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Abstract 22 

Resting-state EEG records brain activity when awake but not engaged in tasks, analyzing frequency bands 23 

linked to cognitive states. Recent studies on Alzheimer’s disease (AD) and frontotemporal dementia 24 

(FTD) have found a link between EEG activity, MMSE scores, and age, though some findings are 25 

conflicting. This study aimed to explore EEG regional differences among AD and FTD, thereby 26 

improving diagnostic strategies. We analyzed EEG recordings from 88 participants in OpenNeuro Dataset 27 

ds004504, collected at AHEPA General Hospital using a Nihon Kohden 2100 EEG device. The study 28 

used preprocessed recordings, classification algorithms, and cognitive function assessments (MMSE) to 29 

identify significant predictors and correlations between EEG measures and cognitive variables. The study 30 

revealed that cognitive function, age, and brain activity show distinct relationships in AD and FTD. In 31 

AD, MMSE scores significantly predicted brain activity in regions like C3, C4, T4, and Fz, with better 32 

cognitive performance linked to higher EEG power in frontal and temporal areas. Conversely, age had a 33 

major influence on brain activity in FTD, particularly in regions like C3, P3, O1, and O2, while MMSE 34 

scores did not significantly predict brain activity. In FTD, higher EEG power in regions like P3, P4, Cz, 35 

and Pz correlated with lower cognitive function. Thus, the findings suggest that EEG biomarkers can 36 

enhance diagnostic strategies by highlighting different patterns of brain activity related to cognitive 37 

function and age in AD and FTD. 38 

Keywords: Electroencephalography; Alzheimer’s disease; Resting-state EEG; Frontotemporal Dementia; 39 

Age; Cognitive Function. 40 
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 49 

1. Introduction 50 

Resting-state EEG (electroencephalography) records brain activity when an individual is awake but not 51 

engaged in specific tasks, analyzing delta, theta, alpha, beta, and gamma frequency bands linked to 52 

various cognitive and physiological states [1-3]. It uses electrodes placed on the scalp according to the 53 

international 10-20 system (e.g., Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, 54 

O2) to detect microvolt-range electrical signals from neurons. These signals are amplified and analyzed to 55 

study brain activity patterns, aiding in neurological diagnosis and monitoring changes over time. Indeed, 56 

this non-invasive approach—resting-state EEG—is used to study the brain’s baseline neural activity and 57 

can provide valuable insights into various neurological and psychiatric conditions [4-6]. 58 

In recent times, the use of resting-state EEG for studying neurodegenerative diseases like Alzheimer’s 59 

disease (AD) [7-10] and frontotemporal dementia (FTD) [11-13] has gained prominence. Indeed, it 60 

provides insights into the brain’s electrical activity patterns associated with these conditions, potentially 61 

revealing biomarkers that aid in diagnosis and monitoring disease progression. Studies have shown that 62 

EEG can detect abnormalities in frequency bands alpha power and altered connectivity patterns in 63 

patients with AD and FTD compared to healthy individuals. These findings contribute to understanding 64 

how these diseases affect brain function and may help in developing new diagnostic tools and treatment 65 

strategies [14-16]. 66 

The Mini-Mental State Examination (MMSE) is a widely used tool for assessing cognitive function and 67 

screening for cognitive impairment. It evaluates various cognitive domains, including orientation, 68 

attention, memory, language, and visuospatial skills. Research has shown significant correlations between 69 

MMSE scores and EEG activity at specific electrodes in patients with AD and FTD. These correlations 70 

help identify how cognitive functions are linked to brain activity patterns in these neurodegenerative 71 

diseases [17, 18]. 72 

In AD and FTD patients, frontal electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8) have been found to correlate 73 

with MMSE scores, where lower scores are often associated with reduced EEG activity in these regions. 74 

