashed light 
green) and hybrid model (dot-dashed mid green) for the patient holdout. An equivalent plot for the temporal 
holdout test set is given in Supplementary Figure 6. 

In Figure 8, we compare the performance between the machine learning model (solid), 
clinical updates within 24 hours of admission (dot-dashed) and the hybrid model (dashed) as 
described by the ROC (left) and PR (right) curves. These show the discriminative power for 
Pathway 0 (i.e., the ability to recognise onward discharge needs or not) through an OVR 
strategy (see Methods for explanation). As previously introduced, the hybrid model aims to 
combine the machine learning model class probabilities with the clinical prediction to derive 
a more powerful recommendation. We note that the AUROC and Average Precision are 
computed using probabilities for machine learning and hybrid models, whereas clinical 
pathway updates are absolute (i.e., only probability 1 for a single class), which likely 
understates their skill. 
 

 

Figure 9: Confusion matrices for the machine learning model (left), clinical pathway updates made within first 24 
hours of spell (middle) and the hybrid model (right) for the patient holdout test set. An equivalent plot for the 
temporal holdout test set is given in Supplementary Figure 7.  

Figure 9 shows the confusion matrices for each of the machine learning models (left), clinical 
predictions made within the first 24 hours of the spell (middle) and the hybrid model (right). 
Clinical predictions have significantly higher recall for Pathway 0, meaning clinicians are far 
more effective (correct 98% of the time) at identifying no onward care in comparison to the 
ML (86%) and hybrid (88%) models. This is a natural reflection of the tuning of the machine 
learning and hybrid models being weighted to improve the recall of higher acuity onward 
care needs coming at the cost of a higher false alarm rate. As a result, our hybrid (and 
machine learning only) model offers a marked improvement on identifying Pathway 2 (41% 
vs 15%) and Pathway 3 (49% vs 40%). Independent of tuning, we also note intrinsic 
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differences in skill with clinicians being more effective at identifying Pathway 1, while 
generally struggling with Pathway 2.  
 
Discussion 
 
A significant bottleneck for patient flow through the NHS is the transfer of patients from 
hospital beds to social care services. Delays in discharge for medically fit patients are driven 
by the mismatch between bedspace pressures in hospitals and the ability of understaffed 
social care services to continue to accept further patients. In this work, we have 
demonstrated the potential for explainable machine learning to support clinical care teams 
with reliable information on the initial assessment of onward care needs (AUROC 0.915 
[0.907-0.924], AP 0.873 [0.858-0.887] for identifying onward needs in general). We find that 
performance is comparable to an initial clinical assessment and can provide initial planning 
suggestions for spells (>50%), when clinical assessment does not occur within 24 hours of 
admission. Capacity pressures in hospitals compound delays by reducing the time and 
bandwidth of clinical teams to review and assess potential onward care requirements 
promptly. These predictions and subsequent model explanations could help clinical teams 
ensure that elevated onward care needs are identified promptly, especially as time and 
resource pressures prevent review. 
 
In addition to delays due to pressures on clinical teams, pressures on social care create 
significant lead times in finding space for a new care patient. As a result, it is critical that 
onward care needs can be identified as early as possible post admission to the hospital, with 
the highest acuity (i.e., Pathways 2 and 3: short- and long-term intensive care respectively) 
most important to identify early. We identify that leveraging the clinician’s initial assessment 
along with the ML prediction (i.e., hybrid model) offers a significant improvement (AUROC 
0.936 [0.928-0.943], AP 0.899 [0.884-0.913]) on the ability to recognise acute care needs 
(i.e., Pathway 2 and 3) from clinicians or ML alone (Figure 8 bottom panel).  
 
To adapt machine learning predictions and explanations into clinical practice, the 
implementation of a clinical decision support (CDS) system must be considered. Clinical 
decision support (CDS) systems are digital tools which can support clinicians to make more 
equitable, evidence-based decisions33-35. CDS systems have been demonstrated to improve 
the quality of decision-making, in turn reducing errors in addition to supporting shared 
decision-making practice34. They have been applied across a variety of care and decision 
settings using a combination of clinical tools, technologies, information resources and 
guidance33,35. Specifically, the implementation of knowledge-based systems has been further 
expanded through the use of data-driven machine learning-based CDS systems36,37 and 
medical devices38,39. In this context, it is important to note the intrinsic differences in skill 
between our proposed machine learning and hybrid models in comparison to the clinical 
assessments. While our models are tailored to better identify high acuity Pathways (2 and 3), 
they have a higher error rate for Pathways 0 and 1. It is critical that care is not ‘over-
prescribed’ which in turn exacerbates care placement spaces and delays arrangement of 
care for others. 
 
