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Abstract 14 

Peripheral Artery Disease (PAD) significantly impairs quality of life and presents varying 15 

degrees of severity that correctly identifying would help choose the proper treatment approach 16 

and enable personalized treatment approaches. However, the challenge is that there is no 17 

single agreed-on measure to quantify the severity of a patient with PAD. This led to a trial-and-18 

error approach to deciding the course of treatment for a given patient with PAD. This study uses 19 

non-clinical data, such as biomechanical data and advanced machine-learning techniques, to 20 

detect PAD severity levels and enhance treatment selection to overcome this challenge. Our 21 

findings in this paper lay the groundwork for a more data-driven, patient-centric approach to 22 

PAD management, optimizing treatment strategies for better patient outcomes. 23 
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Introduction 28 

 29 

This paper presents the use of non-clinical data to characterize severity levels and 30 

support decision-making when treating chronic diseases such as peripheral artery 31 

disease (PAD). PAD is an atherosclerotic syndrome that leads to occlusion of the 32 

arteries supplying the legs. PAD affects approximately 8 million people in the US, 33 

producing a considerable public health burden.1–3 The standard therapies for PAD 34 

include pharmacotherapy,4 supervised exercise therapy5, wearing assistive devices6,7 35 

endovascular revascularization (angioplasty/stenting), and open revascularization 36 

(bypass operations).8 Knowing which treatment will benefit each patient most is very 37 

challenging. Clinical evidence shows that treatment outcomes vary widely across 38 

patients with PAD4, and the factors contributing to the success or failure of treatments 39 

are poorly understood.1,9 For example, while assistive ankle foot orthoses (AFO) show 40 

promise in enhancing walking distances, the research on its consistent use and patient 41 

perceptions is limited.10 Conventional pharmacological treatments do not address 42 

existing blockages and muscle myopathy experienced by individuals with PAD and only 43 

minimally improve walking distances.11,12 Revascularization lacks clear superiority 44 

between bypass surgery and endovascular revascularization, and surgical interventions, 45 

in general, have high risks to patients and varying patency rates.13-17 All these 46 

limitations highlight the need for evidence-based guidelines for treating a patient with 47 

PAD.18 48 

 An additional challenge in PAD treatment is that there are no standard agreed-upon 49 

measures to confirm improvement after treatment. Existing outcome measures vary, 50 
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and the most common measures are not inclusive by only assessing blood flow 51 

improvements (ankle-brachial indices) or very subjective, such as patient questionnaires 52 

or self-reported improvement or worsening of symptoms. These limitations, when 53 

combined with PAD’s complex nature, have limited physician’s ability to understand 54 

which course of treatment for a given patient with PAD would lead to the best 55 

outcomes.3 56 

A predictive model can significantly enhance clinicians' ability to make informed 57 

decisions, tailor interventions, and optimize post-treatment care of patients with PAD, 58 

thus improving care quality and reducing ineffective or high-risk interventions.19 Toward 59 

this goal, this paper seeks to harness the power of machine learning and 60 

comprehensive gait analysis to provide a proof of concept for a data-driven approach to 61 

PAD treatment and management. Our approach leverages the data we have collected 62 

for patients with PAD over the last 20 years. The comprehensive dataset includes 63 

clinical data and gait biomechanics measurements for healthy subjects and patients 64 

with PAD before and after treatments. Our recent findings demonstrated that a machine 65 

learning approach with gait biomechanics data could accurately classify individuals as 66 

having or not having PAD (Figure 1.a).20,21 Building on this finding, our current study will 67 

use comprehensive biomechanics gait data to establish reliable measures for the PAD 68 

severity level (Figure 1.b), which can then be used to develop models predicting a 69 

specific treatment outcome (Figure 1.c). These models are the first step toward building 70 

an intelligent expert system to support individualized treatment decisions for patients 71 

with PAD (Figure 1.d). 72 
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 73 

Figure 1: Our Progress and future work toward PAD treatment prediction. a) Our 74 
previous work showed that biomechanics data could be used to classify individuals as 75 
having or not having PAD.20,21 b) This paper aims to establish a measure of PAD 76 
severity, which will be the engine to c) train models to predict treatment outcomes of 77 
patients with PAD and then in the future to d) predict the optimal treatment for patients 78 
with PAD. 79 