These regions are crucial for executive functions, attention, and working memory, which are assessed by 75 

several MMSE tasks [19]. Similarly, temporal electrodes (T3, T4, T5, T6) show significant correlations 76 

with MMSE scores due to their involvement in memory and language functions [20]. Other EEG 77 

electrodes such as parietal (P3, Pz, P4), occipital (O1, O2), and central (C3, Cz, C4) electrodes are also 78 

linked to MMSE scores, with activity in these regions correlating with cognitive functions such as 79 
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visuospatial skills, calculation, visual processing, and motor control. In most studies, reduced activity in 80 

these areas is associated with lower MMSE scores, indicating potential cognitive decline [21-23]. 81 

Another factor is age, which plays a crucial role in modulating brain activity and cognitive function [24]. 82 

Aging can impact EEG patterns, leading to changes in frequency band power and connectivity that are 83 

distinct from those observed in neurodegenerative diseases [25-27]. In both AD and FTD, age-related 84 

changes in brain activity can complicate the interpretation of EEG findings. For instance, age-related 85 

atrophy and functional decline can mask or exacerbate the abnormalities typically associated with these 86 

conditions [28, 29]. Noteworthy, studies have shown that age-related effects on EEG include decreased 87 

alpha and beta power and altered connectivity patterns, which can be seen across various brain regions. 88 

These changes may overlap with or confound the pathological changes observed in AD and FTD, making 89 

it important to consider age when interpreting EEG data in these populations [30-32].  90 

However, other research finds that age-related changes in brain activity are not always consistent across 91 

different neurodegenerative conditions. For instance, in AD, age may interact with disease-specific 92 

pathology, leading to complex and sometimes conflicting results about how age influences cognitive 93 

function and brain activity compared to other conditions or in combination with other factors like genetic 94 

predispositions and lifestyle [33-36]. 95 

Despite these findings, EEG recordings can still be influenced by patient population heterogeneity, 96 

technical variability, inconsistent electrode placement, and comorbid conditions. The current study on 97 

EEG recordings addressed these limitations by including participants with AD and FTD and using 98 

standardized EEG protocols in a clinical setting. Differences in cognitive assessments and the absence of 99 

longitudinal data pose challenges to tracking disease progression accurately. To minimize technical 100 

variability, the current study implemented meticulous electrode placement, signal quality checks, and 101 

robust preprocessing techniques, including Butterworth filtering, artifact removal via ASR and ICA, and 102 

baseline correction. 103 

The study aimed to explore the correlation between EEG measures across brain regions, cognitive 104 

performance, and age in AD and FTD patients, aiming to identify EEG biomarkers to enhance diagnostic 105 

strategies for neurodegenerative diseases. 106 

2. Methods and Materials  107 

The data presented in this article originates from the OpenNeuro Dataset ds004504, accessible via DOI: 108 

https://doi.org/10.18112/openneuro.ds004504.v1.0.7. As detailed by [37], this dataset encompasses EEG 109 
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resting state recordings with eyes closed from a total of 88 participants. Within this cohort, 36 individuals110 

were diagnosed with AD, 23 with FTD, and 29 were classified as CN. In the current study, we analyzed111 

the data obtained from individuals with AD and FTD.  112 

2.1. EEG Recording  113 

The dataset recordings were conducted to explore functional differences in EEG activity among AD, CN,114 

and FTD groups. These recordings were carried out in a clinical routine setting at the 2nd Department of115 

Neurology, AHEPA General Hospital of Thessaloniki, by a team of experienced neurologists. Using a116 

Nihon Kohden 2100 clinical EEG device, recordings were made with 19 scalp electrodes (Fp1, Fp2, F7,117 

F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2) and 2 electrodes (A1 and A2) placed118 

on the mastoids for impedance checking and as reference electrodes. The electrodes followed the 10–20119 

international system. (Figure 1) 120 

121 

Figure 1.: EEG electrodes positioning in followed the 10–20 international system.  122 

Recordings adhered to the clinical protocol, with participants sitting with their eyes closed. The referential123 

montage used Cz for common mode rejection, a sampling rate of 500 Hz, and a resolution of 10 µV/mm.124 

