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Abstract: Kinase inhibitors are a successful category of therapeutics used in treating diseases 
such as cancer, autoimmunity, and neurodegeneration. Despite their efficacy, these drugs often 
present clinically relevant adverse events that can limit their therapeutic utility or lead to their 
failure in clinical trials. The adverse event profile of a kinase inhibitor can be explained by its 
off- and on-target binding profile. Unfortunately, there are limited resources to couple inhibition 
of a specific kinase to clinical adverse events. Discerning which adverse events can be attributed 
to a specific kinase, and which are more generally caused by the kinase inhibitor drug class, is 
crucial for designing next-generation drugs that avoid toxicity and enhance clinical viability. By 
integrating adverse event incident data from the FDA Adverse Events Reporting Database with 
machine learning-predicted molecular binding profiles, we developed a statistical method that 
associates specific adverse events with potent inhibition of certain kinases. We also identify 
general adverse events inherent to the kinase inhibitor class. We validate our model through an 
extensive literature review of known kinase-adverse event pairs, comparison with the OnSIDES 
drug label side effect dataset, and prospective prediction of adverse events of recently approved 
kinase inhibitors. We show that our method can recapitulate well-established kinase-toxicity 
associations and identify previously unreported kinases associated with adverse events.  

Main Text: 
INTRODUCTION 

Protein kinase inhibitors (KIs) are a prominent class of targeted therapeutics primarily 
used in treating various diseases, especially cancer. To date, the US Food and Drug 
Administration (FDA) has approved 80 KIs for therapeutic use, and more than 180 are currently 
in clinical and preclinical development (1). Despite their clinical utility, many kinase drugs are 
associated with significant patient toxicity, such as QT prolongation (2,3), viral or bacterial 
infections (4, 5), and severe diarrhea (6). In clinical and preclinical stages, the observation of 
such serious adverse events (AEs) can limit the therapeutic index or impede the approval of such 
drugs. Consequently, the development of methods that can effectively model and mitigate the 
risk of specific AEs is vital for advancing the next generation of kinase therapeutics. 

AEs associated with kinase drugs stem from a variety of causes, such as the chemical 
properties or toxophores of the inhibitors (3,7) or the inhibition of specific kinases (8–11). Many 
kinase drugs exhibit on-target toxicity due to potent engagement of a KI with its intended kinase 
targets (4,8,12). Conversely, due to the high degree of structural homology at the drug binding 
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pocket (13–15), many AEs may result from unintended ‘off-target’ kinase inhibition by the KI 
(16, 17). While the design of kinase drugs typically strives for high target selectivity, achieving 
absolute specificity is challenging (18–20). In this context, polypharmacology—where a single 
drug interacts with multiple targets—may be not only an unavoidable outcome but also a 
requisite feature for efficacy (21–23). The complexity of kinase drug interactions underlines a 
main challenge in kinase drug design: achieving clinical efficacy while minimizing toxicity 
through precise target engagement. 

Drug-associated AE prediction is a highly explored field of study, with popular 
approaches including analysis of chemical features, gene expression profiles, and network 
analysis (24). While these approaches leverage drug dose, pharmacokinetics, and genetics in 
their predictions, they do not address kinase target-specific association to AEs. Work by Gong et 
al. leveraged binding data against 442 kinases across 16 FDA approved KIs to connect kinase 
inhibition to specific AEs (25). Their analysis, although successful in validating some known 
associations, was limited by the small dataset and the lack of robust statistical methods to fully 
explore kinase-AE relationships. Similar limitations were observed in earlier work by Yang et al. 
where the authors calculated a kinase-AE association matrix from a dataset of only 20 KIs with 
more limited binding data, describing just 266 kinases (26). In a broader scope, the Secondary 
Pharmacology Database was developed to associate AEs with off-target interactions, testing 
1,958 compounds across 200 safety pharmacology assays. However, among these 200 assays, 
only one specifically measured kinase inhibition (27). The lack of extensive binding data and 
statistical validation in these studies highlights a pivotal area for improvement, as both proper 
data and statistical frameworks are essential to strengthen the predictive power and scientific 
rigor of kinase-AE association models. 

