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1. Abstract 

Importance: With the emergence of new therapeutics for treatment of Alzheimer’s 
disease, there is currently a critical need for sensitive and accurate blood-based tests to 
assist with the diagnosis and treatment of Alzheimer’s disease. 

Objective: To determine the clinical validity of an analytically validated plasma panel for 
the assessment of Alzheimer’s disease. 

Design, Setting, and Participants: This cross-sectional study measured biomarkers 
representative of the Alzheimer’s disease AT(N) framework in 200 plasma specimens 
acquired from the Australian Imaging, Biomarker & Lifestyle (AIBL) Study of Ageing.  
Specimens were obtained from amyloid PET negative subjects classified as cognitively 
unimpaired (n = 75) and amyloid PET positive subjects classified as having no cognitive 
impairment (n = 49), mild cognitive impairment (n = 26), or Alzheimer’s disease dementia 
(n = 50). 

Exposures: Amyloid PET and plasma Aβ42/40, pTau181, and NfL. 

Main Outcomes and Measures: To assess the utility of the plasma panel to assess 
onset and progression of Alzheimer’s disease with respect to amyloid PET results and 
cognitive impairment. 

Results: A difference was observed for each assay with respect to amyloid status 
(p<0.0001).  Receiver operating characteristic (ROC) analysis of clinical specimen results 
from validated assays produced an area-under-the-curve (AUC) of 0.941 for Aβ42/40, 
0.847 for pTau181, and 0.666 for NfL (p < 0.0001 for all biomarkers).  The sensitivity 
(96.0%) and specificity (86.7%) observed for Aβ42/40 measurements meets current 
recommendations for triage testing.  In addition, plasma levels of pTau181 and NfL were 
also found to increase with worsening cognitive impairment. 

Conclusions and Relevance: The clinical concordance with amyloid PET for each 
biomarker is consistent with the biological progression of the AD continuum.  As such, the 
availability of this AT(N) panel will provide clinicians with a simple blood-based means to 
provide evidence of AD pathological changes and could help identify AD patients much 
faster, shorten the overall AD patient diagnostic journey, and enable earlier treatment 
interventions.  
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Abbreviations:  

 A± – amyloid status (positive or negative) based on PET imaging 
 Aβ – amyloid beta 
 Aβ40 – amyloid beta consisting of amino acid residues 1-40 
 Aβ42 – amyloid beta consisting of amino acid residues 1-42 
 Aβ42/40 – the ratio of Aβ42 to Aβ40 
 AIBL – Australian Imaging, Biomarkers and Lifestyle (Study of Ageing) 
 AUC – area-under-the-curve 
 AD – Alzheimer’s disease 
 ADD – Alzheimer’s disease dementia 
 AT(N) – amyloid, tau, neurodegeneration 
 CSF – cerebrospinal fluid 
 M/S – moderate or severe (with respect to MMSE scores) 
 MMSE – mini-mental state examination 
 Negl. – negligible (with respect to MMSE scores) 
 NfL – neurofilament light chain  
 PET – positron emission tomography 
 pTau181 – microtubule-associated protein tau phosphorylated at threonine 181 
 ROC – receiver operator characteristic 
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2. Introduction 

Alzheimer’s disease (AD) is understood to be a progressive neurodegenerative disease 
that presents as a continuum from a presymptomatic/prodromal stage to severe 
dementia.1–6  In conjunction with this understanding, a biomarker framework was 
proposed for assessing the underlying brain pathology of AD irrespective of patient 
symptoms.1–6  The AT(N) framework consists of various biomarkers traditionally grouped 
into three categories based on the type of Alzheimer’s related pathology investigated: 

 A – biomarkers associated with amyloid pathology (e.g. plaques) 
 T – biomarkers associated with tau pathology (e.g. neurofibrillary tangles) 
 (N) – biomarkers associated with neurodegeneration 

where the order listed is representative of the typical progression of AD and N is placed 
in parentheses to indicate that neurodegeneration is not specific to AD.2,6–8 

Positron emission tomography (PET) and other imaging techniques as well as 
measurements of cerebrospinal fluid (CSF) biomarkers have demonstrated utility for 
identifying Alzheimer’s disease (AD) pathology in each of the three AT(N) categories; 
however, these tools remain costly, invasive, and/or not widely available.9–12 Due to the 
growing prevalence of this progressive disease and emerging therapeutics, robust blood 
plasma-based measurements are a desirable alternative.3,9,11–13 