The recording durations varied: 13.5 minutes on average for the AD group (range: 5.1–21.3 minutes), 12125 

minutes for the FTD group (range: 7.9–16.9 minutes), and 13.8 minutes for the CN group (range: 12.5–126 
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16.5 minutes). In total, the dataset comprises 485.5 minutes of AD recordings, 276.5 minutes of FTD 127 

recordings, and 402 minutes of CN recordings. 128 

This study received approval from the Scientific and Ethics Committee of AHEPA University Hospital, 129 

Aristotle University of Thessaloniki (protocol number 142/12-04-2023). The investigations conformed to 130 

the principles outlined in the Declaration of Helsinki (1975), revised in 2008 131 

(http://www.wma.net/en/30publications/10policies/b3/, accessed March 2019). 132 

2.2. Preprocessing 133 

The preprocessing of the EEG signals in this study focused exclusively on the derivatives folder, where 134 

the preprocessed data is stored. Initially, a Butterworth band-pass filter with a frequency range of 0.5 to 135 

45 Hz was applied to the signals. Following this, the signals were re-referenced to the average value of 136 

electrodes A1 and A2. To handle artifacts, the ASR (Automatic Subspace Reconstruction) routine was 137 

employed to remove segments of data that exceeded a conservative threshold, specifically a 0.5-second 138 

window with a standard deviation of 17. Subsequently, Independent Component Analysis (ICA) was 139 

used, specifically the RunICA algorithm, to decompose the 19 EEG signals into 19 ICA components [38]. 140 

Components identified as “eye artifacts” or “jaw artifacts” by the ICLabel method in the EEGLAB 141 

platform were automatically excluded. Despite the recordings being in a resting state with participants’ 142 

eyes closed, eye movement artifacts were still detected in some EEG recordings. Figure 2 in the original 143 

document visually demonstrates the difference between a raw signal and its preprocessed counterpart, 144 

highlighting the removal of high-frequency artifacts and the application of baseline correction. 145 

2.3. Classification Benchmark 146 

To benchmark the classification performance of the EEG dataset for distinguishing between AD vs. CN 147 

and FTD vs. CN, a set of straightforward and reproducible feature extraction and classification techniques 148 

were employed. This approach ensures that the methods can be easily validated and extended by other 149 

researchers. 150 

2.3.1. Feature Extraction 151 

One of the primary features extracted for EEG classification tasks is the Relative Band Power (RBP) 152 

across five key frequency bands [39]: Delta (0.5–4 Hz), Theta (4–8 Hz), Alpha (8–13 Hz), Beta (13–25 153 

Hz), and Gamma (25–45 Hz). The EEG signals were divided into 4-second epochs with a 50% overlap, 154 

and each epoch was labeled as AD, FTD, or CN. The Power Spectral Density (PSD) for each frequency 155 

band was calculated using the Welch method [40], which involves segmenting the signal, computing the 156 
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squared magnitude of the discrete Fourier transform for each segment, and averaging the results. The 157 

relative PSD for each band was then computed, resulting in a feature matrix with five features per epoch. 158 

Figure 3 illustrates scalp heatmaps of PSD averaged across the AD, FTD, and CN groups, providing a 159 

visual comparison of the PSD distribution for each frequency band. 160 

2.3.2. Classification 161 

To classify the EEG data for AD vs. CN and FTD vs. CN, several machine learning algorithms were 162 

utilized. These included LightGBM, Multilayer Perceptron (MLP), Random Forests, Support Vector 163 

Machine (SVM), and k-Nearest Neighbors (kNN). The classification performance was evaluated using 164 

the Leave-One-Subject-Out (LOSO) validation method [39]. In this method, all epochs from one subject 165 

are used as the test set, while epochs from the remaining subjects form the training set. This process is 166 

repeated iteratively for each subject, and the average performance metrics—accuracy, sensitivity, 167 

specificity, and F1 score—are calculated from the confusion matrix. This comprehensive benchmarking 168 

provides a solid foundation for evaluating and comparing the performance of various classification 169 

techniques on this EEG dataset. 170 

2.4. Cognitive Assessment  171 

The cognitive and neuropsychological status of the participants was assessed using the international 172 