 80 

Results  81 

Figure 2. a presents a comprehensive distribution of all features in our study for healthy 82 

controlled and patients with PAD before different treatments (AFO and Surgery). The 83 

features are represented after the post-application of the Yeo-Johnson transformation. It 84 

is evident from the figure that kinematics features (ankle, hip, and knee) failed to 85 

differentiate between healthy individuals and those with PAD. While qualitative 86 

questionnaire evaluations, such as SF-36 and WIQ, effectively distinguished between 87 

a 

b 

c 

d 
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healthy controls and patients with PAD, they failed to discern PAD severity, particularly 88 

when differentiating between AFO and surgery patients. The severity (supported by 89 

clinical measures such as the ABI test) is ranked based on the type of intervention 90 

performed on a patient with PAD: Healthy - AFO - Surgery. In other words, the fact that 91 

a patient with PAD has undergone open surgery means a vascular physician 92 

determined his PAD severity level to be higher than the patient who had just AFO. The 93 

GRF features distinguished all three categories and presented an ordered patient 94 

distribution. This observation highlights the potential of GRF features as a potent 95 

instrument for quantifying PAD severity. 96 

Figure 2.b presents the outcomes of the Mann-Whitney U test aiming to recognize 97 

statistically significant differences among the Healthy, AFO, and Surgery groups. The 98 

results confirm the observations (Figure 2.a) that GRF features emerge as most able to 99 

distinguish across groups, exhibiting the most significant statistical differences between 100 

the three groups in the pre-intervention phase. In contrast, hip, ankle, and knee 101 

kinematic features do not consistently capture the disparities between these groups. 102 

Furthermore, the WIQ questionnaire features effectively differentiate between the 103 

Healthy group and patients with PAD groups, but not between the AFO and Surgery 104 

groups. 105 

Next, the results of using machine learning modes to decode PAD severity using the 106 

different features are shown in (Figure 2.c). The GRF, using logistic regression with a 107 

single feature, "Propulsive peak," achieved an accuracy22 of 0.909, a balanced 108 

accuracy22 of 0.867, and a Matthews Correlation Coefficient (MCC)22 of 0.868. The 109 

GRF's high performance across these metrics, particularly the MCC that accounts for 110 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.05.24311525doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.05.24311525


6 
 

unbalanced data, highlights its effectiveness in accurately quantifying PAD severity. 111 

Additionally, the consistent results between the model's training and testing 112 

performance suggest that the GRF situation effectively captures the essential patterns 113 

in the data without being overly fitted to the training set or missing the situation's 114 

complexity. This confirms the robustness of GRF features for reliable severity 115 

assessment in PAD. 116 

Figure 2.d aims to provide a more granular understanding of PAD severity by leveraging 117 

the GRF Propulsive Peak, the best-performing feature identified in the previous 118 

analysis, by stratifying a PAD scale. The data analysis yielded a discernible stratification 119 

of PAD severity based on GRF Propulsive Peak values (Figure 2.d) derived from the 120 

logistic regression model predictions. The resulting figure defines three distinct regions: 121 

• Surgery Region (More Severe PAD): Ranging from -1 to 0.075. 122 

• AFO Region (Less Severe PAD): Extending from 0.075 to 0.775. 123 

• Healthy Region: Above 0.775 on the GRF Propulsive Peak scale. 124 

 125 

This stratification visually represents how GRF Propulsive Peak values correlate with 126 

varying degrees of PAD severity. In summary, the results in Figure 2 show the 127 

importance of GRF as a robust and reliable data source for PAD severity quantification, 128 

outperforming other commonly used metrics and questionnaires such as SF-36 and 129 

WIQ.  130 
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 133 

Figure 2: GRF emerges as a strong indicator of PAD severity. a) Pre-intervention 134 
distribution of all features categorized based on diagnosis and treatment groups 135 
(Healthy, AFO, and Surgery). b) Results of the Mann-Whitney U test comparing the 136 
Healthy, AFO, and Surgery groups across various gait features. The figure showcases 137 
each measurement source’s Median Bonferroni P Value, with lower values indicating 138 
higher statistical significance. c) Comparative performance of machine learning models 139 
in feature-level PAD severity quantification across all features as independent inputs. d) 140 
Stratification of PAD Severity Based on GRF Propulsive Peak Values: A continuous 141 
scale derived from Logistic Regression model predictions, delineating three distinct 142 
regions - Healthy (-1 to -0.8), AFO (Less Severe PAD, -0.8 to 0.25), and Surgery (More 143 
Severe PAD, 0.25 to 1). This scale correlates GRF Propulsive Peak values and PAD 144 
severity, facilitating swift and precise clinical assessments.  145 