Advancements in plasma biomarker platforms, which enable more accurate identification 
of disease pathology at lower levels of detection, led to the extension of the AT(N) 
framework to support the clinical diagnosis of AD.5,7,14 The AT(N) framework provides an 
objective approach to determine the status of biological changes that are indicative of 
Alzheimer’s disease. A widely available plasma-based AT(N) panel could support the 
triage of patients whose initial lab results and/or cognitive exams merit further evaluation 
of dementia. An AT(N) panel having sufficient analytical and clinical accuracy would allow 
for an initial, simple, blood-based test to provide evidence of AD pathology, which could 
then be confirmed with either a CSF test or PET scan. Such a panel could help identify 
AD patients much faster, shorten the overall AD patient diagnostic journey, enable earlier 
treatment interventions, and potentially reduce the enrollment duration and cost of clinical 
trials for AD therapeutics. 

Although various analytes have been proposed for plasma-based assessments of brain 
pathophysiology, this study focuses on measurements using automated, high sensitivity 
immunoassay platforms for each respective AT(N) biomarker.3,9–13,15,16  Amyloid-beta 1-
42 (Aβ42) and amyloid-beta 1-40 (Aβ40) are measured independently to determine the 
ratio of the protein isoforms (Aβ42/40) which has been shown to decrease with the onset 
of AD.9,11,15,17–20  In addition, measurements of microtubule-associated protein tau 
phosphorylated at threonine 181 (pTau181) and neurofilament light chain (NfL) were 
investigated as both have  been shown to become elevated with progression of 
AD.9,11,15,21–30  Significant evidence for each of these analytes demonstrates their viability 
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as respective biomarkers of the AT(N) framework.  Notably, we confirm the concordance 
of a plasma Aβ42/40 ratio test, relative to amyloid PET status, in a well-characterized 
clinical cohort distinct from the initial investigation of clinical utility for this analytical 
platform.17,31 

3. Methods 

3.1. Assays Utilized 

Measurements of Aβ40 and Aβ42 were performed using high sensitivity 
chemiluminescent enzyme immunoassays on a Sysmex® HISCL-5000 instrument as 
previously reported.17,31  NfL and pTau181 measurements were performed using Roche 
Elecsys® electrochemiluminescence immunoassays on a Roche cobas® e801 
instrument.32  Both instruments are considered high-throughput clinical autoanalyzers.  
The assays used have not yet received regulatory approval from the FDA although the 
Sysmex assays are CE marked and have received regulatory approval in Japan.  All 
measurements were performed at the Center for Esoteric Testing of Labcorp (Burlington, 
NC).  Analytical validation studies, based on guidance from the Clinical & Laboratory 
Standards Institute, were previously performed for each assay (Supplemental Table 1).  
All results described are a result of single measurements. 

3.2. Clinical Specimens 

To assess the clinical performance of the AT(N) panel, 200 specimens from subjects in 
the Australian Imaging, Biomarker & Lifestyle (AIBL) Study of Ageing were tested 
(Supplemental Table 2).33,34  The AIBL study was approved by various institutional ethics 
committees and all subjects provided written informed consent.33,35  For each subject, 
amyloid status (A±) was determined using PET imaging (where centiloid levels ≥ 26 were 
deemed positive) and specimens were collected intravenously using K3EDTA tubes 
(Sarstedt 01.1605.008) with prostaglandin E1 added (33 ng/mL of whole blood).  
Following centrifugation, plasma was removed, sub-aliquoted, and stored in deep frozen 
conditions (i.e. -80°C) until measurement.33,34 

The neuropsychological information of each subject was reviewed following each visit 
using a clinical panel (using standardized clinical criteria) to determine the cognitive status 
of each subject: cognitively unimpaired (CU), mild cognitive impairment (MCI), 
Alzheimer’s disease dementia (ADD)36.  The specimens utilized came from 75 CU/A-, 49 
CU/A+, 26 MCI/A+, and 50 ADD/A+ subjects (Supplemental Table 3).  As part of the 
neuropsychological information used to assess cognitive status, mini-mental state 
examinations (MMSE) were performed on each subject to provide a quantification of 
cognitive impairment.37  Note that 3 subjects (34, 47, and 75) provided specimens at 2 
different time points and different clinical states (see Supplemental Table 3).    