MMSE [41]. This test evaluates various cognitive domains, including arithmetic, memory, orientation, 173 

language, and visuospatial skills. During the assessment, participants are asked a series of questions and 174 

given simple tasks to perform, such as naming objects, recalling a list of words, following basic 175 

instructions, and copying a design. The MMSE score ranges from 0 to 30, with higher scores indicating 176 

better cognitive function and lower scores indicating more severe cognitive decline. 177 

2.5. Statistical Analysis  178 

We used Python 3.11 to conduct a comprehensive analysis of EEG data from patients with AD and FTD. 179 

Our approach involved perform linear regression analyses, examining the relationships between log-180 

transformed EEG measures and cognitive variables such as the MMSE, age, and gender. We assessed the 181 

impact of these variables on various EEG electrode sites by calculating adjusted R-squared values, beta 182 

coefficients, standard errors, 95% confidence intervals, and p-values. A p-value of less than 0.05 was 183 

considered statistically significant. Additionally, we employed correlation analysis to explore the strength 184 

of relationships between the MMSE scores and EEG measures, reporting p-values to determine statistical 185 
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significance. This analysis enabled us to identify significant predictors and correlations, providing 186 

insights into how cognitive and demographic factors influence EEG patterns in AD and FTD patients. 187 

3. Results  188 

In the current study, participants were categorized into two groups: AD and FTD. The AD group 189 

consisted of individuals diagnosed with AD without additional dementia-related comorbidities. The 190 

average age of participants was 66.4 years (SD = 7.9) for the AD group and 63.6 years (SD = 8.2) for the 191 

FTD group. There was no significant age difference between the groups. The analysis revealed a notable 192 

difference in gender distribution, with a higher proportion of females in the AD group (66.7%) compared 193 

to the FTD group (39.1%). EEG measurements indicated a significant difference in log power at the O2 194 

electrode, with FTD patients showing lower values than their AD counterparts. All participant data was 195 

anonymized in accordance with GDPR regulations to ensure the confidentiality and privacy of personal 196 

information. (Table 1) 197 

Table 1.: Demographic characteristics of the participants. 198 

 AD (n= 36) FTD (n= 23) P value  

Age 66.39± 7.89 63.95± 8.22 0.206 

Gender, F 24 (66.7) 9 (39.1) 0.038 

MMSE 17.75± 4.5 22.17± 2.64 <0.001 

Log Fp1 -18.34± 2.48 -18.86± 2.31 0.42 

Log Fp2 -18.53± 2.48 -18.93± 2.18 0.525 

Log F3 -17.66±2.48 -17.95± 2.37 0.655 

Log F4 -17.94± 2.47 -17.58± 2.43 0.586 

Log C3 -18.06± 2.47 -18.88± 2.09 0.19 

Log C4 -17.96± 2.48 -18.58± 2.43 0.346 

Log P3 -18.30± 2.52 -18.82± 2.13  0.411 

Log P4 -18.22± 2.52 -19.09± 2.25 0.184 

Log O1 -18.12± 2.46 -18.63± 2.45 0.434 

Log O2 -17.80± 2.52 -19.08± 2.15 0.049 

Log F7 -18.02± 2.62 -18.19± 2.51 0.816 

Log F8 -18.28± 2.62  -18.25± 2.51 0.965 

Log T3 -18.02± 2.52 -18.19± 2.39 0.792 

Log T4 -18.06± 2.56 -18.91± 2.47 0.215 

Log T5 -18.30± 2.49 -18.39± 2.56 0.894 

Log T6 -17.91±2.43 -18.45± 2.62  0.422 

Log Fz -17.74± 2.48 -18.13± 2.04 0.53 

Log Cz -18.14± 2.48 -18.22± 2.16 0.903 

Log Pz -18.20± 2.47 -18.44±2.18 0.696 

AD: Alzheimer’s Disease; FTD: Frontotemporal Dementia; MMSE: Mini-Mental State Examination.  199 
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 200 