 146 

Next, interest is shifted to understanding the patients with PAD's response to 147 

interventions using effect size analysis23. This analysis quantitatively represents the 148 

strength of the relationship between variables using Cohen’s d measure. Cohen’s 149 

guidelines suggest that a d value of 0.2 indicates a ‘small’ effect size, 0.5 a ‘medium’ 150 

effect size, and 0.8 a ‘large’ effect size. In our context, with a control group and two 151 

patient groups (Surgery and AFO), both pre and post-intervention, the effect size aids in 152 

quantifying the magnitude of change due to intervention in each patient group and offers 153 

a comparative measure against the control. For instance, comparisons such as Healthy 154 

vs. pre-surgery provide insights into the deviation of the surgery group from the control 155 
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before the intervention. At the same time, Healthy vs. post-surgery reveals the deviation 156 

post-intervention. 157 

Figure 3.a presents the effect sizes, quantified using Cohen’s d, for one GRF measure 158 

and four WIQ measures as an example relative to the healthy control group. Figure 3.a 159 

shows the magnitude of this effect size based on GRF Propulsive Peak, confirming the 160 

severity level differences between patients with PAD who had surgery versus patients 161 

completing an AFO intervention. More importantly, the effect size decreases post-162 

surgery, suggesting a shift towards the healthy group’s values. In contrast, the AFO 163 

group shows minimal change in the GRF values post-intervention. Both behaviors are 164 

somewhat expected, extending the confirmation that GRF can also be used to capture 165 

PAD status after intervention. However, the WIQ fails to capture the anticipated severity 166 

levels among patients with PAD following AFO and surgery. In addition, their effect size 167 

indices project potentially over-optimistic results, with post-surgical and post-AFO 168 

cohorts yielding equivalent Cohen’s d magnitudes.  169 

Next, the most profound part of this paper is that machine learning models were trained 170 

using pre-intervention data, including gait kinematics and kinetics measurements, WIQ 171 

scores to predict post-intervention effectiveness. Post-intervention effectiveness is 172 

captured by improvement in GRF Propulsive Peak. Figure 3b results provide a 173 

comprehensive overview of the performance metrics for various machine-learning 174 

models (Linear Regression, Random Forest, and SVM). Figure 3.c shows that the 175 

Random Forest model consistently outperforms the other models in Mean Absolute 176 

Error (MAE) and R-squared. Furthermore, we added a binary representation for the 177 

model outcomes by assessing if the predicted values can specify whether a patient’s 178 
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situation improved based on the predicted and actual data results. The confusion 179 

matrices for both training and test datasets, as depicted in Figure 3.c, provide a clear 180 

visual representation of the model's predictions against the actual outcomes. For the 181 

training data, the model achieves an accuracy of 86%, while for the test data, the 182 

accuracy stands at 82%. These high accuracy scores indicate the model's ability to 183 

assess treatment outcomes' direction. This indicates that machine-learning applications 184 

could be practical in predicting treatment outcomes for PAD. 185 

The individual predictions of GRF Propulsive Peak post-intervention for each subject, as 186 

shown in Figure 3.d, offer a granular view of the model's performance. Each subject's 187 

data point is plotted against their pre-intervention GRF Propulsive Peak, with distinct 188 

markers indicating the actual post-intervention values and the model's predictions. A 189 

consistent alignment between the actual and predicted values is evident across most 190 

subjects. This individual-level analysis complements the accuracy metrics, reinforcing 191 

the model's ability to predict treatment outcomes. The colored bars visually represent 192 

the model's confidence in its predictions, with the proximity of the actual and predicted 193 

markers indicating the precision of the model's forecasts. 194 
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196 
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 198 