In this work, we extended the methods presented by Gong et al. and Yang et al. by 
deconvoluting kinase-AE associations from 112 KIs across 425 kinases (Fig. 1A). We integrated 
physician-reported AE data from the FDA Adverse Events Reporting System (FAERS) (28) and 
drug label AE data from the OnSIDES dataset (29) (Fig. 1A i). For each KI, we evaluated the 
overlap of AEs between FAERS and OnSIDES, and calculated the population reporting odds 
ratio for each AE in KIs compared to other drug target categories. We then applied a machine 
learning model to estimate the affinity of each KI across the human kinome. A kinase-AE 
association score was computed by integrating the KI-AE association matrix with the KI-kinase 
binding matrix. For each kinase-AE association score, we performed permutation testing to 
derive a representative p-value, evaluating the strength of the association (Fig. 1A ii). Finally, we 
evaluated our method by benchmarking kinase-AE associations both retrospectively via literature 
review, and prospectively using recently approved kinase drugs (Fig. 1A iii). Owing to the 
breadth and scope of the analysis, we anticipate this web-resource will support preclinical 
discovery and development of novel kinase therapeutics.   
RESULTS  

Adverse event reports for kinase inhibitor drugs are increasing, but not due to increased 
promiscuity 

Since the 2001 approval of imatinib, over 80 KIs have been approved for a wide array of 
indications (1). From 2004 to 2021, as the number of approved KIs and their reported usage 
increased, there was a significant rise in both the absolute number of AEs reported for the KI 
therapeutic class as a whole and the average number of FAERS reports per KI in the FAERS 
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database (Fig. 1B). This upward trend was further corroborated when we examined the 
emergence of new, previously unreported AE occurrences in KIs over time (Fig. S1A). Both the 
rate of previously unseen AEs and the overall rate of reported AEs for KIs have been increasing 
over time, compared to the stagnant rates observed in GPCR therapeutics (Fig. S1B). 

Given the escalating trend in AEs linked to KIs, we aimed to determine whether this 
increase was due to the well-documented binding promiscuity of KIs. To investigate this, we 
utilized a custom machine learning model to predict the kinome-wide binding profile of all KIs 
in the FAERS dataset (see Methods) and compared promiscuity to unique AEs reported in 
FAERs within the first three years of approval for each KI. Surprisingly, we observed no 
correlation between the predicted promiscuity of KIs and the number of unique AEs observed 
(Fig. 1C). This result is further corroborated when controlling for the rate of new AEs observed 
per FAERS report, where each FAERS report can be considered as an individual KI prescription, 
and by the reported promiscuity of these molecules in literature (Fig S2). Relatively selective 
drugs, such as tofacitinib and ibrutinib, exhibited higher amounts of observed toxicity events 
compared to their more promiscuous counterparts, such as sunitinib and dasatinib. This lack of 
association between predicted promiscuity and AE frequency indicates that KI promiscuity may 
not be the primary driver of AEs. 
The AE space of kinase inhibitors shows key distinctions from other therapeutics 

To identify AEs uniquely associated with the kinase inhibition, we conducted a 
comparative analysis. This involved evaluating the incidence rate of each AE in KIs, defined as 
the proportion of KIs with at least one AE report in FAERS, and comparing this rate to the 
incidence rate of the same AEs across all other drug categories (Fig. 2A, Tables S1-2). By 
contrasting these frequencies, we identified five rough categories of AEs.  

Group I AEs are events observed with >45% incidence in both KIs and non-KIs. 
Common AEs in this group include MedDRA (http://www.meddra.org/, refer to Methods) 
Preferred Terms (PTs), such as ‘diarrhea’, ‘nausea’, ‘pyrexia’, ‘anemia’, ‘fatigue’, and 
‘vomiting’. Interestingly, despite having a similar reporting incidence in FAERS compared to 
other therapeutic categories, they were significantly more prevalent on drug labels of KIs than 
non-KIs (Fig. 2B). We propose that Group I AEs represent toxicities occurring at a generally 
high frequency, potentially stemming from kinase inhibition. 

Group II AEs exhibit an incidence that is at least 7.5% higher in non-KIs compared to 
KIs (Fig. 2C). Events in this group include ‘cyanosis’, ‘anorexia’, ‘anhedonia’, ‘dystonia’, and 
‘tardive dyskinesia’. Of particular prevalence are AEs associated with drug administration sites 
(Table S1). As most KIs are administered orally, they do not lead to administration-related AEs 
as frequently as non-KIs. These AEs are significantly enriched in non-KIs in both reporting 
incidence and label presence, suggesting they may not be directly attributable to any specific 
drug-kinase interaction. 