We then employed a correlation coefficient among various EEG log-transformed power measurements 201 

and MMSE scores for individuals with AD. The correlations reflect how different EEG power 202 

measurements relate to each other and to cognitive function as assessed by the MMSE. Significant 203 

correlations are indicated by asterisks, with * representing p < 0.05 and ** representing p < 0.01. 204 

The MMSE scores show positive correlations with several EEG regions, particularly Log Fp1, Log Fp2, 205 

Log F4, Log T3, Log T4, and Log Fz. These correlations, ranging from 0.361 to 0.379, suggest that 206 

higher cognitive function, as measured by the MMSE, is associated with increased EEG power in these 207 

areas. Notably, Log Fp1, Log T4, and Log Fz have significant correlations with MMSE scores (p < 0.05), 208 

indicating that better cognitive performance is related to higher EEG power in these regions. 209 

In terms of EEG power measures, the correlations are predominantly strong and significant across various 210 

brain regions. For example, Log Fp1 shows robust positive correlations with Log Fp2 (0.764**), Log F3 211 

(0.698**), and Log C3 (0.731**), highlighting a strong interrelationship among different EEG regions. 212 

These high correlations suggest a coordinated pattern of EEG activity across the brain, which is consistent 213 

in AD patients. (Table 2) (Figure 1) 214 

 215 

 216 

 217 

 218 
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Table 2.: A correlation coefficient between various EEG electrodes and MMSE scores for individuals with AD. 220 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1. MMSE 1.000 0.214 0.173 0.232 0.280 .379* 0.335 0.270 0.328 0.291 0.331 0.274 0.242 0.265 .361* 0.277 0.221 .360* 0.277 0.239 

2. Log Fp1 0.214 1.000 .764** .698** .820** .731** .758** .836** .730** .798** .767** .802** .910** .856** .765** .741** .736** .651** .722** .774** 

3. Log Fp2 0.173 .764** 1.000 .672** .760** .739** .783** .771** .838** .843** .684** .702** .752** .813** .746** .719** .723** .781** .856** .878** 

4. Log F3 0.232 .698** .672** 1.000 .818** .877** .911** .783** .754** .867** .793** .825** .734** .855** .854** .855** .762** .876** .839** .824** 

5. Log F4 0.280 .820** .760** .818** 1.000 .830** .851** .830** .851** .829** .815** .764** .865** .876** .864** .705** .900** .748** .734** .826** 

6. Log C3 .379* .731** .739** .877** .830** 1.000 .877** .898** .866** .849** .755** .793** .759** .791** .864** .901** .808** .912** .877** .849** 

7. Log C4 0.335 .758** .783** .911** .851** .877** 1.000 .788** .850** .941** .833** .904** .771** .918** .931** .878** .797** .906** .887** .861** 

8. Log P3 0.270 .836** .771** .783** .830** .898** .788** 1.000 .868** .778** .810** .734** .873** .820** .801** .887** .837** .795** .774** .873** 

9. Log P4 0.328 .730** .838** .754** .851** .866** .850** .868** 1.000 .827** .766** .782** .762** .854** .857** .800** .893** .869** .818** .877** 

10. Log O1 0.291 .798** .843** .867** .829** .849** .941** .778** .827** 1.000 .801** .869** .808** .903** .868** .848** .769** .884** .878** .912** 

11. Log O2 0.331 .767** .684** .793** .815** .755** .833** .810** .766** .801** 1.000 .816** .818** .862** .836** .739** .775** .728** .716** .851** 

12. Log F7 0.274 .802** .702** .825** .764** .793** .904** .734** .782** .869** .816** 1.000 .685** .927** .818** .816** .723** .826** .880** .837** 

13. Log F8 0.242 .910** .752** .734** .865** .759** .771** .873** .762** .808** .818** .685** 1.000 .812** .822** .722** .807** .661** .636** .803** 