Figure 3: Machine learning models are developed to predict the outcome of a 199 
certain treatment. a) Effect size (Cohen’s d) comparisons for GRF, WIQ, and SF-36 200 
scores between healthy individuals and patients with PAD, both pre and post-201 
intervention. Higher Cohen’s d values indicate larger differences between the groups, 202 
suggesting more pronounced effects of interventions or more distinct group 203 
characteristics. Blue dots represent comparisons involving the 'pre' status, and orange 204 
dots signify the 'post' status. b) Performance metrics comparison of machine learning 205 
models including Linear Regression, Random Forest, and SVR. Metrics shown are 206 
MAE, R-Squared, and adjusted R-Squared, assessing model accuracy and predictive 207 
capability with both Correlation and PCA feature selection methods on training and test 208 
datasets. c) Confusion matrices for treatment outcome predictions (Worse vs. Better) 209 
using the Random Forest model on training and test datasets, showing the counts of 210 
correct and incorrect predictions. d) Individual Predictions of GRF Propulsive Peak for 211 
All Subjects Post-Intervention. The graph plots the actual vs. predicted GRF Propulsive 212 
Peak values, illustrating prediction accuracy. The spectrum of 'More Severe PAD' to 213 
'Less Severe PAD' visualizes the range of severity based on GRF values, with a clear 214 
demarcation showing patients transitioning towards a 'Healthy' status. Notably, the 215 
distribution of cases in 'More Severe' and 'Less Severe' PAD is not purely based on the 216 
number of surgeries or AFO interventions but on the observed severity metrics in the 217 
GRF Propulsive Peak values post-treatment. 218 

Discussion  219 

The inability of simple tests to differentiate between healthy controls and patients with 220 

PAD emphasizes the need for more robust metrics in estimating a patient with PAD 221 
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severity level. While qualitative assessments like SF-36 and WIQ have their merits, their 222 

inability to discern between AFO and Surgery patients raises questions about their 223 

efficacy. Remarkably, the GRF Propulsive Peak feature stands out, with the ability to 224 

differentiate across all categories and an ordered distribution among patients with PAD 225 

that suggests their potential as a foundation of characterizing PAD severity. The GRF 226 

Propulsive Peak introduces a straightforward 1D scale for measuring PAD severity. This 227 

1D scale is precious for its practical applications outside clinical settings, offering a 228 

simple and effective tool for monitoring PAD severity. The 1D scale is a beacon for 229 

future innovations that aim to make PAD management more efficient and patient-230 

centric. 231 

GRF Propulsive peak values using the effect size test show a better correlation with 232 

post-treatment interventions. On the other hand, qualitative assessments such as WIQ 233 

scores might present an overly optimistic view of the patient’s condition. This asserts 234 

the importance of integrating GRF measurement with subjective patient-reported 235 

outcomes to understand PAD severity and its response to interventions. 236 

The Random forest model accurately predicts the post-intervention GRF propulsive 237 

peak. Using such a model, clinicians can gain valuable insights into the potential 238 

success of a treatment before its actual implementation. This predictive capability can 239 

revolutionize patient care, allowing for more personalized treatment plans and 240 

potentially reducing the number of ineffective interventions. Moreover, it is a 241 

foundational step towards a more data-driven approach in PAD treatment, where 242 

decisions are informed by predictive analytics rather than merely relying on traditional 243 

methods. As we continue to refine and validate this model, it paves the way for more 244 
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comprehensive studies that can further unravel the complexities of PAD and optimize 245 

treatment strategies for better patient outcomes. 246 

The ability to predict individual treatment outcomes with high accuracy, as 247 

demonstrated by the Random Forest model, holds significant implications for clinical 248 

practice. Clinicians can effectively tailor their treatment approaches and post-treatment 249 

care by estimating the post-intervention GRF Propulsive Peak. The model's 250 

performance, both in terms of overall accuracy and individual predictions, suggests that 251 

it can be a valuable tool in decision-making. As we delve deeper into personalized 252 

medicine, such predictive capabilities become increasingly crucial. The alignment 253 

between the model's predictions and the actual outcomes underscores the potential of 254 

integrating machine learning into PAD treatment strategies. This integration enhances 255 

the precision of treatment planning and facilitates more informed patient-clinician 256 

discussions, fostering a collaborative approach to care. 257 

While providing valuable insights, our study has certain limitations. Firstly, the dataset 258 

employed is relatively constrained, encompassing only 97 subjects, of which 42 are 259 

healthy controls, and 65 are patients diagnosed with PAD. Consequently, our analytical 260 

and machine learning outcomes necessitate validation through a broader dataset with a 261 

greater patient count and severity variability. Secondly, the result encapsulated in the 262 