In contrast, Group III are AEs that are at least 7.5% higher in incidence in KIs than non-
KIs (Fig. 2D). Examples include ‘neutropenia’, ‘pneumonitis’, ‘gastrointestinal toxicity’, and 
‘skin toxicity’, which are enriched in FAERS reporting frequency and label presence, indicating 
KI class specificity. For instance, neutropenia is an AE associated with on-target interactions 
with specific KIs like ruxolitinib and JAK2 inhibitors (30). Group III AEs may be closely linked 
to kinase inhibition within the kinome. While all FAERs reports in which the AE fell under the 
same MedDRA category as the treatment indication were omitted from this analysis (see 
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Methods), AEs related to diseases commonly treated by KIs may still be found in Group III. This 
is evidenced by the large number of immune system and blood cell-related AEs, which could be 
related to the autoimmune disorders and heme malignancies KIs treat, respectively. 

Finally, the remaining 17,000 primary MedDRA terms not represented by the previous 
groups were categorized into Group IV and Group Indeterminate. Group IV contains AEs that 
are infrequently reported in the FAERS database, each with an incidence rate of less than 10% 
for both KIs and non-KIs. Group Indeterminate comprises terms that do not show a differential 
occurrence between KI and non-KI groups (Fig. 2A). Collectively, these terms cover a wide 
range of concepts with varying degrees of relevance for modeling drug toxicity. In both 
categories, there exist terms with limited utility, such as 'physical fitness training’, 'bed rest', 
'bone marrow scan’, ‘apparent life-threatening event', and 'bite.’ On the other hand, terms such as 
'arthrotoxicity', 'anoxic encephalopathy', and 'injection site muscle atrophy' are highly relevant 
for assessing drug toxicity. Without adequate representation in the FAERS dataset or a clear 
proportional bias towards KIs, categorizing these terms in relation to KI toxicity presents a 
significant challenge.  

The data presented here suggests a nuanced landscape of AEs associated with KIs, 
distinguishing them from other drug categories (31). We hypothesize that our categorization of 
AEs may refine approaches that aim to deconvolute KI binding profiles and AE incidence, 
illuminating kinase anti-targets that drive observed toxicities. 
Curation of kinase-AE associations from literature 

To learn the association of AEs with the inhibition of specific kinases, we constructed a 
comprehensive benchmark dataset through a manual review of 91 publications. Our extensive 
literature review resulted in 398 kinase-AE associations, as detailed in Table S3. Our dataset 
significantly surpasses Gong et al.'s catalog, which documented 27 kinase-AE associations from 
16 references (25). While not exhaustive, our literature review offers valuable insights into the 
connection between kinase inhibition and toxicity. 

Our analysis of this benchmark dataset reveals that a substantial proportion of AEs can be 
traced back to the inhibition of just a few kinases (Fig. 3A). For example, AEs such as epidermal 
and dermal conditions, gastrointestinal issues, cardiac arrhythmias, and anemias can be linked to 
just the VEGFR family of kinases (FLT1, KDR, FLT4, and FLT3) (Fig. 3A). Additionally, the 
reporting frequency of these AEs can vary, covering Groups I-IV (Fig. S3). 

Since several toxicities are reported to be associated with a few kinases, we explored 
whether AEs linked to specific KIs can be attributed to their intended (on-target) or unintended 
(off-target) effects (Fig. 3B). Our findings suggest that many reported AEs can be related to on-
target interactions. For example, sunitinib (Sutent), which has the highest number of reported 
AEs, is a VEGFR inhibitor, which, in turn, is associated with a wide range of AEs (Fig. 3A). 
This suggests that the toxicity of KIs often stems from their primary mechanisms of action rather 
than unintended interactions. 

Permutation testing recovers literature-curated kinase-AE associations and prospectively 
predicts AEs for newly approved drugs   

To accurately associate kinases with toxic events, we developed a novel statistical 
approach. This involves calculating a kinase-AE association score based on the covariance 
between the relative odds ratio of an AE across all KIs in the FAERS database and the predicted 
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binding affinity of a kinase for those KIs (see Methods). Through extensive permutation testing 
(Fig. 1A ii), we determined an empirical p-value for each kinase-AE association. We evaluated 
our method’s ability to recover literature-reported kinases associated with specific AEs using our 
benchmark dataset. 

Our method demonstrated reasonable recall for benchmark kinases (Fig. 4A), 
successfully identifying all benchmark kinases within the top 10th percentile (by p-value of each 
kinase-AE association) for 24% of AEs (28 out of 116 PTs). Notably, at least half of all 
benchmark kinases were recovered in the top 10th percentile for 38% of benchmark AEs (44/116 
PTs).  