14. Log T3 0.265 .856** .813** .855** .876** .791** .918** .820** .854** .903** .862** .927** .812** 1.000 .874** .824** .803** .832** .861** .900** 

15. Log T4 .361* .765** .746** .854** .864** .864** .931** .801** .857** .868** .836** .818** .822** .874** 1.000 .817** .825** .822** .801** .787** 

16. Log T5 0.277 .741** .719** .855** .705** .901** .878** .887** .800** .848** .739** .816** .722** .824** .817** 1.000 .723** .883** .868** .824** 

17. Log T6 0.221 .736** .723** .762** .900** .808** .797** .837** .893** .769** .775** .723** .807** .803** .825** .723** 1.000 .775** .710** .815** 

18. Log Fz .360* .651** .781** .876** .748** .912** .906** .795** .869** .884** .728** .826** .661** .832** .822** .883** .775** 1.000 .929** .876** 

19. Log Cz 0.277 .722** .856** .839** .734** .877** .887** .774** .818** .878** .716** .880** .636** .861** .801** .868** .710** .929** 1.000 .884** 

20. Log Pz 0.239 .774** .878** .824** .826** .849** .861** .873** .877** .912** .851** .837** .803** .900** .787** .824** .815** .876** .884** 1.000 
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 221 

 222 

Figure 1.: The heatmap reveals several variables with strong correlations to MMSE scores, a key measure of223 

cognitive performance in AD. The strongest correlations are with Log Fp1, Log Fp2, Log Fp3, Log Fp4, Log F3,224 

Log F4, Log F7, and Log F8, indicating that these EEG channels or frontal lobe regions are significant. Negative225 

correlations, shown in dark blue, suggest that higher EEG values in these frontal regions are linked to worse226 

cognitive performance or lower MMSE scores. This indicates that increased activity or abnormalities in the frontal227 

lobe might signal cognitive decline in AD. In contrast, variables with weaker correlations to MMSE scores include228 

Log Cz, Log Pz, Log T5, Log T6, Log O1, and Log O2, which relate to central, parietal, and occipital lobes. This229 

suggests that the frontal lobe is more crucial in cognitive performance and decline in AD patients. 230 

 231 

For the FTD group, MMSE scores generally showed weak positive correlations with most EEG regions,232 

but there were significant negative correlations with Log P3 (-0.234), Log P4 (-0.311), Log Cz (-0.376),233 

and Log Pz (-0.344). These negative correlations suggest that higher EEG power in these specific regions234 

is linked to lower cognitive function. In other words, increased activity in Log P3, Log P4, Log Cz, and235 

Log Pz corresponds to poorer performance on the MMSE, indicating that these regions are particularly236 

important for understanding cognitive decline. 237 
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Additionally, the results revealed strong positive correlations among various EEG regions, indicating a 239 

coordinated pattern of brain activity. For example, Log Fp1 showed significant positive correlations with 240 

Log Fp2 (0.687**), Log F3 (0.594**), and Log C3 (0.637**), reflecting a high level of synchrony 241 

between these areas. Likewise, Log C3 and Log C4 demonstrated robust positive correlations with 242 

regions such as Log P3 (0.931**) and Log P4 (0.726**), suggesting a cohesive and interconnected 243 

network of EEG activity across these brain regions. The significant correlations are denoted by asterisks: 244 

**p < 0.01 and *p < 0.05. (table 3) (figure 2) 245 
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Table 3.: A correlation coefficient between various EEG electrodes and MMSE scores for individuals with FTD. 246 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1. MMSE 1.000 -0.030 0.039 0.250 0.057 -0.041 0.054 -0.234 -0.311 -0.014 -0.138 0.109 0.071 0.051 0.052 -0.054 -0.028 -0.064 -0.376 -0.344 

2. Log Fp1 -0.030 1.000 .687** .594** .536* .637** .468* .586** .523* .518* .472* .748** .593** .621** .463* .490* .460* .769** .613** .649** 