GRF Propulsive peak scale offers room for refinement. The current scale predominantly 263 

categorizes patients with PAD into two severity brackets: less severe (AFO patients) 264 

and more severe (Surgery patients). A more nuanced representation could be achieved 265 

by incorporating a broader spectrum of PAD severity gradations. 266 
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 Future research can add more patients with PAD data from other treatments to the 267 

model to improve generalization and provide more options for predicting treatment 268 

outcomes. Moreover, real-time GRF data could provide a more nuanced understanding 269 

of PAD severity and post-treatment effect.  270 

 271 

Methods  272 

Data Sources and Description 273 

Biomechanics24 data for this study were sourced from research approved by the 274 

Institutional Review Boards at the University of Nebraska Medical Center and the 275 

Nebraska-Western Iowa Veteran Affairs Medical Center, involving 65 individuals with 276 

PAD and 42 healthy controls. Of the patients with PAD, 9 were treated with AFO, and 277 

35 underwent surgical treatments. Some AFO-treated patients’ data were collected 278 

multiple times pre-intervention. Therefore, we have 30 records for AFO-treated patients 279 

before intervention. Not all patient data were collected after the intervention; 30 surgery 280 

patients' data were collected after the surgery, and 8 AFO-treated patients' data were 281 

collected after three months of the treatment. In this study, we considered patients 282 

treated with AFOs to have less severe PAD than those treated with surgery.  283 

In addition to biomechanical data, qualitative and quantitative assessments were 284 

conducted to understand the PAD condition better. The WIQ was administered to gauge 285 

the self-perceived walking ability of patients with PAD25-27. This questionnaire evaluates 286 

various aspects of walking, including pain, distance, speed, and stair climbing, providing 287 

insights into patients’ daily challenges with PAD. SF-36 was also employed to assess 288 
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the participant’s health status and quality of life12,28. This comprehensive questionnaire 289 

evaluates physical and mental health domains, offering a broader perspective on the 290 

impact of PAD on patients’ daily lives. 291 

Furthermore, the Absolute Claudication Distance 26test was conducted. This quantitative 292 

assessment measures the distance a patient can walk before being compelled to stop 293 

due to claudication pain, providing a direct metric of the severity of PAD symptoms. 294 

Collectively, these assessments, combined with the biomechanical data, aimed to offer 295 

a multi-dimensional perspective on PAD’s impact on patients. Furthermore, this multi-296 

dimensional dataset offers an opportunity to compare various measurement sources to 297 

identify the most precise metric for assessing PAD severity. 298 

For this analysis, multiple measurement sources were considered: 299 

1. Ankle, Hip, and Knee Kinematics: Each anatomical region was characterized by 300 

seven distinct features, capturing the nuances of movement and biomechanical 301 

alterations.29 302 

2. Ground Reaction Forces (GRF): Nine features were extracted to understand the 303 

forces exerted during walking, providing insights into gait alterations.24 304 

3. Walking Impairment Questionnaire (WIQ): Four features were derived from this 305 

self-administered questionnaire, offering a patient-centric perspective on walking 306 

ability.26 307 

4. Medical Outcomes Study Short Form 36 (SF-36): Seven features were 308 

considered from this tool, gauging the participants’ health status and quality of life. 309 
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5. Absolute Claudication Distance (ACD): This singular feature was exclusively 310 

available for patients with PAD, measuring the distance they could walk before the 311 

claudication pain. 312 

Data Transformation 313 

In the preliminary stages of our analysis, we identified the need to standardize and 314 

transform our biomechanical data to ensure comparability across various biomechanics 315 

features and conditions. We employed the Yeo-Johnson transformation30, a method 316 

optimized for varying data distributions, including zero and negative values. Initially, this 317 

transformation was determined and performed based on the pre-intervention dataset. 318 

Subsequently, the same transformation parameters derived from the pre-intervention 319 

data were applied to both the post-intervention and healthy datasets, ensuring 320 

consistency across all conditions. After the transformation, we implemented feature 321 

scaling to standardize the data distribution further, which is crucial for the performance 322 

of certain machine learning models and the validity of statistical tests that assume data 323 

uniformity. This standardization facilitates more accurate analyses and helps in 324 

achieving reliable results. This scaling was configured using the transformed pre-325 

intervention data, ensuring that all biomechanical features ranged between -1 and 1. 326 

