1 Prevalence of early neonatal mortality and its predictors in

2 sub-Saharan Africa: A Systematic review and Meta-Analysis.

3 Teebeny Zulu^{1*}, Choolwe Jacobs^{1, 3}, Godfrey Biemba^{4, 5}, Patrick Musonda^{1, 2}

- 4 1. Department of Epidemiology and Biostatistics, School of Public Health, University of
- 5 Zambia, Lusaka, Zambia
- 6 2. University of Bergen, Bergen, Norway
- 7 3. Women in Global Health, Lusaka, Zambia
- 8 4. Department of Public Health, school of medicine, Apex Medical University, Lusaka,
- 9 Zambia
- 10 5. Zambia Academy of Sciences, Lusaka, Zambia.
- 11
- 12 Corresponding Author
- 13 *Teebeny Zulu
- 14 <u>teebenyzulu@gmail.com</u>

15 Abstract

Background: Although early neonatal mortality (ENM) has been reported to have a greater
contribution to the overall neonatal mortality compared to late neonatal mortality, no meta-analysis
has studied this phenomenon in isolation. The prevalence of ENM and its predictors in sub-Saharan
Africa (SSA) remains unknown. Therefore, this meta-analysis is aimed at pooling the prevalence
of ENM and its predictors in SSA.

Methods: Google Scholar, PubMed, Scopus, CINAHL, and Google were searched for studies
conducted in SSA that reported the prevalence and predictors of ENM. The data were extracted
using a Microsoft Excel spreadsheet and imported into R version 4.4.1 for further analysis.
Publication bias, heterogeneity, sensitivity analysis, and subgroup analysis were performed.
Prevalence and odds ratios were pooled using the random effects model if significant heterogeneity
existed; otherwise, the fixed effects model was used.

27 Results: A total of 26 studies were included in this systematic review and meta-analysis. The overall pooled prevalence of ENM in SSA was 11% (95% CI: 7-15; I²=100%). Birth asphyxia 28 29 $(OR=3.85; 95\% \text{ CI}: 1.12-13.21; P = 0.0388; I^2 = 86.6\%)$, home delivery $(OR=2.46; 95\% \text{ CI}: 1.79-13.21; P = 0.0388; I^2 = 86.6\%)$ 3.38; p<0.001; $I^2 = 0.0\%$), prematurity (OR=4.69; 95% CI: 3.57-6.16; p<0.001; $I^2 = 36.8\%$), male 30 gender (OR= 1.37; 95% CI: 1.28-1.46; P < 0.001; I^2 = 30.7%), delivery through caesarean section 31 (OR=1.74; 95% CI: 1.49-2.02; P < 0.001; I^2 = 31.5%) and low birth weight (OR=3.00; 95% CI: 32 1.01-8.91; P = 0.0482; $I^2 = 94.4\%$) were associated with a significant increase in pooled odds of 33 ENM in SSA. 34

35 Conclusion: The prevalence of ENM in SSA in significantly high and it contributes greatly to the 36 overall neonatal mortality. Therefore, tailor-made interventions that target the reduction of birth 37 asphyxia, prematurity, home delivery, and low birth weight should be implemented in order to 38 reduce the burden of ENM in SSA.

39 Keywords: SSA, systematic review, meta-analysis, ENM

40 Introduction

Early neonatal mortality is defined as the death of a newborn that occurs within seven days of life
[1]. Although neonatal mortality has decreased significantly over the past few decades, it still poses

a serious problem in most parts of the world [2]. Early neonatal mortality accounts for around 33%43 of all under-five deaths globally [3]. Of the 2.8 million babies that die throughout the neonatal 44 period (0-28 days) globally each year, 73% do so in the first seven days of life [1, 4]. Ninety-nine 45 percent of newborn fatalities and stillbirths take place in low- and middle-income countries like 46 those in SSA [5]. Sub-Saharan Africa had the highest newborn mortality rate in 2019 with 27 47 48 deaths per 1,000 live births, followed by Central and Southern Asia with 24 deaths per 1,000 live births [6]. A child born in SSA or southern Asia had a tenfold higher probability of dying in the 49 first month of life than a child born in a high-income country [6]. Sustainable Development Goal 50 51 (SDG) 3 aims to reduce the neonatal mortality rate to 12 or less per 1000 live births by 2030 [7, 8]. Even though neonatal mortality has decreased significantly since 1990, further efforts are 52 required to accelerate this progress and meet the SDG objective by 2030 [9]. 53

Literature has shown that birth asphyxia [<u>10-12</u>], delivery through caesarean section [<u>13-15</u>], gestation less than 37 weeks [<u>11</u>, <u>13</u>], giving birth from home [<u>13</u>, <u>16</u>, <u>17</u>], low birth weight [<u>13</u>, <u>15</u>, <u>17</u>, <u>18</u>], male gender [<u>16</u>, <u>19</u>], not attending antenatal care [<u>11</u>, <u>13</u>], having no formal education [<u>13</u>, <u>16</u>, <u>20</u>] and prematurity [<u>10</u>, <u>21</u>, <u>22</u>] are factors associated with an increase in ENM.

The early neonatal period, the first seven days of life, is the most precarious for a baby's survival and it contributes a higher percentage to the overall neonatal mortality [6]. Children face the highest risk of death in their first week of life [6], especially in low- and middle-income countries such as those of SSA. Despite this phenomenon being well documented in the literature, no metaanalysis has been performed to pool the evidence specifically, on the prevalence and predictors of ENM across individual studies conducted in SSA. An understanding of the burden and predictors of ENM is key in the development and sustainability of interventions aimed at reducing ENM in

SSA. Therefore, this study provides a timely meta-analysis to understand the prevalence andpredictors of ENM in SSA in order to bridge the existing gap in knowledge.

67 Methods

2.1. Eligibility Criteria and Information Sources. This systematic review and meta-analysis 68 included studies conducted in SSA to assess the prevalence of ENM and its predictors. The studies 69 were evaluated using study area, study setting, title, abstract, and full texts before inclusion in this 70 meta-analysis. This study is prepared based on preferred reporting items for systematic reviews 71 and meta-analysis (PRISMA) statements [23]. In this review, published articles, surveys, and 72 unpublished articles reported in English were explored and included accordingly. Studies that were 73 conducted from inception to July 2024 were searched. Mendelev reference manager was used to 74 manage retrieved articles. 75

2.2. Search Strategy and Selection of Studies. We conducted a comprehensive search to identify 76 77 studies. Electronic databases, grey literature sources, and reference lists of articles were explored independently by three investigators Teebeny Zulu (TZ) Patrick Musonda (PM) and Godfrey 78 79 Biemba (GB). Google Scholar, PubMed, Scopus, CINAHL, and Google were explored. Searching 80 was conducted using key terms: (a) population (early neonates, perinatal, and newborns); (b) 81 exposure (associated factors, risk factors, determinants, and predictors); (c) outcome (prevalence of early neonatal mortality, death, mortality, and birth outcomes); (d) study setting (hospitals, 82 neonatal intensive care units, NICUs, facility-based, community-based surveys, and health 83 84 centres); and (e) location (Sub-Saharan Africa, SSA, and Sub-Saharan countries). Boolean operators such as "OR" and "AND" were used during the search process. Screening and selection 85

of studies was done using the Covidence screening tool by two authors (TZ and GB) anddisagreements between the two authors was resolved by the third author (PM).

