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ABSTRACT:  

The use of semi-supervised learning approaches can be used to extend a base-level 

classifier and offers a significant advantage by reducing the need for extensive labeled 

datasets. We utilized a two-stage semi-supervised learning model to classify physical 

activity intensity for wrist and thigh worn monitors, by retraining a base classifier with 

free-living wearable sensor data. Data was collected in two-phases comprising a 

laboratory and free-living session. Total classified time spent in light intensity, moderate 

intensity, and vigorous intensity were not significantly different from ground-truth 

minutes for either placement. The machine learning classifiers re-trained on free-living 

data accurately predicted light, moderate and vigorous intensity between both device 

placements. These findings demonstrate that similar estimates of physical activity 

intensity can be correctly classified for wrist and thigh placements when using semi-

supervised techniques. 
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INTRODUCTION 

Accurate and accessible information on daily physical behavior is crucial for advancing 

public health initiatives and guiding policy decisions concerning physical activity. To 

achieve this, precise measurement and classification of physical activity intensities are 

essential. Supervised machine learning approaches have provided alternative methods 

to classifying physical activity intensity from wearable sensor data. While supervised 

machine learning methods have provided valuable insights, model development and 

training requires datasets collected under diverse free-living conditions with labelled or 

ground-truth annotation. However, there is are considerable wearable sensor datasets 

collected under free-living conditions that are available but do not have ground-truth 

annotations. Thus, there is a pressing need to explore more advanced data processing 

techniques that can leverage the availability of both labelled and unlabelled datasets to 

develop generalizable machine learning intensity classification models to assess 

habitual physical activity levels. 

In contrast to supervised machine learning, semi-supervised models offer a promising 

alternative for improving the classification of physical activity intensity. Pattern 

recognition techniques from supervised models such as decision trees, random forests, 

and support vector machines, have demonstrated their potential in enhancing the 

accuracy of activity type prediction and intensity assessment. Random forests, in 

particular, utilize an ensemble of decision trees to deliver robust classification results 

with minimal data pre-processing and effective feature selection. The use of semi-

supervised learning approaches can be used to extend a base-level classifier (eg: 
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Random Forest) and offers a significant advantage by reducing the need for extensive 

labeled datasets and accommodating diverse data sources. 

This paper aims to address the limitations of current physical activity measurement 

methods by utilizing a two-stage semi-supervised learning model to classify physical 

activity intensity for wrist and thigh worn monitors. By retraining a base classifier with 

free-living wearable sensor data, this study seeks to enhance the accuracy of intensity 

classification. This methodology addresses the need for more robust activity intensity 

recognition in diverse free-living settings, thereby contributing to a more reliable and 

generalizable physical activity assessment. 

 

METHODS 

Study Design 

This project contained a two-part data collection phase including 1) a single 

approximately 1.5-hour long laboratory data collection session and 2) 6-hour long 

session of free-living observation. Data from the laboratory sessions will be used to train 

a base intensity classifier using wrist and thigh-worn devices. The free-living 

observation will use a combination of unlabeled and labelled video data to retrain and 

validate our intensity classifier via a semi-supervised machine-learning approach.  

Participants 

The core analysis included 46 adults (Mean age: 57.43 ± 12.30 years; 67.4% female). 

Participants were recruited via social media, flyers, and word of mouth. Inclusion criteria 
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included being aged 30-75 and comfortable completing activities of normal daily living 

(e.g., walking, cleaning etc) without discomfort. Individuals were excluded from the 

study if they reported having a heart condition or major operation, consuming 

cardiovascular medication that interrupts normal cardiovascular function or heart rate 

(e.g., Beta-blockers, antiarrhythmics) or a recent muscle ligament or joint injury 

worsened by physical activity. All participants completed written consent forms before 

the sessions and Ethics approval was obtained from the Sydney Local Health District, 

Royal Prince Alfred Hospital. 

Laboratory Sessions 

Standard anthropometric values including height and weight were collected from each 

participant before beginning the study. Participants then completed a 90-minute 

structured ‘daily living’ session which included completing 11 activities each lasting 5 

minutes in duration. Each participant completed the activities wearing a portable indirect 

calorimetry unit (Cosmed K5; Rome, Italy) and a Polar heart rate monitor (Kempele, 

Finland) to capture intensity and energy expenditure. The activities included 1) Lying 

supine in a relaxed state; 2) Riding on public transport in a seated position; 3) Standing 

dish washing by hand; 4) Picking up household items from ground level and placing 

them on a table; 5) Vacuum cleaning; 6) Standing laundry folding; 7) Casual walking at 

a comfortable pace self-defined by the participant; 8) Brisk walk or jog self-defined by 

the participant; 9) Stair climbing; 10) Cycle; and 11) Machine and free weight exercises. 