The same scaling parameters were then applied to the post-intervention and healthy 327 

data. This systematic data transformation and scaling approach enhanced data clarity, 328 

separation, and comparability across all conditions and features. 329 

Statistical Comparison with Control Group Using the Mann Whitney U-test. 330 

We employ the non-parametric Mann-Whitney U-test31 to distinguish the differences in 331 

measurements between the three independent groups - Healthy, AFO, and Surgery. 332 
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The Healthy group comprised individuals without PAD, serving as the control, while the 333 

AFO (low severity) and surgery (high severity) groups represented patients with PAD 334 

varying in degrees of disease severity. 335 

We chose The Mann-Whitney U-test due to its robustness in comparing non-normally 336 

distributed data, which is often the case in medical research. In addition, many features 337 

in our data have shown non-normality. We present the results from this test as the 338 

Median Bonferroni P-value for each measurement source, which adjusts the median of 339 

the observed p-values to account for multiple comparisons, reducing the chances of 340 

type I errors in our statistical analysis.32 It is worth noting that the ACD data was only 341 

available for patients with PAD. Thus, comparisons involving the healthy group did not 342 

apply to this measure. 343 

This statistical approach aims to identify the measurement source that best 344 

differentiates between the three groups. Ideally, the most informative measurement 345 

source would be the one that exhibits significant differences across all three pairwise 346 

comparisons: Healthy vs. AFO, Healthy vs. Surgery, and AFO vs. Surgery. For 347 

instance, if the GRF features consistently show significant disparities among these three 348 

comparisons, it would suggest that GRF features are the most potent identifiers of PAD 349 

severity. 350 

Machine learning approach to evaluate features’ ability to quantify PAD severity 351 

In this section, we take a more granular approach to PAD severity classification by 352 

focusing on individual features within each data source—GRF, WIQ, and SF-36. Each 353 

feature is modeled and tested separately. This allows us to isolate the predictive power 354 
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of each feature, providing a more subtle understanding of its role in PAD severity 355 

classification. 356 

The data is initially segmented into individual features and then subjected to a machine 357 

learning pipeline involving data splitting, data preprocessing, hyperparameter tuning, 358 

model training, and performance evaluation. We continue to employ Logistic 359 

Regression33,34, Decision Tree35, and Support Vector Machine (SVM)36 models for this 360 

analysis. The goal is to identify the most informative individual features for PAD severity 361 

quantification, offering insights into the potential for streamlined, feature-centric 362 

diagnostic approaches. This feature-level assessment aims to refine our interpretation 363 

of which aspects of GRF, WIQ, and SF-36 most relate to PAD severity. It could thus be 364 

a focal point in future diagnostic and severity assessment tools. 365 

 366 

Figure 4: Flowchart overview of feature-level assessment for PAD severity 367 
quantification. The chart compares individual features using logistic regression, 368 
decision tree, and SVM models. 369 

Stratification of PAD Severity Using Optimal Features 370 

This section aims to provide a more granular understanding of PAD severity by 371 

leveraging the best-performing feature identified in the previous analysis. This 1D scale 372 

could be a valuable reference for future engineering applications to monitor PAD 373 
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severity and progression outside of the clinical environment, mainly because this feature 374 

is derived from GRF that can be physically measured in a lab setting. We stratify a 1D 375 

PAD scale based on the Logistic Regression model built using the GRF Propulsive 376 

Peak feature described in Figure 2.c. We synthesized a hypothetical dataset to 377 

elucidate the relationship between “GRF Propulsive Peak” values and PAD severity. 378 

This hypothetical dataset spanned ‘GRF Propulsive Peak’ values from -1 to 1.4, 379 

incremented by 0.025. Leveraging our optimal Logistic Regression model, previously 380 

identified as the most potent single feature model for this task, we processed this 381 

dataset to generate PAD severity predictions. We categorized these predictions into our 382 

multiclass classification groups: Healthy, AFO, and Surgery. The objective was to 383 

establish a continuous scale that could intuitively represent PAD severity based on GRF 384 