2.3. Data Extraction Process. A structured and pretested data extraction checklist in Microsoft
Excel was used to extract information by two authors (TZ and GB). From included studies, we
extracted the name of the first author, publication year, study country, sample sizes, study setting,
study design, prevalence of ENM, adjusted odds ratio and their corresponding confidence intervals
as the measure of association of the predictors.

2.4. Assessment of Study Quality. The Joanna Briggs Institute Prevalence Critical Appraisal Tool
for use in the systematic review of prevalence studies was used for the critical appraisal of studies
[24]. Moreover, the methodological and other qualities of each article were assessed based on a
modified version of the Newcastle-Ottawa Scale adapted from [25].

2.5. Summary Measures. The primary outcome of this study was the prevalence of ENM (death
before 7 days of life) in SSA. The second outcome was predictors of ENM that were computed
from studies reporting predictors in the form of odds ratios. The pooled odds ratios were computed
using the adjusted odds ratios with 95% confidence intervals (CI) that were reported in the original
studies. The pooled odds ratios were presented with a 95% CI. Independent predictors were
declared when p-value<0.05. The effect sizes were the prevalence of ENM and odds ratios
predicting ENM.

2.6. Statistical Methods and Analysis. In the present meta-analysis, R software version 4.4.1 was
used for computing the pooled estimates of both the odds ratios of ENM and its predictors. We
used the *'metaprop'* function from the Meta package for pooling the prevalence of ENM in SSA
and the *'metagen'* function for pooling log-odds ratios. The inverse method and the Der Simonian-

Laird (DL) were used for pooling the prevalence and the heterogeneity parameter (Tau), respectively, in the random effects model. Subgroup analyses were performed using study setting (facility or community-based studies), region, and study design. Sensitivity analysis was performed using the leave-one-out method, which assesses the influence of each study on the pooled effect. Meta-analyses were presented using forest plots, summary tables, and texts.

113 2.7. Publication Bias and Heterogeneity. Publication bias was assessed by looking at the asymmetry of the funnel plot and/or the statistical significance of Egger's regression test. 114 Publication bias was declared when Egger's regression test was significant (p < 0.05) [26]. 115 Heterogeneities among studies were explored using forest plots, the I-squared test (I^2) , and 116 Cochrane Q statistics [27]. The I^2 values of 25%, 50%, and 75% were interpreted as low, medium, 117 and high heterogeneity, respectively [28]. In this study, the presence of heterogeneity was declared 118 and justified when $I^2 \ge 50\%$ with a p-value < 0.05. The sources of possible significant 119 heterogeneities were explored through subgroup analyses and sensitivity analyses using the leave-120 121 one-out plot.

122 **3. Results**

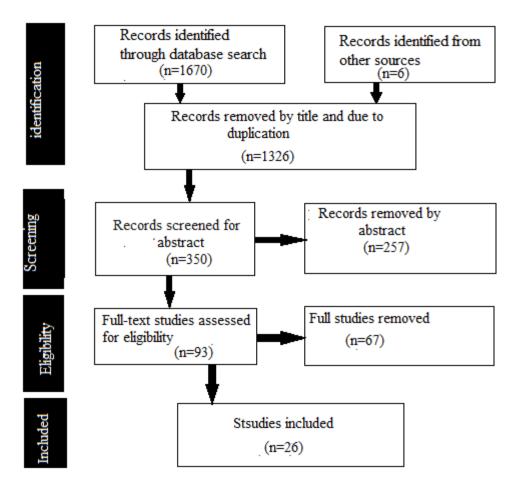
3.1. Selection of Eligible Studies. In the initial search, 1676 studies were found. These studies
were retrieved from electronic databases and other sources. Of these studies, 1326 were duplicate
files, and 257 studies were removed after screening using abstracts. The full texts of 93 studies
were reviewed. Finally, 26 studies [3, 10–22, 29–40] were included in the final analysis of this
systematic review and meta-analysis (Figure 1).

3.2. Characteristics of the Studies. Most articles in this systematic review and meta-analysis were
 conducted in Ethiopia (14). This meta-analysis included 18 studies from East Africa, 4 from West

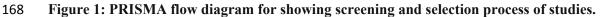
Africa, 2 from Central Africa, and 2 from selected countries in SSA. Sixteen studies were conducted in facilities, while 10 were conducted in communities. This meta-analysis consisted of 12 cross-sectional studies, 6 prospective cohort studies, 4 case-control studies, and 4 retrospective cohort studies. The proportion of ENM found in the studies varied from 1.5% to 33% as shown in Table 1.

3.3. The Pooled prevalence of ENM in SSA. Twenty-three articles [3, 10-13, 16-21, 29-40] were
included to estimate the pooled prevalence of ENM in SSA. The pooled prevalence of ENM in
SSA was found to be 11%, or 110 deaths per 1000 live births (95% CI: 7%-15%; *I*²=100%) (Figure
2).

Subgroup analysis, publication bias and sensitivity analysis. Subgroup analysis was conducted
on the basis of region, setting, and study design. Our regional subgroup analysis indicated that
studies conducted in East Africa had the highest pooled prevalence of ENM at 13% (95% CI: 8%–
19%, *I*²=99%). (Figure 2). Figure 3 demonstrates that research done in facility settings showed a
higher pooled prevalence of ENM than community-based studies, at 17% (95% CI: 14%–21%; *I*²=98%). Moreover, the greatest pooled prevalence 18% (95% CI: 10%-26%, *I*²=99%) came from
case-control studies (Figure 4).


An assessment of publication bias was done through a funnel plot and Egger's regression test. Skewed distribution on a funnel plot suggested potential publication bias. Additionally, Egger's regression test (p<0.001) objectively showed evidence of publication bias. Analysis utilizing the Der Simonian-Laird random-effects model revealed that no any individual study had an impact on the overall prevalence of ENM in SSA (Figure 7).

152 **3.4 Factors associated with ENM in SSA**


153 3.4.1. *Birth asphyxia.* Five studies [10-13, 21] examined the association between birth asphyxia 154 and ENM in SSA. The pooled odds of ENM for neonates who experienced birth asphyxia were 155 3.85 times the odds of those who did not experience it (95% CI: 1.12-13.21; p=0.0388) and 156 heterogeneity ($I^2 = 86.6\%$, p < 0.001).

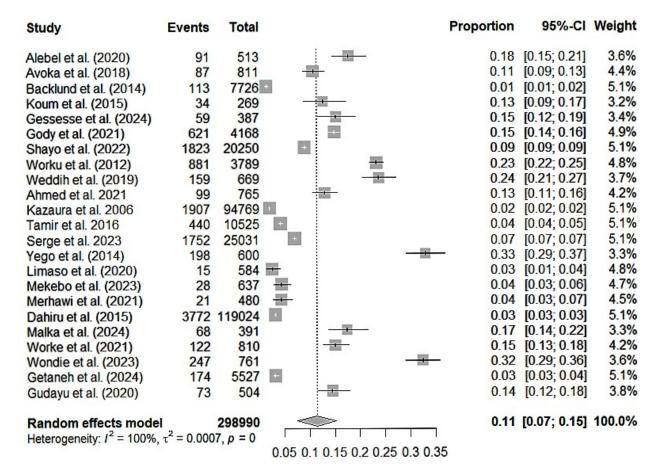
157 3.4.2 *Home delivery*. Six studies [13, 15-17, 21, 31] examined the association between home 158 delivery and ENM in SSA. The pooled odds of mortality among early neonates who were delivered 159 at home were 2.46 times higher than their counterparts who were delivered at a health facility 160 (95% CI: 1.79-3.38; p=0.0388). No significant heterogeneity was observed among these studies 161 ($I^2 = 0.0\%$, p < 0.4305).