Our method excelled in identifying kinases linked to AEs such as hyperkeratinosis and 
peripheral arterial occlusive disease (Fig. 4B) but was less effective for AEs like photosensitivity 
reactions and infections (Fig. S4). Evaluation at the highest MedDRA classification level, 
HLGT, revealed strengths in detecting tissue disorders and respiratory symptoms but showed 
limitations in associating kinases with immune and vision disorders (Fig. S5). This variability in 
predictive accuracy across different MedDRA categories underscores the challenge of analyzing 
kinase-mediated toxicities within existing classification systems, potentially hindering deeper 
analysis into these toxicities.  

Having demonstrated the effectiveness of our kinase-AE association method 
retrospectively using our benchmark kinase dataset, we aimed to assess its ability to 
prospectively predict AEs for recently approved KIs (Fig. 4C). We selected four recently FDA-
approved KIs for evaluation, each with a distinct mechanism of action and not included in the 
training of our method: 

1. Belumosudil, a ROCK2 inhibitor, approved in 2021(32). 
2. Mobocertinib, an EGFR inhibitor, approved in 2021(33). 

3. Futibatinib, a FGFR2 inhibitor, approved in 2022(34). 
4. Pirtobrutinib, a BTK inhibitor, approved in 2023(35). 

For each KI, we predicted its kinome-wide binding profile using our kernel ridge 
regression model (Methods). We selected kinases deemed active by our method (predicted IC50 
<1000 nM) and confirmed that our method accurately predicted the activity of each KI’s known 
primary target. We ranked the MedDRA PTs associated with the predicted active kinases by p-
values and selected the top 1, 5, 10, 25, 50, and 100 AEs for each. We then collected the PTs 
listed on each KI’s label using the OnSIDES database. 

Our method successfully identified 75-100% of Group I and III AEs within the top five 
ranked AEs per kinase (Fig. 4C) but performed poorly with Group Indeterminate AEs, as 
expected due to their less clear kinase-AE associations. Notably, it showed strong performance 
in identifying rare Group IV AEs for futibatinib and mobocertinib. This variability can be 
explained by the number of significant kinase associations for each AE group (Fig. 4D); Group I, 
III, and IV AEs, having fewer kinase associations on average, are more directly linked to specific 
kinase inhibition, and thus easier to predict. In contrast, Group II and Group Indeterminate AEs 
often have less clear or more complex associations with multiple kinases, increasing the 
challenge in accurately identifying these AEs. 
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Finally, we reviewed the top-ranked AEs for specific inhibitors and identified their 
associated kinase. For mobocertinib, dermatitis acneiform, mucosal inflammation, pneumonitis, 
and nail bed tenderness ranked highest. These AEs were predicted to be linked to on-target 
EGFR inhibition (dermatitis acneiform, mucosal inflammation, nail bed tenderness) and off-
target ALK inhibition (pneumonitis). Importantly, ALK inhibition is observed with osimertinib, 
a close analog of mobocertib (33, 36). Interestingly, nail AEs were also prevalent at top ranks for 
futibatinib, but were associated with predicted CSNK1A1 inhibition, which futibatinib has been 
indeed recently reported to inhibit >50% at a 100nM concentration (34). In both cases, predicted 
off-target interactions contributed to these toxicities. 

Taken together, these results demonstrate that our kinase-AE association method can 
retrospectively identify known kinase-AE associations and prospectively predict AEs in newly 
approved KIs. It showed high accuracy in identifying both frequent and rare AEs, highlighting 
the potential of our approach for improving drug safety monitoring. 

 

Predicted kinase-AE associations show shared kinase family behavior 
Having validated our approach, we reviewed the top kinase-AE associations generated by 

our method. We found that certain AEs had multiple significant kinase associations (FDR-
adjusted p < 0.2) at all MedDRA hierarchy levels (Table S4-6). When examining AEs at the 
HLGT level, many of them showed an interesting pattern of behavior where kinases within the 
same family associated strongly with the same events (Fig. 5A), an observation mirrored by our 
benchmark kinase analysis (Fig. 3A). For example, while inhibition of EGFR has been 
implicated in causing skin fissures and corneal epithelial lesions (37, 38), our analysis showed 
elevated associations of EGFR as well as other family members, including ErbB2 and ErbB4, 
with these AEs (Fig. 5A i). This family-based pattern of association persisted for the RAF, PI3K, 
and EPH kinase families (Fig. 5A ii-iv). For instance, our method recovered the association 
between EPH and vasomotor conditions, supported by evidence that the EPH family is 
functionally linked to vascular morphogenesis and angiogenesis (Fig. 5A iv) (39). This was 
found despite only a few approved EPH-targeting KIs.   