Propulsive Peak values. 385 

Quantifying Intervention Impact Using Effect Size 386 

Effect size23 is a quantitative representation of the strength of the relationship between 387 

variables. Unlike statistical tests that merely confirm the existence of an effect or 388 

relationship, the effect size elucidates its magnitude, independent of sample size. In our 389 

context, with a control group and two patient groups (Surgery and AFO), both pre and 390 

post-intervention, the effect size aids in quantifying the magnitude of change due to 391 

intervention in each patient group and offers a comparative measure against the control.  392 

We employ Cohen’s d, a measure calculated as the difference between two means 393 

divided by the pooled standard deviation to quantify the differences between our 394 

groups. For instance, comparisons such as Healthy vs. pre-surgery provide insights into 395 

the deviation of the surgery group from the control before the intervention. At the same 396 
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time, Healthy vs. post-surgery reveals the deviation post-intervention. Analogously, 397 

comparisons for the AFO group, Healthy vs. pre-AFO and Healthy vs. post-AFO provide 398 

similar insights. Cohen’s guidelines suggest that a d value of 0.2 indicates a ‘small’ 399 

effect size, 0.5 a ‘medium’ effect size, and 0.8 a ‘large’ effect size. The sign of Cohen’s 400 

d further provides directional information: a positive sign indicates the post-intervention 401 

group has higher scores than the pre-intervention or control group. In contrast, a 402 

negative sign indicates the opposite. This approach aims to provide a nuanced, 403 

quantitative understanding of PAD severity and its response to interventions.  404 

Machine Learning Approach Estimating Post-Treatment Outcomes  405 

The section utilizes pre-intervention data, including gait kinematics and kinetics 406 

measurements, WIQ scores, and ACD as predictive features. The initial step involves 407 

gathering pre-intervention data from a cohort of 38 patients diagnosed with PAD. This 408 

data is sourced from various measurements, including gait kinematics covering ankle, 409 

hip, and knee features and gait kinetics focusing on ground reaction forces (GRF), WIQ, 410 

and ACD. Additionally, patients are categorized based on their treatment group: AFO for 411 

those with low severity and surgery for those with high severity. Out of the total, 30 412 

patients underwent surgery due to their high severity, while eight were treated with AFO 413 

due to their lower severity. 414 

The data is split into training and testing sets. The training set comprises 28 patients, 415 

with six from the AFO group and 22 from the surgery group. The remaining ten patients, 416 

consisting of 3 AFO and seven surgery patients, are reserved for the test set. This 417 

division allows the model to be trained on a diverse data set and subsequently validated 418 

on unseen data to gauge its predictive accuracy. 419 
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Before feeding the data into machine learning models, it undergoes a feature selection 420 

process to enhance its predictive capability. The method employs Principal Component 421 

Analysis (PCA)37 for dimensionality reduction. PCA transforms the original features into 422 

a set of linearly uncorrelated variables, capturing the most significant patterns in the 423 

data while reducing its complexity (90% of the total variance is maintained). We applied 424 

this feature selection method at the training data source level to ensure that every data 425 

source contributed to the study while avoiding data leakage between the train and test 426 

sets. 427 

 428 

Figure 5: Machine learning flowchart. The chart depicts the machine learning 429 
approach for predicting PAD treatment outcomes using pre-intervention data and 430 
evaluating model performance. 431 

Three machine learning models were trained on the features of Linear Regression, 432 

Support Vector Regression (SVR), and Random Forest38. These models were chosen 433 

for their versatility and capability to handle complex nonlinear relationships in the data. 434 

The trained models were then used to predict the GRF Propulsive Peak post-435 
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intervention, which, as established in previous chapters, serves as a measure of PAD 436 

severity and a reference for treatment outcome. 437 

Three machine learning models are trained with optimized features: Logistic 438 

Regression, Random Forest, and Support Vector Machine (SVM). Each model is 439 

trained using the data produced from both feature selection methods. Post-training, the 440 

models predict the post-intervention GRF Propulsive Peak (established in the previous 441 

chapter, which is the most distinctive measure for PAD severity), serving as the target 442 

variable. These predictions are then compared with the original test data. The model's 443 

performance is evaluated using MAE for average prediction error magnitude and R-444 

squared for the proportion of variance explained by the model. Additionally, the 445 

accuracy of the treatment outcome direction, indicating whether a patient's condition 446 

improves or worsens, is assessed. 447 

 448 
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