The walking activity was completed as an unstructured outdoor walk or indoors on a 

treadmill. For the brisk walk or jog activity, participants were instructed to find a vigorous 

pace they are comfortable sustaining for the 3 to 5-minute period to meet vigorous 
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intensity as indicated by the heart rate (>77-95% heart rate maximum) and indirect 

calorimetry measured V02 (>6 METs). Participants completed each task under the 

supervision of two trained professionals. Following each activity, the participant was 

provided with a rest period to allow the heart rate to return to the observed resting rate. 

Further detail regarding each of the activities is provided in Supplementary Table 1.  

Instrumentation 

This study included wearable device measurements from the Axivity AX6 (Newcastle, 

United Kingdom) placed on the dominant wrist secured via a wrist strap and a rubber 

encasing (Supplementary Figure 1). The thigh device was placed 10 cm above the 

proximal part of the patella (Supplementary Figure 2) and secured by a hypoallergenic 

transparent dressing (Tegaderm™, St. Paul, Minnesota). The Axivity AX6 collects 

acceleration measurements using a 6-axis motion sensor. This device captures angle 

and linear velocity using an integrated accelerometer and gyroscope and offers a 

sampling range of 12.5-1600Hz with a configurable dynamic range of ± 2-16 

gravitational units (g). We initilised all devices in the present study to collect data at a 

sampling rate of 100Hz. Time and frequency domain features from the raw 

accelerometry and gyroscope data using non-overlapping 10 second windows. 

Supplemental Table 2 provides the full list of features that were extracted from the 

accelerometer and gyroscope. 

Free-Living Observation and Coding Procedure 

A second sample of 48 participants (Mean age: 59.3 ± 12.1 years; 56.3% female) 

completed a Free-Living Environment data collection session to re-train and test our 
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activity classification algorithms while allowing for natural activities and organic 

behaviour transitions3. A total of 48 participants wore the devices and a neck-worn video 

camera to capture ground-truth evidence of physical activity behaviours. For this 

sample, the subject wore a portable camera (Losoform Z02; Guangzhou, China) 

positioned on the chest using a body-mounted camera holder (Telesin; Shenzhen, 

China). Once the camera was mounted in the camera holder, the subjects were 

instructed to wear the device for the following 6 hours to capture normal day-to-day 

habits. 

For half of the collected free-living sample (n = 24), video files collected from the 

subjects were imported into the Noldus Observer XT 16 software for continuous 

observational coding (Noldus Information Technology; Wageningen, The Netherlands). 

This sample was classified as the ‘labelled’ sample, and the remaining uncoded sample 

was classified as the ‘unlabeled sample. For the labelled sample, we created a custom 

observation scheme that included base-level physical activity compendium categories 

1) Lie 2) Reclining 3) Sit 4) Walk 5) Run 6) Stair Climbing 7) Eating. If a participant was 

not in the view of the camera the behaviour was coded as “Out of view”4. Once imported 

into Noldus, the videos were coded continuously by an individual coder which generates 

a continuous time-series vector of behaviours. These time series were then used to 

establish overlap with the time-stamped accelerometry data and corresponding 

predicted activity classification. Before each study participant, a master time-piece was 

synchronized to the computer that initialized the devices to ensure the time series of the 

accelerometry corresponded with the start time of the free-living video files4,5. For the 

physical activity classifier, each of these activities was then classified as either reclining, 
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sitting, standing, walking activities, running or high energetic activities, stair climbing, 

cycling, or weightlifting (Supplementary Table 1). For each of these activities, a 

predicted intensity was provided including sedentary behaviour, light activity, moderate 

activity, and vigorous activity. The interobserver and intra-observer reliability was 

examined by coding videos with one primary coder and two alternative coders, selected 

at random. The intraclass coefficient or the coding class activity for interobserver (n = 2: 

12 hours of video data) was 0.84 (95% Confidence Interval (CI): 0.77-0.90). The 

intraobserver was measured with the primary observer (n = 1: 6 hours of video data) 

and had an intraclass coefficient of 0.97 (95%CI: 0.96-0.99).  

For activity classification, we applied two separate approaches depending on the 

placement of the accelerometer. For thigh placement, we applied a previously validated 

MatLab-based software application known as Acti46,7 which employs decision trees to 

classify each of the above activities. For wrist placement, we used a random forest 

model which operates by establishing a single node that splits into branches followed by 

additional nodes, all met with a new binary decision9. These decisions are informed by 

learning on a bootstrapped sample of training data, which in this case is a combination 

of laboratory and free-living data. The nodes and branches will continue to split until a 

stop condition has been met which is in this study was determined by the information 

gained index which offers information into the greatest reduction in entropy or label 

impurity5,10. 