To examine how broadly this family behavior extends, we zoomed out to the protein 
kinase group level to look for AEs common within homologous kinases (Fig. 5B). We observed 
the enrichment of certain specific AEs within the same kinase group. Tyrosine Kinase-Like 
(TKL) protein kinases are more enriched with kinases associated with skin neoplasms, breast 
disorders, and cornification and dystrophic skin disorders as compared to any other protein 
group, while Tyrosine Kinase proteins are more enriched for kinases associated with 
neurological disorders than any other protein group.  

From this group-based analysis, we uncovered that certain AEs at the HLGT level are 
enriched across multiple protein kinase groups (Fig. 5B) –specifically epidermal and dermal 
conditions (“Skin toxicity”) and gastrointestinal signs and symptoms (“Gastrointestinal 
toxicity”). This could be because KIs with vastly different binding profiles across protein 
families can still trigger similar side effects. This is demonstrated by the associations of different 
kinase families to distinct types of skin rashes. For example, inhibition of EGFR was highly 
associated with skin fissures, RAF with hyperkeratosis and skin papilloma, and EPH with skin 
vasomotor conditions (Fig. 5A i, ii, iv). Although these varied skin conditions are often grouped 
under the general term "Rash" on drug labels—a term found on over 91% of KI labels in the 
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OnSIDES dataset—our study reveals that the term "Rash" encompasses a range of distinct 
mechanisms at the kinase level, thus demonstrating the need for higher specificity in kinase AE 
labeling. 
 

DISCUSSION  
Our work dives into the complexities of the AE space associated with protein KIs, aiming 

to inform more rational drug design strategies by identifying specific kinase-AE associations. 
We observed that KIs are associated with an increasing number and variety of AEs over time 
compared to other drug classes. Intriguingly, this increase in AEs within the KI class does not 
appear to be related to the overall promiscuity of the inhibitors, therefore challenging the 
conventional perspective on drug off-target interaction landscape and its subsequent AEs.  

Our analysis differentiates itself from preceding studies by categorizing AEs into several 
classes relevant in the context of kinase-AE prediction. We identified AEs that occur across a 
majority of KIs, which may be attributed to the inhibition of any given kinase. For these events, 
existing literature demonstrates a causative link between kinase activity and the observed 
toxicity. An example of this is the association of skin and gastrointestinal toxicity with VEGFR 
inhibition. Notably, our analysis also delineates a category of events that should not be 
considered in this type of AE landscape, such as toxicities related to the administration of the 
drug, due to their disproportionate occurrence in non-KIs as compared to KIs. 

To evaluate the statistical significance of our kinase-AE associations, we conducted 
rigorous permutation testing. The utility of our approach is underscored by its strong 
performance in recapitulating literature-derived kinases associated with several types of AEs, as 
well as prospective prediction of Groups I, III and IV AEs in the labels of recently approved 
drugs outside of our dataset. Certain AE groups, such as mucosal inflammation and 
hyperkeratinosis, were more accurately associated with KI activity, providing insights that have 
significant translational implications. Importantly, by deriving empirical p-values for each 
kinase-AE association, our approach extends previous research in the field, which has previously 
associated AEs with kinases using non-statistical metrics, such as information gain and feature 
importance from random forest machine learning models.  

Further granularity is provided through our discovery and examination of kinase family 
and group-based patterns. This analysis allows us to uncover distinct molecular mechanisms that 
contribute to the occurrence of common AEs across different kinase families, such as the EGFR, 
RAF, PI3K, and EPH families. On the other hand, it is crucial to note that certain toxicities 
appear to be specific to particular kinase families, such as the JAK family’s differential effects 
on immune system related AEs (12). Such family behavior could have two possible explanations: 
first, kinases from the same family may colocalize in tissue to perform similar functions, and 
thus their inhibition may lead to similar dysfunctions. Second, inhibition of a specific kinase 
within a family is directly responsible for an AE, but structural similarities of family members 
lead to co-inhibition by KI drugs. Recent conformational modeling of protein kinase binding 
pockets has shown strong similarity between families, supporting the latter explanation (40).  