To further assess NfL levels with respect to age, two additional sets of samples were 
acquired.  K2EDTA plasma specimens were collected from 41 subjects less than 50 years 
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in age under an IRB approved protocol (WCG IRB protocol #520100174, Supplemental 
Table 4).  MMSE scores were assumed to be negligible for these subjects.  Additionally, 
12 K2EDTA plasma specimens were purchased from ProteoGenex (Inglewood, CA); 
these were obtained from subjects that have been diagnosed with Alzheimer’s disease 
using one or more forms of brain structural or functional evaluation (Supplemental Table 
5).  Specimens were collected under ethical regulations and informed consent was 
obtained for each subject.38  Age and MMSE scores were provided for these subjects. 

3.3. Statistical Analysis 

Receiving operator characteristic (ROC) analysis was performed with respect to amyloid 
PET status to assess the clinical performance of each AT(N) biomarker.  In addition, box-
and-whisker plots (using the Tukey method for plotting the whiskers and outliers) were 
used to visually represent results while the Mann-Whitney U test was performed to 
determine statistical significance with the clinically defined groups (i.e. CU/A-, CU/A+, 
MCI/A+, ADD/A+).  Statistical significance is represented using the following convention: 
* (p < 0.05), ** (p < 0.01), *** (p < 0.001), and **** (p < 0.0001). 

Analysis with respect to amyloid status and MMSE scores was performed by subdividing 
scores into the following groups: negligible (26-30), mild (21-25), moderate (11-20), and 
severe (≤ 10) similar to previous reports39.  Subjects outside of the AIBL cohort less than 
50 years of age were assumed to be A- and have MMSE scores within the negligible 
region.  Results from two A- subjects (subjects 155 and 126) were removed from MMSE 
analysis as they were classified as CU but had MMSE scores that fell into the mild region 
(Supplemental Table 2).  In addition, results from moderate (11-20) and severe (≤ 10) 
scores were combined (M/S) from analysis utilizing results from only the AIBL cohort as 
only 3 subjects had results in the severe range (subjects 22, 46, 50).   
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4. Results 

4.1. ROC Analysis 

Assessment of results (Figure 1 and Supplemental Figure 1) indicated that each 
biomarker was able to demonstrate a high degree of statistical difference (p < 0.0001) 
between A- and A+ subjects.  Decreasing Aβ42/40 values were observed with A+ 
subjects producing an area-under-the curve (AUC) of 0.941 with a maximum efficiency 
(i.e. accuracy) of 92.5% observed at a cutoff ratio of 0.102.  Results for pTau181 produced 
an AUC of 0.847 with a maximum efficiency of 81.5% at a cutoff of 0.977 pg/mL.  NfL 
results produced an AUC of 0.666 with a maximum efficiency of 68.5% at a cutoff of 3.21 
pg/mL.  Note that the assays utilized herein have not been standardized to produce 
comparable concentrations across different assays and platforms; hence the cutoffs 
proposed are not applicable to measurements made using other available assays 
(Supplemental Figure 2). 

Figure 1: ROC plot of AT(N) biomarkers.  Results are with respect to amyloid PET 
status and include the corresponding statistical results. 
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4.2. Amyloid and Cognitive Status Analysis 

Investigation of Aβ42/40 results with respect to amyloid status as well as clinically defined 
cognitive status demonstrated a high significant difference (p < 0.0001) between A- and 
A+ subjects from each cognitive state (Figure 2A).  There was also a difference observed 
between MCI/A+ subjects and CU/A+ as well as ADD/A+ subjects (p < 0.05) but not 
between CU/A+ and ADD/A+ subjects indicating that Aβ42/40 is likely not a good indicator 
of cognitive status.  Results for pTau181 also demonstrated a high degree of significance 
(p < 0.0001) between A- and A+ subjects from each cognitive state (Figure 2B).  However, 
pTau181 results from CU/A+ subjects were also found to be different than results from 
MCI/A+ subjects (p < 0.01) and ADD/A+ subjects (p < 0.0001).  Results between the latter 
two groups were not statistically significant.  NfL results for A- subjects as compared to 
the A+ subjects were statistically significant (p < 0.05) but the results between the different 
A+ groups were not (Figure 2C). 
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Figure 2: Results with respect to amyloid and clinically defined cognitive statuses.  
Results for A) Aβ42/40, B) pTau181, and C) NfL (note the logarithmic y-axis for NfL) are 
shown along with D) additional information for each of the groups analyzed. 
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4.3. Amyloid Status and MMSE Score Analysis 