162 3.4.3. *Prematurity*. We included 4 studies [10, 13, 21, 22] to assess the association between 163 prematurity and ENM in SSA. The pooled odds of death for premature early neonates increased 164 by a factor of 4.69 compared to their full-term counterparts (95% CI: 3.57-6.16; p<0.001) and 165 heterogeneity ($I^2 = 36.8\%$, p = 0.1915).

167

- 169
- 170

171 Table 1. Characteristics of included studies for prevalence of ENM in SSA


Author	Country	Region	Study Design	Setting	Sample	ENM
Alebel et al. (2020)	Ethiopia	East Africa	prospective cohort	Facility	513	18%
Avoka et al. (2018)	Ghana	West Africa	cross-sectional	Facility	811	11%
Backlund et al. (2014)	Rwanda	Central Africa	cross-sectional	Community	7726	1.5%
Koum et al. (2015)	Cameroon	East Africa	cross-sectional	Facility	269	13%
Gessesse et al. (2024)	Ethiopia	East Africa	prospective cohort	Facility	387	15%
Gody et al. (2021)	CAR	Central Africa	case-control	Facility	4168	15%
Gudayu et al. (2020)	Ethiopia	East Africa	retrospective cohort	Facility	504	14.5%
Shayo et al. (2022)	Tanzania	East Africa	retrospective cohort	Facility	20250	09%
Worku et al. (2012)	Ethiopia	East Africa	cross-sectional	Facility	3789	23%
Weddih et al. (2019)	Mauritania	West Africa	cross-sectional	Facility	669	24%
Ahmed et al. (2021)	Ethiopia	East Africa	retrospective cohort	Facility	765	13%

Kazaura et al. (2006)	Tanzania	East Africa	cross-sectional	Community	94769	02%
Tamir et al. (2016)	Ethiopia	East Africa	cross-sectional	Community	10525	04%
Limaso et al. (2020)	Ethiopia	East Africa	prospective cohort	Community	584	2.6%
Serge et al. (2023)	Benin	West Africa	case-control	Community	25031	07%
Yego et al. (2014)	Kenya	East Africa	case-control	Facility	600	33%
Tamir et al. (2024)	SSA	SSA	cross-sectional	Community	262,763	2.3%
Sandie et al. (2023)	SSA	SSA	cross-sectional	Community	155 172	-
				5		
Mekebo et al. (2023)	Ethiopia	East Africa	cross-sectional	Facility	637	4.4%
Kebede et al. (2021)	Ethiopia	East Africa	case-control	Community	1077	-
Merhawi et al. (2021)	Ethiopia	East Africa	prospective cohort	Facility	480	4.3%
Dahiru et al. (2015)	Nigeria	West Africa	cross-sectional	Community	119024	3.2%
Malka et al. (2024)	Ethiopia	East Africa	prospective cohort	Facility	391	17.4%
Worke et al. (2021)	Ethiopia	East Africa	prospective cohort	Facility	810	15.1%
Wondie et al. (2023)	Ethiopia	East Africa	retrospective cohort	Facility	761	32.5%
Getaneh et al. (2024)	Ethiopia	East Africa	Cross-sectional	Community	5527	3.1%

172 ENM=Early Neonatal Mortality; CAR=Central African Republic; SSA=Sub-Saharan Africa

173 3.4.4. *Male gender*. We included 8 studies [13, 14, 16, 19, 20, 31, 33, 36] to determine the 174 association between male gender and ENM in SSA. As compared to female early neonates, the 175 pooled odds of death for male early neonates increased by 37%, and this increase can be as low as 176 28% to as high as 46% in SSA with a 0.95 probability. No significant heterogeneity was observed 177 among these studies ($I^2 = 30.7\%$, p = 0.1831).

178 3.4.5. *Delivery through caesarean section*. Eight studies [12–15, 17, 20, 22, 33] reported the 179 association between delivery through a caesarean section and ENM in SSA. The pooled odds of 180 ENM for neonates who were delivered through caesarean section were 74% higher than those who 181 were delivered through the vagina (95% CI: 1.49–2.02; p < 0.001) and heterogeneity ($I^2 = 31.5\%$, 182 p = 0.1768).

184

185 Figure 2: Forest plot for the pooled prevalence of ENM in SSA

186 3.4.6. *Low birth weight (>2.5kg)*. The odds ratio of the association between low birth weight and 187 ENM was pooled from 13 studies [<u>11-15</u>, <u>17-21</u>, <u>30</u>, <u>31</u>, <u>36</u>]. Low birth weight was found to 188 increase ENM by a factor of 3 compared to normal birth weight (95% CI: 1.01-8.91; p<0.0482) 189 and heterogeneity ($I^2 = 94.4\%$, p < 0.001).

190 On the other hand, having no education compared to having some education (OR = 1.44; 95% CI:

191 $0.72-2.89, P = 0.2454, I^2 = 94.4\%$), not attending antenatal care compared to attending (OR = 3.56;

192 95% CI: 0.64-19.84, P = 0.0864, $I^2 = 93.1\%$), having respiratory distress compared to not having

193 (OR = 4.73; 95% CI: 0.01-2170.45, P = 0.3893, $I^2 = 83.9\%$), and gestation less than 37 weeks (OR

194 = 12.49; 95% CI: 0.85-182.94, P = 0.0560, $I^2 = 91.1\%$) were associated with an increase in the

195 pooled odds of ENM in SSA, though the association was not statistically significant.

196 **4. Discussion**

197 This meta-analysis was aimed at estimating the pooled prevalence of ENM and its associated 198 predictors in SSA. The study found a relatively high prevalence of ENM in SSA. Birth asphyxia, 199 home delivery, prematurity, male gender, delivery through a caesarean section, and low birth 200 weight were factors associated with a significant increase in neonatal mortality.