In future work, we look to integrate our explainable machine learning model into a CDS 
system designed to assist complex discharge throughout a patient spell. This will involve 
adapting our existing supervised ML model to accept additional information as it becomes 
available throughout treatment (e.g., blood test results and procedures), which in turn will 
improve predictive performance as the spell progresses, reducing the false-alarm rate for 
those who only need lower acuity care. These predictions and explanations will be integrated 
into a clinical interface through co-design with clinical care teams and the acute discharge 
bureau at UHS.  
 
Strengths and limitations  
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Strengths of this research include the large and robust data collection for discharge 
planning, which itself was used by complex discharge teams at UHSFT; the large hospital (in 
terms of bed number) is NHS England. The routinely collected and digitised data is used 
directly for national reporting as part of the statistical snapshot for acute discharge delays 
aggregated by NHS England. As a result, the discharge pathway updates are accurately 
recorded for the cohort spells. This study also benefits from direct collaboration between 
hospital care teams, discharge teams and researchers to provide different perspectives.   
 
Limitations of this research include that this study is single site (i.e., no other site validation) 
and performed retrospectively. There is also an absence of planning information for most 
hospital spells at UHSFT which are not considered in this study. Discharge planning is only 
created for more complex cases, and, as a result, our patient cohort is more complex than 
hospital averages. However, most hospital spells which were removed were short spells with 
84% having a length of stay of one day or less. Consequently, these spells are unlikely to 
contribute to significant delay or require onward planning.  
 
 
Acknowledgements  

This report includes independent research funded by the National Institute for Health 
Research Applied Research Collaboration Wessex. The views expressed in this publication 
are those of the author(s) and not necessarily those of the National Institute for Health 
Research or the Department of Health and Social Care. We thank the Southampton 
Emerging Therapies and Technologies (SETT) Centre at UHS for support with data access 
and insight.  

 

References 

1. Oliver D. David Oliver: Delayed discharges harm patients, staff, and health systems alike: British 

Medical Journal Publishing Group, 2023. 

2. Friebel R, Fisher R, Deeny SR, et al. The implications of high bed occupancy rates on readmission 

rates in England: A longitudinal study. Health Policy 2019;123(8):765-72. 

3. Kuluski K, Im J, McGeown M. “It’sa waiting game” a qualitative study of the experience of carers of 

patients who require an alternate level of care. BMC health services research 2017;17:1-10. 

4. Limb M. Delayed discharge: how are services and patients being affected?: British Medical Journal 

Publishing Group, 2022. 

5. Rojas-García A, Turner S, Pizzo E, et al. Impact and experiences of delayed discharge: A 

mixed-studies systematic review. Health Expectations 2018;21(1):41-56. 

6. Schlepper L, Dodsworth, E; Scobie, S;. Understanding delays in hospital discharge. 

https://www.nuffieldtrust.org.uk/news-item/understanding-delays-in-hospital-discharge. 

7. NHS-England. Consultant-led Referral to Treatment Waiting Times Data 2023-24. 

https://www.england.nhs.uk/statistics/statistical-work-areas/rtt-waiting-times/rtt-data-

2023-24/#Jan24. 

8. NHS-England. NHS weekly winter operational update. https://www.england.nhs.uk/2023/02/nhs-

weekly-winter-operational-update-for-the-week-ending-29-january-2023/. 

9. NHS-England. NHS delivers on ambition of 5000 more permenant beds. 

https://www.england.nhs.uk/2024/01/nhs-delivers-on-ambition-of-5000-more-permanent-

beds/#:~:text=The%205%2C000%20extra%20beds%20ambition,the%20same%20week%20la

st%20year. 

10. Discombe M. Delayed discharges rise in 17 ICSs despite Barclay's £250m fund. 

https://www.hsj.co.uk/quality-and-performance/delayed-discharges-rise-in-17-icss-despite-

barclays-250m-fund/7034213.article. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.07.24311596doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.07.24311596


11. Burns DK, Duckworth C, Lamas Fernandez C, et al. Impact of accurate initial discharge planning 

and in-patient transfers of care on discharge delays: a retrospective cohort study medRxiv 

preprint 2024. 

12. Micallef A, Buttigieg SC, Tomaselli G, Garg L. Defining delayed discharges of inpatients and their 

impact in acute hospital care: a scoping review. International Journal of Health Policy and 

Management 2022;11(2):103. 