Similar to results observed with respect to amyloid and cognitive status, Aβ42/40 results 
differed between A- and A+ subjects with a high degree of significance (p < 0.0001) 
irrespective of MMSE scores (Figure 3A).  However, results for A+ subjects from the 
negligible, mild, and moderate/severe groups were not statistically different.  Results for 
pTau181 again demonstrated differences having a high degree of significance (p < 
0.0001) between A- and A+ subjects from each MMSE range (Figure 23B).  Results from 
negligible/A+ subjects were also found to be different than results from mild/A+ subjects 
(p < 0.05) and M/S/A+ subjects (p < 0.01).  Results between the latter two groups were 
not statistically significant.  NfL results, however, demonstrated statistical differences 
across all groups investigated (p < 0.05) with the exception A+ subjects having negligible 
and mild scores (Figure 3C).  Similar results for each biomarker were observed with 
respect to centiloid values measured during PET analysis (Supplemental Figure 3). 
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Figure 3: Results with respect to amyloid status and MMSE scores.  Results for A) 
Aβ42/40, B) pTau181, and C) NfL (note the logarithmic y-axis for NfL) are shown along 
with D) additional information for each of the groups analyzed. 
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4.4. NfL Levels with Respect to Age and MMSE Scores 

Expanding our analysis of NfL results to include additional younger subjects and more A+ 
subjects with severe MMSE scores (Figure 4), it is apparent that NfL levels are lower (p 
< 0.0001) in younger subjects (≤ 50 years) as compared to older subjects (> 50 years) 
regardless of amyloid status or MMSE scores.  In addition, NfL levels from subjects with 
severe MMSE scores differed from subjects with moderate, mild, and negative MMSE 
scores with a high significant difference (p < 0.001).  Older A- subjects with negligible 
MMSE scores also demonstrated statistically significant differences as compared to older 
A+ subjects with negligible and mild MMSE scores (p < 0.05).  The significance increased 
when comparing older A- subjects with negligible MMSE scores to older A+ subjects with 
moderate MMSE scores (p < 0.0001).  Older A+ subjects with negligible MMSE scores (p 
< 0.001) and older A+ subjects with mild MMSE scores (p < 0.01) also demonstrated a 
difference in NfL results as compared to older A+ subjects with moderate MMSE scores.  
Although a statistically significant difference was not observed between older A+ subjects 
with negligible and moderate MMSE scores, the results overall demonstrate an elevation 
of NfL with increased cognitive impairment. 
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Figure 4: Expanded NfL Results.  NfL results across multiple specimen groups with 
respect to amyloid status and MMSE scores (note the logarithmic y-axis for NfL).  
Additional information for each of the groups analyzed can be found below the graph.   
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5. Discussion 

In order to assess relative performance of these assays, the observed AUC results were 
compared to those previously reported for ROC analyses performed with respect to 
amyloid status and irrespective of cognitive impairment.  In addition, only results from 
standalone analysis of each biomarker (i.e. without incorporating additional measures or 
demographic information) were used.  Unless otherwise noted, the reported AUCs were 
generated using different biomarker assays as well as different clinical cohorts where 
amyloid status was determined using a variety of techniques.  In cases where multiple 
cohorts were utilized, only the comprehensive AUC (where available) is referenced 
herein. 

Aβ42/40 results within this study yielded an AUC (0.941) greater than those reported for 
other Aβ42/40 measurement methods (0.64 to 0.89).9,15,18,20,24,34,40–46  It is interesting to 
note that the same Aβ42/40 measurement system and assays utilized herein produced 
similar AUC results (0.87-0.95) reported for different clinical cohorts with the same 
measurement system.17,47  In addition, the cutoff proposed in one of these studies 
matches the optimal Aβ42/40 ratio observed in the current study (0.102).17  Furthermore, 
the sensitivity (96.0%) and specificity (86.7%) observed herein for Aβ42/40 meets current 
recommendations for sensitivity (≥ 90.0%) and specificity (≥ 85.0%) for a triage test 
performed in a primary care setting.48  As Aβ42/40 is indicative of the early stages of AD 
progression (i.e. formation of amyloid plaques), it is not expected that it is an indicator of 
the progression of the disease from cognitively unimpaired to dementia nor indicative of 
lower MMSE scores.49  As such, Aβ42/40 levels appear to plateau following subjects 
becoming A+.  