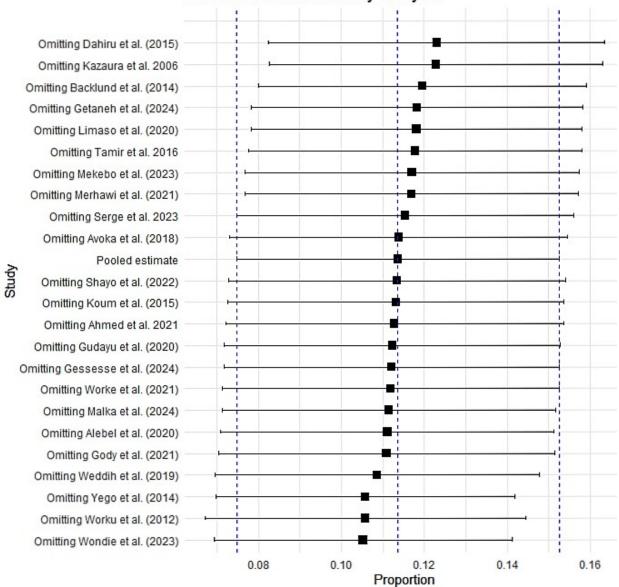
Study	Events	Total		Proportion	95%-CI	Weight
Region = East Africa						
Alebel et al. (2020)	91	513	-	0.18	[0.15; 0.21]	3.6%
Koum et al. (2015)	34	269		0.13	[0.09; 0.17]	3.2%
Gessesse et al. (2024)	59	387		0.15	[0.12; 0.19]	3.4%
Shayo et al. (2022)	1823	20250	. +	0.09	[0.09; 0.09]	
Worku et al. (2012)	881	3789	+	0.23	[0.22; 0.25]	
Ahmed et al. 2021	99	765	4	0.13	[0.11; 0.16]	
Kazaura et al. 2006	1907	94769	•	0.02	[0.02; 0.02]	
Tamir et al. 2016	440	10525	•	0.04	[0.04; 0.05]	
Yego et al. (2014)	198	600		0.33	[0.29; 0.37]	
Limaso et al. (2020)	15	584	+		[0.01; 0.04]	
Mekebo et al. (2023)	28	637	+	0.04	[0.03; 0.06]	4.7%
Merhawi et al. (2021)	21	480	H	0.04	[0.03; 0.07]	
Malka et al. (2024)	68	391		0.17	[0.14; 0.22]	
Worke et al. (2021)	122	810		0.15	[0.13; 0.18]	
Wondie et al. (2023)	247	761		0.32	[0.29; 0.36]	
Getaneh et al. (2024)	174	5527	•	0.03	[0.03; 0.04]	5.1%
Gudayu et al. (2020)	73	504	-	0.14	[0.12; 0.18]	3.8%
Overall effect		141561	\diamond	0.13	[0.08; 0.18]	71.8%
Heterogeneity: $I^2 = 99\%$,	$\tau^2 = 0.0022$	$p_{1,p} = 0$				
Region = West Africa						
Avoka et al. (2018)	87	811	D	0.11	[0.09; 0.13]	4.4%
Weddih et al. (2019)	159	669	=	0.24	[0.21; 0.27]	3.7%
Serge et al. 2023	1752	25031	•	0.07	[0.07; 0.07]	5.1%
Dahiru et al. (2015)	3772	119024		0.03	[0.03; 0.03]	5.1%
Overall effect		145535		0.10	[0.00; 0.24]	18.2%
Heterogeneity: $I^2 = 100\%$	$\tau^2 = 0.001$	0, p < 0.0	01			
Region = Central Afric	ca					
Backlund et al. (2014)	113	7726	4	0.01	[0.01; 0.02]	5.1%
Gody et al. (2021)	621	4168	+	0.15	[0.14; 0.16]	4.9%
Overall effect		11894			[0.00; 0.94]	10.0%
Heterogeneity: $I^2 = 100\%$	$\tau^2 = 0.009$					
Overall effect		298990	•	0.11	[0.07; 0.15]	100.0%
Heterogeneity: $I^2 = 100\%$	$\tau^2 = 0.000$	07, p = 0				
Test for subgroup differen	nces: $\chi_2^2 = 0$	0.57, df =	2 (p =00275) 0.4 0.6 0.8	3		

201

202 Figure 3: forest plot for subgroup analysis by study region

203 4.1 prevalence of ENM in SSA

Our meta-analysis is one of its kind, pooling evidence from studies across SSA to explore the 204 prevalence and predictors of ENM in SSA. The pooled prevalence of ENM in SSA was estimated 205 from 23 studies, and it was found to be 11% (110 deaths per 1000 live births). The high prevalence 206 207 observed is not surprising as a higher percentage of newborn deaths occur in the first week of life especially in limited resource settings like SSA [1, 5]. The high prevalence can also be explained 208 by the large number of facility-based studies included in this meta-analysis which overestimates 209 210 ENM. Subgroup analysis revealed that East Africa reported the highest prevalence of ENM in SSA (13%). We also found that the pooled prevalence of ENM was higher in facility-based studies 211 (17%) as compared to community-based studies (3%), mostly those performed on national 212 213 demographic and health surveys. These figures show that the prevalence of ENM is still high, and there is a need to scale up efforts aimed at reducing the burden of ENM in SSA. 214


Study	Events	Total				Proportion	95%-CI	Weight
Setting = facility								
Alebel et al. (2020)	91	513					[0.15; 0.21]	
Avoka et al. (2018)	87	811		-			[0.09; 0.13]	4.4%
Koum et al. (2015)	34	269	_	•			[0.09; 0.17]	3.2%
Gessesse et al. (2024)	59	387					[0.12; 0.19]	3.4%
Gody et al. (2021)	621	4168					[0.14; 0.16]	
Shayo et al. (2022)	1823	20250	+				[0.09; 0.09]	
Worku et al. (2012)	881	3789					[0.22; 0.25]	
Weddih et al. (2019)	159	669			<u>.</u>		[0.21; 0.27]	
Ahmed et al. 2021	99	765	-	r —			[0.11; 0.16]	
Yego et al. (2014)	198	600				- 0.33	[0.29; 0.37]	
Merhawi et al. (2021)	21	480					[0.03; 0.07]	
Malka et al. (2024)	68	391					[0.14; 0.22]	
Worke et al. (2021)	122	810					[0.13; 0.18]	
Wondie et al. (2023)	247	761					[0.29; 0.36]	
Gudayu et al. (2020)	73	504				0.14	[0.12; 0.18]	3.8%
Overall effect		35167		$\langle \rangle$		0.17	[0.13; 0.21]	60.0%
Heterogeneity: $I^2 = 98\%$,	$\tau^2 = 0.0049$), p < 0.0°	1					
Setting = community			_					-
Backlund et al. (2014)	113	7726					[0.01; 0.02]	
Kazaura et al. 2006	1907	94769	- F				[0.02; 0.02]	
Tamir et al. 2016	440	10525	+				[0.04; 0.05]	
Serge et al. 2023	1752	25031	+				[0.07; 0.07]	
Limaso et al. (2020)	15	584					[0.01; 0.04]	
Mekebo et al. (2023)	28	637					[0.03; 0.06]	
Dahiru et al. (2015)	3772	119024	4				[0.03; 0.03]	
Getaneh et al. (2024)	174	5527	+-				[0.03; 0.04]	
Overall effect		263823				0.03	[0.03; 0.04]	40.0%
Heterogeneity: $I^2 = 99\%$,	$\tau^2 = 0.0002$	2, p < 0.0	1					
Overall effect		298990				0.11	[0.10; 0.13]	100.0%
Heterogeneity: /2 = 100%								
Test for subgroup differen	nces: $\chi_1^2 =$	50.53, df :	= 0.005<00	100)15 0.2 0.2	5 0.3 0.3	5		