Following activity classification, this study follows a three-stage development plan to 

build and refine our intensity classifier. First, we trained our intensity classifier using the 

in-laboratory activities of daily living. This step includes using the extracted features 
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from the raw accelerometry and gyroscope data in combination with activity type, to 

classify movements as sedentary behaviour (SB), light intensity physical activity (LPA), 

moderate intensity physical activity (MPA), or vigorous intensity physical activity (VPA) 

in 10-second windows. Second, we applied a semi-supervised approach to re-train our 

base classifier using the coded or ‘labelled’ free-living data11. Third, we then tested this 

classifier using a sub-sample of unlabeled free-living data (n = 24). This included testing 

the classifier on the 6 hours of data available for each individual.  

Statistical Analysis and Classifier Performance 

The classifier performance was evaluated using overall F1-scores and weighted kappa 

(k) coefficients. To explore the level of our classifier across the intensity of each activity, 

we also provide confusion matrices that include SB, LPA, MPA, and VPA. Bland-Altman 

plots used to examine mean bias and 95% limits of agreement (LOA) for time spent in 

each intensity category. Mixed effects linear regression with nesting of sex were used to 

compare intensity classification time. 

RESULTS 

Participant characteristics are reported in Tables 1 and 2. Average age of the free-living 

sample was 58.8 (12.4) years and average age of the laboratory sample was 57.0 

(12.5) years. Overall F1-scores, weighted kappa coefficients, and class-level sensitivity, 

specificity, and precision and heatmap confusion matrices are reported in. Across sex 

and age categories, the wrist classifier showed very good to excellent classification of 

sedentary behaviour (>84% across sex and age categories), moderate intensity (>86%), 

and vigorous intensity (>94%), and moderate to very good classification of light intensity 
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(76% to 83%). The thigh classifier showed excellent classification of sedentary 

behaviour (>97%), very good to excellent classification of moderate intensity (>84%) 

and vigorous intensity (>92%), and moderate to very good classification of light intensity 

(72% to 86%). Total classified time spent in light intensity, moderate intensity, and 

vigorous intensity were not significantly different from ground-truth minutes for either 

placement. The bland-altman plots are shown in Figure 2. The difference between 

classified and ground truth minutes in sedentary, light, moderate, and vigorous indicate 

good agreement and no bias with increasing time for the wrist and thigh classifiers.  

DISCUSSION 

In this study, we present a semi-supervised Random Forest model for wrist and hip 

worn monitors to classify free-living physical activity intensity. The two-stage classifier 

that first classified activity type and then activity intensity showed comparable estimates 

between the two placements and overall time in each physical activity category that did 

not differ from ground-truth time. 

The machine learning classifiers re-trained on free-living data accurately estimated light, 

moderate and vigorous intensity between both device placements. These findings 

demonstrate that similar estimates of physical activity intensity can be correctly 

classified for wrist and thigh placements when using semi-supervised techniques. The 

new intensity classification may have wider applications to combine datasets with 

wearables worn on different placements for utility in future research.  

In particular, classification of physical activity intensity that is robust to different wear 

placements will allow for to design and evaluate studies examining the health effects of 
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moderate-vigorous physical activity or sitting time regardless of if the device is worn on 

the wrist or thigh. Notably, the wrist classifier trained on the dominant wrist showed 

consistent performance when tested on the non-dominant wrist, when participants wore 

both simultaneously during the free-living sessions. Future research should explore the 

comparisons of activity type classifications between different wear placements, 

particularly as there are significant biomechanical differences and a wider range of 

movement degrees for the wrist compared to the thigh that may have a different impact 

and subsequent signal processing techniques that need to be used for activity type 

classification than activity intensity classification.
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Table 1: 

Demographic Free-Living N Percentage Mean SD 

Age     58.8 12.38168 

Gender         

Male 23 46.00%     

Female  27 54.00%     

Category 1         

Under 50 12 24.00%     

Over 50 38 76.00%     

Category 2         

Male, Under 50 6 12.00%     

Male, Over 50 17 34.00%     

Female, Under 50 6 12.00%     

Female, Over 50 21 42.00%     

Total 50       

 

Table 2 

Demographic In-

Lab N Percentage Mean SD 

Age     57.02083 12.51465 

Gender         

Male 17 35.42%     

Female  31 64.58%     

Category 1         

Under 50 14 29.17%     

Over 50 34 70.83%     

Category 2         

Male, Under 50 5 10.42%     

Male, Over 50 12 25.00%     

Female, Under 50 9 18.75%     

Female, Over 50 22 45.83%     

Total 48       
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