AUC results observed (0.847) for measurements of pTau181 are consistent with other 
reported AUC results (0.72 to 0.96).9,10,23,24,34,40,43,46,47,50–53  The AUC observed is also 
greater than the AUCs (0.77 to 0.80) previously reported using an assay from the same 
manufacturer but on a different instrument model (i.e. Roche cobas® e601) with 2 different 
clinical cohorts.9  Despite the lower AUC values with respect to the AUC observed for 
Aβ42/40, pTau181 and other markers of tau pathology have been observed to be better 
predictors of cognitive and functional decline.54–56  In addition, the optimal cutoff observed 
with this cohort (0.977 pg/mL, Figure 1) is not statistically different than the cutoff 
established during initial validation studies (0.95 pg/mL, Supplemental Table 1) 

Measurements of NfL on these AIBL samples demonstrated an AUC (0.666) consistent 
with those found in the literature (0.50 to 0.73).9,40,46,47,52,57  NfL results were also 
assessed with respect to pTau181 positivity, as defined using the pTau181 cutoff (0.977 
pg/mL) determined during ROC analysis (Figure 1), as Tau positivity would indicate 
subjects that have progressed further along the biological framework of AD towards 
neurodegeneration.  From this analysis, an AUC of 0.799 with p < 0.0001 was observed 
(Supplemental Figure 4).  Elevation of both pTau181 and NfL levels was observed with 
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worsening cognitive status or MMSE scores as has been previously reported.26,30,58,59  In 
addition, increases in NfL concentrations with respect to age has also been previously 
reported.60  These results coupled with the relatively low AUC of NfL (with respect to 
amyloid status) are further evidence that NfL may be  an indicator of disease severity in 
AD.12,21,26,29,51,61   

Although each biomarker investigated demonstrated the ability to distinguish between A- 
and A+ subjects, the AUCs were found to decrease with each AT(N) biomarker with 
respect to amyloid PET status.  However, pTau181 and NfL correlated better with 
cognitive status than did the Aβ42/40 ratio (Figure 2 and Figure 3) suggesting that while 
the Aβ42/40 ratio may be central to differentiating AD from other diseases, pTau181 and 
NfL may provide some measure of disease severity.12,21,26,27,29,51,61,62 This is expected, as 
amyloid PET only indicates the presence of amyloid plaques within the brain and not the 
presence of other biological aspects of AD (i.e. tau pathologies and neurodegeneration).  
One shortcoming of this study is the lack of imaging endpoints for pTau181 and NfL (e.g. 
Tau PET or MRI) to make more appropriate correlative comparisons for each biomarker.  
However, age-dependent reference intervals can indicate if pathological levels exist 
especially for NfL where elevated levels are not AD specific (Supplemental Table 1).16,63 

Although each of these biomarkers independently demonstrated clinical utility using 
specimens from subjects with known amyloid status, the combination of (quantitated) 
biomarkers with other factors such as demographics and the presence of the 
apolipoprotein E4 allele have been used to further improve the clinical accuracy of 
measurements.9,14,52,64–67  Additional biomarkers, such as tau protein phosphorylated at 
threonine 217 and glial fibrillary acidic protein, have also been reported to further 
characterize the underlying biology of AD as well as to assist in differentiating it from other 
forms of dementia.5,14,16,56,56,67–70 

6. Conclusions 

The AT(N) plasma panel is the first blood-based offering that analyzes three well-studied 
biomarkers to accurately detect biological evidence consistent with Alzheimer’s disease 
pathology.  Furthermore, the sensitivity and specificity of the Aβ42/40 assay met current 
recommendations for triage testing.  As such, the panel can be utilized to assess 
progression of subjects along the AT(N) framework when used within the context of a full 
clinical workup.  The observed results indicate the advancements in and utility of blood-
based biomarkers for assessing patients for Alzheimer’s disease.  The availability of this 
panel serves as an important tool to assist in patient assessment and accelerate the path 
to diagnosis (and treatment) while the understanding of AD etiology and related 
pathophysiology continues to grow. 
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