- 216 Figure 4: Forest plot for subgroup analysis by study setting
- 217

215

Study	Events	Total			Proportion	95%-CI	Weight
`Study Design` = pros	pective co	hort	1				
Alebel et al. (2020)	91	513		1		[0.15; 0.21]	3.6%
Gessesse et al. (2024)	59	387	H			[0.12; 0.19]	3.4%
Limaso et al. (2020)	15	584 -	-			[0.01; 0.04]	4.8%
Merhawi et al. (2021)	21	480	-			[0.03; 0.07]	4.5%
Malka et al. (2024)	68	391		1		[0.14; 0.22]	3.3%
Worke et al. (2021)	122	810		1		[0.13; 0.18]	
Overall effect		3165		>	0.12	[0.06; 0.18]	23.9%
Heterogeneity: $I^2 = 97\%$, 1	$t^2 = 0.0051$	p < 0.01					
`Study Design` = cross	s-sectiona	al					4 404
Avoka et al. (2018)	87	811				[0.09; 0.13]	
Backlund et al. (2014)	113	7726 *				[0.01; 0.02]	
Koum et al. (2015)	34	269				[0.09; 0.17]	
Worku et al. (2012)	881	3789				[0.22, 0.25]	
Weddih et al. (2019)	159	669				[0.21; 0.27]	
Kazaura et al. 2006	1907	94769				[0.02; 0.02]	
Tamir et al. 2016	440	10525	+			[0.04; 0.05]	
Mekebo et al. (2023)	28	637	-			[0.03; 0.06]	
Dahiru et al. (2015)	3772		4			[0.03; 0.03]	
Getaneh et al. (2024)	174	5527	+			[0.03; 0.04]	
Overall effect		243746	\diamond		0.08	[0.06; 0.09]	46.1%
Heterogeneity: $I^2 = 99\%$,	$\tau^2 = 0.0003$, <i>p</i> = 0					
Study Design = case	-control						
Gody et al. (2021)	621	4168		-+		[0.14; 0.16]	
Serge et al. 2023	1752	25031	+			[0.07; 0.07]	
Yego et al. (2014)	198	600		10 A FRANCISCO - TANKA A STAR		8 [0.29; 0.37]	
Overall effect		29799	-		- 0.18	8 [0.10; 0.26]	13.3%
Heterogeneity: $I^2 = 99\%$,	$\tau^2 = 0.0055$, p < 0.01					
`Study Design` = retro		cohort	_			10.00-0.00	E 40/
Shayo et al. (2022)	1823	20250	*			0.09; 0.09	
Ahmed et al. 2021	99	765		-		3 [0.11; 0.16]	
Wondie et al. (2023)	247	761				2 [0.29; 0.36]	
Gudayu et al. (2020)	73	504				4 [0.12; 0.18]	
Overall effect		22280			- 0.1	7 [0.09; 0.26]	16.7%
Heterogeneity: $I^2 = 99\%$,	$\tau^2 = 0.0074$	4, p < 0.01					
Overall effect	2	298990	<u> </u>	1 1	0.1	1 [0.10; 0.13]	100.0%
Heterogeneity: $I^2 = 100\%$ Test for subgroup differe	$\tau^2 = 0.000$ nces: $\gamma_2^2 =$)7, p = 0 12.19, df =	8.05<00100)15 0.2 0	25 0.3 0.35		

220 Figure 5: Forest plot for subgroup analysis by study design

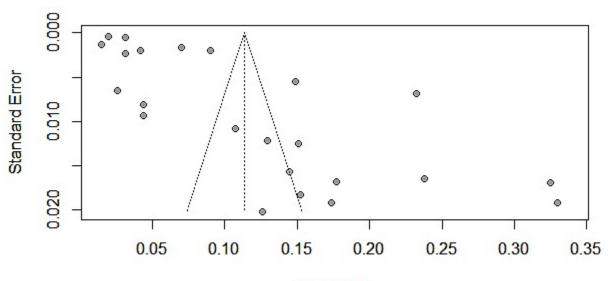
Leave-One-Out Sensitivity Analysis

221

Figure 6: Sensitivity analysis stratified by effect size for studies included to estimate the

223 pooled prevalence of ENM in SSA

224 4.2 Predictors of ENM in SSA


Our meta-analysis combined odds ratios for 10 predictors of ENM in sub-Saharan Africa. A predictor had to be included in an adjusted model in a minimum of three studies to be included in

the meta-analysis. We observed that birth asphyxia, delivering at home, being born prematurely,

being male, having a caesarean section, and having a low birth weight were significantly linked to
an increase in ENM. However, not having received a formal education, not attending antenatal
care, experiencing respiratory distress, and having a gestation period of less than 37 weeks were
found to be factors that increased the risk of ENM. However, the combined odds ratios for these
factors did not show statistical significance in this research.

233 Our research revealed that newborns aged 0-7 days who suffered from birth asphyxia had a higher 234 chance of mortality compared to those who didn't undergo such a condition. This result aligns with the results of previous studies [10–13, 21]. Birth asphyxia occurs when a newborn's brain and other 235 236 organs are deprived of sufficient oxygen and nutrients before, during, or immediately following delivery. Birth asphyxia is one of the leading causes of mortality for newborns; the effect of birth 237 238 asphyxia is not limited to death but also leads to physical, mental, and social incapability in newborns due to severe hypoxic-ischemic organ damage [41]. Hence, to reduce overall newborn 239 mortality and its long-term consequences, the quality of medical care before birth, at birth, and 240 after birth is essential. 241

medRxiv preprint doi: https://doi.org/10.1101/2024.08.06.24311554; this version posted August 7, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.

242

Proportion

Figure 7: Funnel plot showing publication bias among studies included to estimate a pooled
prevalence of ENM in SSA.

Findings have shown that newborn babies born at home had a higher probability of dying within 245 the first week of life than those born in a medical center. This discovery aligns with findings from 246 other research studies [13, 16, 17, 21, 42]. Babies born at home with a non-professional attendant 247 may not receive all necessary newborn and postpartum care services. In cases of delivery 248 complications, it is best to opt for institutional deliveries as both mothers and babies receive 249 professional care and have access to life-saving tools at healthcare facilities, resulting in mutual 250 benefits. Further, having a skilled team at a healthcare facility could provide an additional benefit 251 in minimizing possible delays and improving the early treatment of pregnancy-related issues and 252 birth difficulties [43]. This discovery shows a necessity to enhance the provision of health facility 253 delivery in SSA in order to raise the likelihood of newborn survival. Male babies were more likely 254 to die within the first week of life after birth compared to female babies. This result is consistent 255 with the previous studies [16, 19, 33]. The possible reason could be that males are biologically 256 257 weaker than females. Therefore, specialized care should be given to newborns especially, male 258 ones.