Our study is not without limitations. First, we do not capture the full diversity of the 
kinome; our focus is primarily on the protein kinome, leaving out some off-target interactions 
with lipid and carbohydrate kinases, among others, that are not well characterized. Secondly, our 
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KI activity prediction model serves as an approximation and cannot substitute for 
comprehensive, kinome-wide experimental data. Next, many AEs reported in FAERS and 
OnSiDES for KIs could be attributed to underlying disease symptoms rather than drug-induced 
toxicity, potentially confounding our analysis. While delineating these types of toxicities is 
outside the scope of this work, it may further refine the space of AEs relevant for KI toxicity 
modeling. Furthermore, utilizing FAERS data introduces certain biases into our findings, as the 
number of catalogued AEs highly correlates with the time duration for which a drug has been 
approved. Lastly, there is significant room for improving the terms used for classifying AEs to 
KIs. Our current implementation leverages the MedDRA classification system for AEs. This 
system presents complexities that may obfuscate our statistical approach, such as the one-to-
many mapping of primary terms to higher lever group terms. We anticipate the use of more 
advanced natural language processing techniques that could learn functional relationships 
between events could potentially lead to a development of a more optimized system for 
classifying AEs.  

In conclusion, our study illuminates critical aspects of the AE landscape for KIs, thus 
providing vital data for more rational and targeted drug design. Our findings present a nuanced 
understanding of kinase-associated AEs, which could contribute to the optimization of 
therapeutic strategies and mitigate adverse impacts, ultimately benefiting patient outcomes. 

 
MATERIALS AND METHODS 

Datasets  
Food and Drug Administration Adverse Event Reporting System: The Food and Drug 

Administration Adverse Event Reporting System (FAERS) database is one of the largest 
pharmacovigilant databases in the world, cataloguing hundreds of millions of spontaneous AE 
reports submitted to the FDA by healthcare professionals, consumers, and pharmaceutical 
companies (28). Each AE catalogued is accompanied by the patient’s drug regimen, disease 
indication, and the date of report. For this analysis, over 170 million AE reports from the first 
quarter of 2004 through the third quarter of 2021 were extracted and processed. From FAERS, 
we extracted 6,777 small molecule AE profiles, among which 168 were KIs.  

Medical Dictionary for Regulatory Activities: The Medical Dictionary for Regulatory 
Activities (MedDRA, http://www.meddra.org/) system version 25.1 was utilized to classify and 
analyze AEs in this study. MedDRA is a standardized hierarchical medical terminology 
developed specifically for the classification and coding of AEs. The MedDRA hierarchy consists 
of five levels: System Organ Class (SOC), High-Level Group Term (HLGT), High-Level Term 
(HLT), Preferred Term (PT), and Lowest-Level Term (LLT). 

The Observational Safety in Data from Electronic Health Records dataset: The 
Observational Safety in Data from Electronic Health Records (OnSIDES) dataset was used in 
this study for independent validation. Labels were taken from the DailyMed FDA label database 
and preprocessed as previously described (29). 
Data Filtration  

To ensure the inclusion of only drug-induced AEs in our analysis, we applied several 
filtering steps. Firstly, AEs that were likely caused by the underlying indication rather than the 
drug itself were removed. This was determined by comparing the indication of the FAERS report 
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and AE classifications under the same High-Level Group Term (HLGT) umbrella in the 
MedDRA hierarchy. If the indication and AE fell within the same HLGT, indicating a potential 
association between the disease and the AE, those events were excluded. 

Secondly, AEs falling under the System Organ Class (SOC) annotation of “Congenital, 
familial and genetic disorders” were eliminated from the analysis. These events were presumed 
to be genetically based rather than drug-induced and, therefore, were deemed not relevant for 
assessing drug safety. Additionally, AEs falling under the SOC annotation of “Social 
circumstances” were removed from the dataset. These events, such as the death of a family 
member or job loss, were considered unrelated to drug use and were not considered in the 
analysis. 

Following these filtration steps, the dataset was refined to include 145,037,262 drug-AE 
pairs that were likely attributable to drug use. These filtered pairs were used for subsequent 
analyses, enabling a focused investigation of drug-related AEs. 
 