13. NHS UHSFT. Expected Date of Discharge (EDD) & Clinically Optimised for Discharge (COfD) 

Standard Operating Proceedure, 2021. 

14. Fund K. Delayed transfers of care: a quick guide. https://www.kingsfund.org.uk/insight-and-

analysis/articles/delayed-transfers-care-quick-guide. 

15. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. 

Nature medicine 2019;25(1):44-56. 

16. Dong J, Geng Y, Lu D, et al. Clinical trials for artificial intelligence in cancer diagnosis: a cross-

sectional study of registered trials in ClinicalTrials. gov. Frontiers in oncology 2020;10:1629. 

17. Rahmani K, Thapa R, Tsou P, et al. Assessing the effects of data drift on the performance of 

machine learning models used in clinical sepsis prediction. International Journal of Medical 

Informatics 2023;173:104930. 

18. Duckworth C, Chmiel FP, Burns DK, et al. Using explainable machine learning to characterise data 

drift and detect emergent health risks for emergency department admissions during COVID-

19. Scientific reports 2021;11(1):23017. 

19. Department of Health & Social Care N-E. Hospital discharge and community support guidance. 

https://www.gov.uk/government/publications/hospital-discharge-and-community-support-

guidance/hospital-discharge-and-community-support-guidance. 

20. Vernon MJ. When it comes to discharge, timing is everything. Weblog. 

https://www.england.nhs.uk/blog/martin-vernon-3/. 

21. Micci-Barreca D. A preprocessing scheme for high-cardinality categorical attributes in 

classification and prediction problems. ACM SIGKDD explorations newsletter 2001;3(1):27-

32. 

22. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine learning in Python. the 

Journal of machine Learning research 2011;12:2825-30. 

23. Harris CR, Millman KJ, Van Der Walt SJ, et al. Array programming with NumPy. Nature 

2020;585(7825):357-62. 

24. Hunter JD. Matplotlib: A 2D graphics environment. Computing in science & engineering 

2007;9(03):90-95. 

25. Reback J, McKinney W, Van Den Bossche J, et al. pandas-dev/pandas: Pandas 1.0. 5. Zenodo 

2020. 

26. Chen T, Guestrin C. Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm 

sigkdd international conference on knowledge discovery and data mining 2016:785-94. 

27. Breiman L. Bias, variance, and arcing classifiers. 1996. 

28. Akiba T, Sano S, Yanase T, et al. Optuna: A next-generation hyperparameter optimization 

framework. Proceedings of the 25th ACM SIGKDD international conference on knowledge 

discovery & data mining 2019:2623-31. 

29. Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Advances in neural 

information processing systems 2017;30. 

30. Lundberg SM, Nair B, Vavilala MS, et al. Explainable machine-learning predictions for the 

prevention of hypoxaemia during surgery. Nature biomedical engineering 2018;2(10):749-

60. 

31. Lundberg SM, Erion G, Chen H, et al. From local explanations to global understanding with 

explainable AI for trees. Nature machine intelligence 2020;2(1):56-67. 

32. Lundberg SM, Erion GG, Lee S-I. Consistent individualized feature attribution for tree ensembles. 

arXiv preprint arXiv:1802.03888 2018. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.07.24311596doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.07.24311596


33. NHS-England. Supporting clinical decisions with health information technology. 

https://www.england.nhs.uk/long-read/supporting-clinical-decisions-with-health-

information-technology/. 

34. Kwan JL, Lo L, Ferguson J, et al. Computerised clinical decision support systems and absolute 

improvements in care: meta-analysis of controlled clinical trials. Bmj 2020;370. 

35. Greenes R. Clinical decision support: the road ahead: Elsevier; 2011. 

36. Moja L, Friz HP, Capobussi M, et al. Effectiveness of a hospital-based computerized decision 

support system on clinician recommendations and patient outcomes: a randomized clinical 

trial. JAMA network open 2019;2(12):e1917094-e94. 

37. Sutton RT, Pincock D, Baumgart DC, et al. An overview of clinical decision support systems: 

benefits, risks, and strategies for success. NPJ digital medicine 2020;3(1):17. 

38. Benjamens S, Dhunnoo P, Meskó B. The state of artificial intelligence-based FDA-approved 

medical devices and algorithms: an online database. NPJ digital medicine 2020;3(1):118. 

39. Muehlematter UJ, Daniore P, Vokinger KN. Approval of artificial intelligence and machine 

learning-based medical devices in the USA and Europe (2015–20): a comparative analysis. 

The Lancet Digital Health 2021;3(3):e195-e203. 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.07.24311596doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.07.24311596