259 Table 2: predictors of ENM in SSA

Predictors	Included studies	OR (95% CI)	POR (95% CI), p-value	Heterogeneity
Birth asphyxia	Ahmed et al. 2021 Koum et al. 2015 Gody et al. 2021 Worku et al. 2012 Yego et al. 2014	2.20 (0.94, 5.13) 17.80 (2.01, 157.42) 12.72 (6.54, 24.73) 1.82 (1.32, 2.51) 2.40 (1.60, 3.60)	3.85 (1.12, 13.21) P = 0.0388	$I^2 = 86.6\%,$ p < 0.001**
Home delivery	Ahmed et al. 2021 Backlund et al. 2014 Gody et al. 2021 Mekebo et al. 2023 Tamir et al. 2024 Tamir et al. 2016	1.00 (0.20, 4.95) 3.50 (1.89, 6.49) 1.43 (0.64, 3.20) 2.29 (0.97, 5.39) 3.59 (1.41, 9.14) 2.40 (1.32, 4.36	2.46 (1.79, 3.38) <i>P</i> < 0.001	$I^2 = 0.0\%,$ p = 0.4305*
Prematurity	Ahmed et al. 2021 Koum et al. 2015 Gody et al. 2021 Kebede et al. 2021	3.60 (1.66, 7.81) 21.30 (1.45, 313.96) 6.11 (4.09, 9.12) 3.62 (2.36, 5.55)	4.69 (3.57, 6.16) <i>p</i> < 0.001	$I^2 = 36.8\%,$ p = 0.1915*
Male gender	Backlund et al. 2014 Gody et al. 2021 Kazaura et al. 2006 Mekebo et al. 2023 Sandie et al. 2023 Shayo et al. 2022 Serge et al. 2023	$\begin{array}{c} 1.43 \ (0.86, 2.38) \\ 1.27 \ (0.88, 1.84) \\ 1.40 \ (1.30, 1.50) \\ 1.63 \ (0.79, 3.36) \\ 1.23 \ (0.94, 1.62) \\ 1.50 \ (1.14, 1.98) \\ 1.04 \ (0.68, 1.59) \end{array}$	1.38 (1.30, 1.48) <i>P</i> < 0.001	$I^2 = 0.0\%,$ p = 0.7703*
Delivery through C-section	Gody et al. 2021 Kebede et al. 2021 Sandie et al. 2023 Shayo et al. 2022 Tamir et al. 2024 Tamir et al. 2016 Serge et al. 2023 Yego et al. 2014	1.69 (1.18, 2.42) 1.16 (0.78, 1.72) 2.37 (1.64, 3.42 2.10 (1.48, 2.98) 1.81 (1.31, 2.51) 1.60 (0.69, 3.73) 1.13 (0.64, 2.00) 1.50 (0.29, 7.70)	1.74 (1.49, 2.02) <i>P</i> < 0.001	$I^2 = 31.5\%,$ p = 0.1768*
Low birth weight	Ahmed et al. 2021 Avoka et al. 2018 Backlund et al. 2014 Gody et al. 2021 Kazaura et al. 2006 Sandie et al. 2023 Tamir et al. 2024 Tamir et al. 2016 Serge et al. 2023 Worku et al. 2012 Yego et al. 2014 Weddih et al. 2019	$\begin{array}{c} 2.50 & (0.30, 21.16) \\ 2.0700 & (1.09, 3.92) \\ 3.45 & (1.88, 6.34) \\ 22.59 & (15.93, 32.04) \\ 18.40 & (15.81, 21.41) \\ 2.35 & (0.50, 10.94) \\ 3.27 & (2.16, 4.95) \\ 3.30 & (1.36, 7.99) \\ 0.84 & (0.30, 2.35) \\ 9.64 & (3.32, 27.98) \\ 2.40 & (0.88, 6.54) \\ 3.91 & (1.69, 9.05) \end{array}$	4.29 (2.30, 8.02) P = 0.0003	<i>I</i> ² = 94.0%, <i>p</i> < 0.001**

260 **OR**=odds ratio; POR=pooled odds ratio; **CI**=confidence interval; *****=fixed effects model; **=random effects model

262 Table 2 continued

Predictors	Included studies	OR (95% CI)	POR (95% CI), p-value	Heterogeneity
No education	Gody et al. 2021 Kazaura et al. 2006 Mekebo et al. 2023 Sandie et al. 2023 Tamir et al. 2024 Tamir et al. 2016 Serge et al. 2023	5.65 (4.08, 7.82) 1.29 (0.66, 2.54) 2.13 (1.14, 3.99) 1.14 (0.88, 1.47) 0.83 (0.69, 1.00) 0.50 (0.17, 1.46) 1.30 (1.08, 1.56)	1.44 (0.72, 2.89) P = 0.2454	$I^2 = 94.4\%$ p < 0.001**
No antenatal care visits	Gody et al. 2021 Worku et al. 2012 Yego et al. 2014	5.54 (3.95, 7.78) 1.70 (1.28, 2.26) 5.40 (1.99, 14.64)	3.56 (0.64, 19.84) <i>P</i> = 0.0864	$I^2 = 93.1\%,$ p < 0.001**
Respiratory distress	Koum et al. 2015 Gody et al. 2021 Yego et al. 2014	130.37 (9.28, 1831.92) 1.22 (0.88, 1.69) 1.60 (1.08, 2.36)	4.73 (0.01, 2170.45) P = P = 0.3893	$I^2 = 83.9\%,$ p = 0.002**
Gestation less than 37 weeks	Gody et al. 2021 Worku et al. 2012 Yego et al. 2014	29.36 (20.13, 42.83) 3.60 (1.64, 7.90) 16.60 (8.19, 33.65)	12.49 (0.85, 182.94) <i>P</i> = 0.0560	$I^2 = 91.1\%, p < 0.001**$

263 **OR**=odds ratio; **POR**=pooled odds ratio **CI**=confidence interval; *****=fixed effects model; ******=random effects model

264 Consistent with previous research [21, 44], premature infants had a higher likelihood of mortality in the first week of life in comparison to full-term infants. Preterm babies face risks such as organ 265 266 failure, neurodevelopmental and learning disabilities, vision problems, and long-term cardiovascular and non-communicable diseases [45]. Hence, it is necessary to introduce measures 267 that can decrease early mortality rates related to prematurity. For instance, according to a 268 systematic review of low and middle-income countries [46], giving pregnant mothers multiple 269 micronutrient supplements and improving the quality of antenatal care can decrease prematurity 270 and stillbirth. In pre-term neonates, feeding support, probiotics, and thermal regulation were 271 reported to improve survival rates in premature newborns. 272

Although a cesarean section (CS) is performed to save the life of the newborn, the possibility of ENM was higher among babies delivered by CS compared to babies delivered vaginally. This finding was coherent with previous studies [15, 14, 47, 48]. On this basis, previous scientific

literature also recommends avoiding CS as an intrapartum intervention when there is no clear medical indication that it will improve the outcome for the mother or the baby [44, 47]. However, it could be plausible that the higher likelihood of ENM among babies born via CS was since the majority of CS deliveries occur as a last option for delivery when there are pregnancy complications [15]. Another possible explanation for this finding in SSA could be due to poor labour care, poor surgical care at the time of cesarean section, and poor neonatal care post-CS that may be observed in most SSA countries' health facilities [13].

Regarding birth weight, the likelihood of ENM was higher among low birth-weight (LBW) babies 283 compared to babies of normal birth weight. This is consistent with previous studies [15, 49, 50]. 284 One of the common reasons for the higher risk of ENM among LBW babies is that most of the 285 time, LBW babies are preterm births and/or small for gestational age [49]. These findings suggest 286 the need to improve mother care during pregnancy, childbirth, and postnatal periods, particularly 287 for LBW babies. The World Health Organisation has also developed clinical guidelines to increase 288 baby survival and advocates the need for careful essential newborn care for LBW babies [51]. 289 Kangaroo mother care can be an option for LBW neonates which involves skin-to-skin contact 290 between a mother and her newborn [52]. 291

292 Study strengths and limitations

The main strength of this study is that reputable databases were explored to find all possible articles. This study is the first of its type to determine the prevalence of ENM in SSA and unfold the possible predictors of ENM using odds ratios. In addition, the subgroup analysis performed in this study which revealed high prevalence among facility-based studies indicates the quality of newborn care service delivery across facilities in SSA. This finding will have a paramount

importance for program planners and policymakers in SSA, where the burden of ENM is considerably high. Despite these strengths, the presence of scant studies in countries other than Ethiopia could obscure some other predictors of ENM in SSA. The lack of reports on the prevalence of ENM in community-based studies could also be associated with underestimation of the prevalence of ENM in SSA. Studies in countries other than Ethiopia and community-based studies could unfold all possible causes of ENM in the future.