Reporting Odds Ratio and AE Frequency Calculation  
The Reporting Odds Ratio (ROR) was calculated for each of the remaining drug-AE pairs 

to identify potential disproportional associations between specific drugs and AEs. For each drug  
and AE the following calculation was performed at the PT, HLT, and HLGT MedDRA levels: 

 
Number of Reports With AE Without AE 

With KI a c 

Without KI b d 
					

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	1:	𝑅𝑂𝑅 =	
(𝑎/𝑐)
(𝑏/𝑑) =

𝑎𝑑
𝑏𝑐  

 

Resulting ROR scores were then log-transformed before subsequent analyses. 
We identified a strong bias in our ROR calculations related to time of drug approval; 

newer drugs have less time to accumulate AE reports, decreasing term c in the ROR calculation. 
To counteract this bias, log-transformed ROR terms were then linearly modelled against time 
(Fig. 1 C,D), and the time-independent residuals from this model were used for all following 
analyses. 

Kinase Inhibitor Kinome Binding Prediction 
To predict the kinome-wide binding affinity of an input small molecule. we leveraged a 

custom pairwise kernel ridge regression machine learning model, similar to the models described 
elsewhere (41, 42). We trained the model on compound-kinase Kd, Ki and IC50 data from 
ChEMBL32 (43) and PubChem (44), together with ECFP4 fingerprints and amino acid 
sequences of protein kinase ATP binding pockets. We evaluated the performance of the model 
on the hold-out set under two prediction scenarios applicable in our work: (i) filling in the gaps 
in otherwise known compound-kinase binding affinity matrix (“Compound-Kinase Spilt”), and 
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(ii) predicting kinome-wide binding of a new compound scaffold not seen in the model training 
(“Compound Cluster Spilt”). Pairwise kernel ridge regression model demonstrates best-in-class 
performance compared to other compound-kinase prediction models benchmarked specifically, 
BiMCA (45), DeepDTA (46) and random forest (47) (Table 1).  Importantly, for each point 
estimate of compound-kinase affinity, we leverage the connection between kernel ridge 
regression and Gaussian process to calculate an associated variance estimate which serves as a 
metric of the model’s uncertainty (48): 

 
𝑣𝑎𝑟(𝑥) = 1 − 𝑘(𝑥)!𝐾"#𝑘(𝑥), 

 

where x = (c,p) is a new compound-protein pair, K is the training kernel, and k(x) = k(x, Xtrain) 
is the new pair-training sample kernel. We delineate likely predicted compound-kinase 
interactions, in predicted negative log activity (such as Kd, Ki, IC50) units (pActivity) from 
unlikely predicted interactions by thresholding based on the variance estimate and predicted 
pActivity (pActivity  ≥ 6 and variance ≤ 0.7) (49). 
 

Adverse Event Classification and Association with Kinases 
To find AEs specific to the KI drug class, we quantified the frequency of AEs within the 

FAERS and OnSIDES datasets associated with KI drugs, as defined by the Protein Kinase 
Inhibitor Database (PKIDB) versus non-KI small molecule drugs (50, 51). Briefly, for each AE 
at the PT, HLT, and HLGT MedDRA levels, we count the number of KIs that have a catalogued 
co-incidence with that event. This number is then divided by the total number of KIs in the 
FAERS dataset. The same process is performed on non-KI drugs, creating a KI class-based 
proportion and a general drug proportion for each AE. This process is subsequently performed 
on the OnSIDES dataset in the same manner. Class-specific AEs were then determined by 
comparing the proportions between KI and non-KI drugs. 