304 Conclusion

We determined the prevalence of ENM and its predictors in SSA. The pooled prevalence of ENM was significantly high in SSA. Facility-based studies contributed greatly to the high prevalence of ENM in SSA. Birth asphyxia, home delivery, prematurity, male gender, delivery through cesarean section and low birth weight were factors associated with a significant increase in the likelihood of ENM in SSA. Therefore, there is a need to design strategies to address all these predictors of ENM to reduce the high burden of ENM in SSA.

311 **References**

1. Lehtonen L., et al. Early neonatal death: a challenge worldwide in Seminars in Fetal and

313 Neonatal Medicine. 2017. Elsevier. https://doi.org/10.1016/j.siny.2017.02.006 PMID:
314 28238633.

- Kibria G.M.A., et al., Determinants of early neonatal mortality in Afghanistan: an
 analysis of the Demographic and Health Survey 2015. Globalization and health, 2018.
 14(1): p. 1–12
- 318 3. Dahiru T. Determinants of Early Neonatal Mortality in Nigeria: Results from 2013
 319 Nigeria DHS. J Pediatric Neonatal Care. 2015; 2 (5):1–8.

320	4.	Lawn J.E., et al., Every Newborn: progress, priorities, and potential beyond survival. The
321		lancet, 2014. 384(9938): p. 189–205. https://doi.org/10.1016/S0140-6736(14)60496-7
322		PMID: 24853593
323	5.	Arsenault C., et al., Equity in antenatal care quality: an analysis of 91 national household
324		surveys. The Lancet Global Health, 2018. 6(11): p. e1186-e1195.
325		https://doi.org/10.1016/S2214-109X(18)30389-9 PMID: 30322649
326	6.	Newborns, W., Improving survival and well-being. World Health Organization.
327		https://www.who.int/news-room/fact-sheets/detail/newborns-reducing-mortality, 2020
328	7.	Transforming our world Cf, O. The 2030 Agenda for Sustainable Development. United
329		Nations: New York, NY, USA, 2015.
330	8.	Sudfeld C.R. and Fawzi W.W., Importance of innovations in neonatal and adolescent
331		health in reaching the sustainable development goals by 2030. JAMA pediatrics, 2017.
332		171(6): p. 521–522. https://doi. org/10.1001/jamapediatrics.2017.0261 PMID: 28384685
333	9.	Hug L., et al., National, regional, and global levels and trends in neonatal mortality
334		between 1990 and 2017, with scenario-based projections to 2030: a systematic analysis.
335		The Lancet Global Health, 2019. 7(6): p. e710-e720. https://doi.org/10.1016/S2214-
336		<u>109X(19)30163-9</u> PMID: 31097275.
337	10.	. Koum DCK, Essomba NE, Moby H, Halle MPE, Ngaba GP, Nguedjam MM, et al.
338		Factors associated with early neonatal morbidity and mortyality in an urban district
339		hospital in Douala, Cameroon. Int J latest Res Sci Technol. 2016; 5(3):43-9.
340	11.	. Worku B, Kassie A, Mekasha A, Tilahun B, Worku A. Predictors of early neonatal
341		mortality at a neonatal intensive care unit of a specialized referral teaching hospital in
342		Ethiopia. Ethiop J Heal Dev. 2012; 26(3):200-7.

343	12. Yego F, D'Este C, Byles J, Nyongesa P, Williams JS. A case-control study of risk factors
344	for fetal and early neonatal deaths in a tertiary hospital in Kenya. BMC Pregnancy
345	Childbirth. 2014; 14(1):1–9.
346	13. Gody JC, Engoba M, Mejiozem BOB, Danebera LV, Kakouguere EP, Bangue MCN, et
347	al. Risk Factors of Early Neonatal Deaths in Pediatric Teaching Hospital in Bangui,
348	Central African Republic. Open J Pediatr. 2021; 11(04):840-53.
349	14. Sandie AB, Mutua MK, Sidze E, Nyakangi V, Sylla EHM, Wanjoya A, et al.
350	Epidemiology of emergency and elective caesarean section and its association with early
351	neonatal mortality in sub-Saharan African countries. BMJ Open. 2023; 13(10).
352	15. Tamir TT, Mohammed Y, Kassie AT, Zegeye AF. Early neonatal mortality and
353	determinants in sub-Saharan Africa: Findings from recent demographic and health survey
354	data. PLoS One [Internet]. 2024; 19(6):e0304065. Available from:
355	http://dx.doi.org/10.1371/journal.pone.0304065
356	16. Mekebo GG, Aga G, Gondol KB, Regesa BH, Woldeyohannes B, Wolde TS, et al. Why
357	Babies die in the first 7 days after birth in Somalia Region of Ethiopia? Ann Med Surg.
358	2023; 85(5):1821–5.
359	17. Tamir TT, Asmamaw DB, Negash WD, Belachew TB, Fentie EA, Kidie AA, et al.
360	Prevalence and determinants of early neonatal mortality in Ethiopia: Findings from the
361	Ethiopian Demographic and Health Survey 2016. BMJ Paediatr Open. 2023; 7(1):1-8.
362	18. Weddih A, Ahmed MLCB, Sidatt M, Abdelghader N, Abdelghader F, Ahmed A, et al.
363	Prevalence and factors associated with neonatal mortality among neonates hospitalized at
364	the national hospital Nouakchott, Mauritania. Pan Afr Med J. 2019; 34:1-7.

365	19. Kazaura.R,Kidanto H LSN. M. Level,trends and risk for early neonatal mortality at
366	Muhimbili National Hospital, Tanzania, 199-2005. East African J Public Heal. 2006;
367	3(10):10–3.
368	20. Serge T, Georgia DB, Badirou A. Epidemiological Aspects and Factors Associated with
369	Early Neonatal Death From 2018 to 2020 in the Maternity of the Savè-Ouessè Health
370	Zone, Benin, West Africa. J Matern Child Heal. 2023; 8(1):91-104.
371	21. Ahmed AT, Farah AE, Ali HN, Ibrahim MO. Determinants of early neonatal mortality
372	(hospital based retrospective cohort study in Somali region of Ethiopia). Sci Rep. 2023;
373	13(1):1–13.
374	22. Kebede E, Kekulawala M. Risk factors for stillbirth and early neonatal death: a case-
375	control study in tertiary hospitals in Addis Ababa, Ethiopia. BMC Pregnancy Childbirth.
376	2021; 21(1):1–11.
377	23. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hofmann TC, Mulrow CD, et al. The
378	PRISMA 2020 Statement: an updated guideline for reporting systematic reviews. Bmj.
379	2021; 372.
380	24. Munn Z., S. Moola, K. Lisy, D. Riitano, and C. Tufanaru, "Methodological guidance for
381	systematic reviews of observational epidemiological studies reporting prevalence and
382	cumulative incidence data," International Journal of Evidence-Based Healthcare, vol. 13,
383	no. 3, pp. 147–153, 2015.
384	25. Modesti P. A., G. Reboldi, F. P. Cappuccio et al., "Panethnic differences in blood
385	pressure in Europe: a systematic review and meta-analysis," PLoS One, vol. 11, no. 1,
386	article e0147601, 2016.

387	26. Sterne and M. Egger J. A. C., "Funnel plots for detecting bias in meta-analysis:
388	guidelines on choice of axis," Journal of Clinical Epidemiology, vol. 54, no. 10, pp.
389	1046–1055, 2001.
390	27. Rücker G, Schwarzer G, Carpenter J. R, and Schumacher M, "Undue reliance on I 2 in
391	assessing heterogeneity may mislead," BMC Medical Research Methodology, vol. 8, no.
392	1, 2008.
393	28. Higgins J. P. T, and Thompson S. G., "Quantifying heterogeneity in a meta-analysis,"
394	Statistics in Medicine, vol. 21, no. 11, pp. 1539–1558, 2002.
395	29. Alebel A, Wagnew F, Petrucka P, Tesema C, Moges NA, Ketema DB, et al. Neonatal
396	mortality in the neonatal intensive care unit of Debre Markos referral hospital, Northwest
397	Ethiopia: A prospective cohort study. BMC Pediatr. 2020; 20(1):1-11.
398	30. Avoka JA, Adanu RM, Wombeogo M, Seidu I, Dun-Dery EJ. Maternal and neonatal
399	characteristics that influence very early neonatal mortality in the Eastern Regional
400	Hospital of Ghana, Koforidua: A retrospective review. BMC Res Notes [Internet]. 2018;
401	11(1):1–5. Available from: <u>https://doi.org/10.1186/s13104-018-3196-x</u>
402	31. Backlund A. Maternal health care in Rwanda and its association to early neonatal
403	mortality. 2015;
404	32. Gessesse AD, Belete MB, Tadesse F. Dar City public hospitals. 2024; (June):1–16.
405	Available from: https://doi.org/10.3389/fped.2024.1335858
406	33. Shayo A, Mlay P, Ahn E, Kidanto H, Espiritu M, Perlman J. Early neonatal mortality is
407	modulated by gestational age, birthweight and fetal heart rate abnormalities in the low
408	resource setting in Tanzania – a five year review 2015–2019. BMC Pediatr [Internet].
409	2022; 22(1):1–11. Available from: <u>https://doi.org/10.1186/s12887-022-03385-0</u>

410	34. Wondie WT, Zeleke KA, Wubneh CA. Incidence and predictors of mortality among low
411	birth weight neonates in the first week of life admitted to the neonatal intensive care unit
412	in Northwestern Ethiopia comprehensive specialized hospitals, 2022. Multi-center
413	institution-based retrospective f. BMC Pediatr. 2023; 23(1):1-13.
414	35. Worke MD, Mekonnen AT, Limenh SK. Incidence and determinants of neonatal
415	mortality in the first three days of delivery in northwestern Ethiopia: a prospective cohort
416	study. BMC Pregnancy Childbirth [Internet]. 2021; 21(1):1-11. Available from:
417	https://doi.org/10.1186/s12884-021-04122-8.
418	36. Gudayu T. W, Zeleke E. G, and Lakew A. M, "Time to death and its predictors among
419	neonates admitted in the intensive care unit of the University of Gondar Comprehensive
420	Specialized Hospital, Northwest Ethiopia," Research and Reports in Neonatology, vol.
421	Volume 10, no. 1, pp. 1–10, 2020.
422	37. Merhawi B, G w H. Early Neonatal Death in Northern Ethiopia and its Predictors. Res
423	Artic Divers Equal Heal Care. 2021; 18(11):488–92.
424	38. Malka ES, Solomon T, Kassa DH, Erega BB, Tufa DG. Time to death and predictors of
425	mortality among early neonates admitted to neonatal intensive care unit of Addis Ababa
426	public Hospitals, Ethiopia: Institutional-based prospective cohort study. PLoS One
427	[Internet]. 2024;19(6.0):1-22. Available from:
428	http://dx.doi.org/10.1371/journal.pone.0302665
429	39. Getaneh FB, Belete AG, Ayres A, Ayalew T, Muche A, Derseh L. A generalized Poisson
430	regression analysis of determinants of early neonatal mortality in Ethiopia using 2019
431	Ethiopian mini demographic health survey. Sci Rep [Internet]. 2024; 14(1):1–9.
432	Available from: <u>https://doi.org/10.1038/s41598-024-53332-5</u>
	27

433	40. Limaso A. A, Dangisso M. H, and Hibstu D. T, "Neonatal survival and determinants of
434	mortality in Aroresa district, southern Ethiopia: a prospective cohort study," BMC
435	Pediatrics, vol. 20, no. 1, p. 33, 2020
436	41. Golubnitschaja O, Yeghiazaryan K, Cebioglu M, Morelli M, and Herrera-Marschitz M.
437	Birth asphyxia as the major complication in newborns: moving towards improved
438	individual outcomes by prediction, targeted prevention and tailored medical care. EPMA
439	Journal. 2011; 2(2):197–210.
440	42. Ajaari J. Impact of place of delivery on neonatal mortality in rural Tanzania. Value in
441	Health 2013; 16:A209–10.
442	43. Ronsmans C, Scott S, Qomariyah SN, et al. Professional assistance during birth and
443	maternal mortality in two Indonesian districts. Bull World Health Organ 2009; 87:416-
444	23.
445	44. Mengesha, H. G., Lerebo, W. T., Kidanemariam, A., Gebrezgiabher, G. & Berhane, Y.
446	Pre-term and post-term births: Predictors and implications on neonatal mortality in
447	Northern Ethiopia. BMC Nurs. 15(1), 1–11 (2016).
448	45. Villar, J. et al. International standards for newborn weight, length, and head
449	circumference by gestational age and sex: The Newborn Cross-Sectional Study of the
450	INTERGROWTH-21st Project. Lancet 384(9946), 857-868 (2014).
451	46. Wastnedge E, Waters D, Murray SR, McGowan B, Chipeta E, Nyondo-Mipando AL,
452	Gadama L, Gadama G, Masamba M, Malata M, Taulo F, Dube Q, Kawaza K, Khomani
453	PM, Whyte S, Crampin M, Freyne B, Norman JE, Reynolds RM; DIPLOMATIC
454	Collaboration. Interventions to reduce preterm birth and stillbirth, and improve outcomes
455	for babies born preterm in low- and middle-income countries: A systematic review. J

456	Glob Health. 2021 Dec 30; 11: 04050. doi: 10	.7189/jogh.11.04050. PMID: 35003711;
457	PMCID: PMC8709903.	

- 458 47. Althabe F., et al., Cesarean section rates and maternal and neonatal mortality in low-,
- 459 medium-, and high-income countries: an ecological study. Birth, 2006. 33(4): p. 270–

460 277. https://doi.org/10.1111/j. 1523-536X.2006.00118.x PMID: 17150064

- 461 48. Gregory K.D., et al., Cesarean versus vaginal delivery: whose risks? Whose benefits?
- 462 American journal of perinatology, 2012. 29(01): p. 07–18. https://doi.org/10.1055/s-
- 463 0031-1285829 PMID: 21833896
- 464 49. Suparmi S., Chiera B., and Pradono J., Low birth weights and risk of neonatal mortality

in Indonesia. Health Science Journal of Indonesia, 2016. 7(2): p. 113–117.

- 466 50. Migoto M.T., et al., Early neonatal mortality and risk factors: a case-control study in
 467 Parana' State. Revista Brasileira de Enfermagem, 2018. 71: p. 2527–2534
- 468 51. Soon B.T., The global action report on preterm birth. Geneva: World Health
- 469 Organization, 2012: p. 2.
- 470 52. Conde-Agudelo A D.R.J. and Belizan J., Kangaroo mother care to reduce morbidity and
- 471 mortality in low birthweight infants (Review). The Cochrane Collaboration. 2005, Wiley.