Kinase-specific Adverse Events: To find AEs associated with the inhibition of a specific 
kinase, we combined the kinome binding profiles of KIs in FAERS with their RORs to find 
covariance between kinases and AEs. A non-parametric permutation test was used to determine 
the underlying distribution of these covariances, against which we compared the observed 
covariance for each kinase-AE pair. This was performed as follows: First, a FAERS ROR matrix 
was created by converting the log-transformed ROR scores from the FAERS dataset to an AE by 
KI matrix. Next, a predicted kinase profile matrix was created by converting the KI binding 
profiles to a KI by kinase matrix. These two matrices were multiplied, resulting in an AE by 
kinase matrix containing a score for each AE-kinase pair (Fig. 1B). To find the underlying 
distribution of each of these scores, the FAERS ROR matrix was multiplied by a randomized 
kinase binding profile matrix where the binding values for each kinase were randomized. This 
kept the kinase-specific binding distributions the same, but each drug was given a shuffled 
binding profile. The result of this multiplication was a random association matrix. This 
randomization step was performed 5,000 times, resulting in a null association distribution for 
each kinase-AE pair. Finally, the real kinase-AE score was compared against this random 
distribution to calculate an empirical p-value, which was then FDR adjusted (Fig. 1C). 
List of Supplementary Materials 
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Fig. 1. Overview of the Kinase-AE association method. (A) Predicted kinome binding profiles 
for 112 KIs are combined via matrix multiplication with the reporting odds ratios of those 
KIs for all AEs in the FAERS dataset. This results in an association score for each 
kinase-AE pair. This matrix multiplication is repeated 10,000 times on random kinome 
binding profiles to create a null association distribution against which the original score is 
compared to derive an empirical p-value. The AE space of KIs is explored by looking at 
AE frequencies within the FAERS dataset in KIs vs. non-KIs, comparing significant 
associations to known literature associations, predicting labels of KIs from significant 
associations and analyzing the chemical properties of KIs. (B) Cumulative total of 
approved KIs since 2000 (blue) accompanied by the non-cumulative number of AEs 
coinciding with KIs reported to the FAERS database normalized by all FAERS reports 
for the same time period (orange) and the normalized number of AE FAERS reports, per 
KI. (C) Number of unique AEs reported for each approved KI over time. Each point 
represents a KI whose size reflects the number of predicted kinase binders.  
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Fig. 2. Delineating class-specific adverse events of kinase inhibitors. (A) Comparison of the 
proportion of KIs with a given FAERS AE with the proportion of non-KIs with that same 
event. Each point in this plot represents a single AE, with the color reflecting the 
difference between the two proportions. Each symbol represents an AE Group. (B) 
Proportions of selected drugs that coincide with Group I AEs, that is AEs that occur in 
over 45% of KIs in the FAERS dataset (KIs in orange, non-KIs in red). Proportions from 
the FAERs dataset are on the left, proportions from the OnSIDES drug labels dataset on 
the right. (C) Proportions of drugs that coincide with Group II AEs which occur at least 
7.5% more frequently in non-KIs as compared to KIs in the FAERs dataset and their 
corresponding ratios in the OnSIDES dataset. (D) Proportions of drugs that coincide with 
Group III AEs that occur at least 7.5% more frequently in KIs as compared to non-KIs in 
the FAERs dataset and their corresponding ratios in the OnSIDES dataset. N.S. – Not 
Significant. 

 

 
Fig. 3. Analysis of KI-AE associations in literature. (A) Count of HLGT terms associated with 

each kinase in the benchmark kinase-AE set. B) Number of unique AEs observed in 
selected KIs attributable to either on-target or off-target interactions. 
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Fig. 4. Retrospective and prospective evaluation of our method. (A) Number of benchmark 

AEs that have either 100% or 50% of literature associated kinases correctly identified as 
a function of the percentile rank of the kinase (as determined by our method). (B) 
Distributions of the percentile ranks of benchmark kinases plotted for each AE at the PT 
level of the MedDRA hierarchy. This is specifically for a subset of AEs where the 
median percentile rank is below 25%. (C) Predictive performance of identifying AEs 
present on labels for recently approved KIs not observed in our dataset: belumosudil, 
futibatinib, mobocertinib, pirtobrutinib across Group I,III, IV and Indeterminate AEs. (D) 
Total number of significant kinase associations per AE group. 
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Fig. 5. Kinase family and group-based associations to AEs. (A) Top kinases associated with 
select HLGT AEs that show shared family behavior. i. AEs associated with the 
Epidermal Growth Factor Receptor (EGFR) family, ii. AEs associated with the Rapidly 
Accelerated Fibrosarcoma (RAF) family, iii. AEs associated with the Phosphoinositide 3-
kinase (PI3K) family, and iv. AEs associated with the Ephrin (EPH) family. (B) 
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Clustering of kinase protein groups that are enriched with kinases associated with AEs at 
an HLGT level. Numbers inside cells represent the proportion of kinases within each 
protein group that show association (p < 0.2) with the HLGT. 

 

 

 
 

Table 1. Performance of machine learning-based models to predict kinome-wide drug 
activity under distinct validation splits. Our approach, Pairwise Kernel Ridge 
Regression outperforms Random Forest, as well as published methods such as BiMCA 
and DeepDTA for predicting unseen compound-kinase pairs (Compound-Kinase Split) 
and performs favorably predicting activities for previously unseen chemotypes (Ligand 
Cluster Split). More information about this method can be found in Theisen et al. 2024     
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