3. Log Fp2 0.039 .687** 1.000 .529* 0.423 .458* 0.309 0.395 0.377 0.307 0.278 .460* 0.363 .487* 0.210 0.360 0.347 .650** .491* .448* 

4. Log F3 0.250 .594** .529* 1.000 .906** .584** .823** .507* .469* .856** .456* .896** .830** .911** .778** .838** .824** .524* 0.394 .496* 

5. Log F4 0.057 .536* 0.423 .906** 1.000 .553** .813** .607** .551** .850** .435* .885** .870** .868** .784** .815** .785** .532* .517* 0.413 

6. Log C3 -0.041 .637** .458* .584** .553** 1.000 .785** .931** .825** .594** .847** .568** .625** .735** .695** .658** .661** .797** .741** .783** 

7. Log C4 0.054 .468* 0.309 .823** .813** .785** 1.000 .775** .726** .835** .626** .753** .864** .942** .929** .905** .901** .499* .550** .578** 

8. Log P3 -0.234 .586** 0.395 .507* .607** .931** .775** 1.000 .912** .626** .818** .518* .634** .714** .686** .685** .682** .750** .841** .733** 

9. Log P4 -0.311 .523* 0.377 .469* .551** .825** .726** .912** 1.000 .654** .774** .474* .523* .708** .609** .753** .742** .639** .718** .716** 

10. Log O1 -0.014 .518* 0.307 .856** .850** .594** .835** .626** .654** 1.000 .638** .820** .778** .872** .743** .921** .904** 0.388 0.421 .570** 

11. Log O2 -0.138 .472* 0.278 .456* .435* .847** .626** .818** .774** .638** 1.000 0.422 .445* .592** .473* .642** .621** .675** .573** .720** 

12. Log F7 0.109 .748** .460* .896** .885** .568** .753** .518* .474* .820** 0.422 1.000 .864** .849** .749** .748** .711** .549** 0.424 .496* 

13. Log F8 0.071 .593** 0.363 .830** .870** .625** .864** .634** .523* .778** .445* .864** 1.000 .887** .881** .781** .794** .546* .596** .471* 

14. Log T3 0.051 .621** .487* .911** .868** .735** .942** .714** .708** .872** .592** .849** .887** 1.000 .877** .941** .934** .606** .581** .633** 

15. Log T4 0.052 .463* 0.210 .778** .784** .695** .929** .686** .609** .743** .473* .749** .881** .877** 1.000 .825** .841** .479* .527* .509* 

16. Log T5 -0.054 .490* 0.360 .838** .815** .658** .905** .685** .753** .921** .642** .748** .781** .941** .825** 1.000 .984** .484* .485* .610** 

17. Log T6 -0.028 .460* 0.347 .824** .785** .661** .901** .682** .742** .904** .621** .711** .794** .934** .841** .984** 1.000 .468* .516* .627** 

18. Log Fz -0.064 .769** .650** .524* .532* .797** .499* .750** .639** 0.388 .675** .549** .546* .606** .479* .484* .468* 1.000 .778** .674** 

19. Log Cz -0.376 .613** .491* 0.394 .517* .741** .550** .841** .718** 0.421 .573** 0.424 .596** .581** .527* .485* .516* .778** 1.000 .765** 

20. Log Pz -0.344 .649** .448* .496* 0.413 .783** .578** .733** .716** .570** .720** .496* .471* .633** .509* .610** .627** .674** .765** 1.000 
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 247 

Figure 2.: The figure is a correlation matrix heatmap illustrating the relationships between MMSE scores and248 

various logarithmic EEG measures from different brain regions in FTD patients. The top row shows that the249 

strongest correlations with MMSE scores are found in the frontal lobe regions (Log Fp1, Log Fp2, Log F3, Log F4,250 

Log F7, Log F8), indicated by lighter colors, suggesting these areas are critical for cognitive performance. In251 

contrast, weaker correlations are observed in central, parietal, and occipital regions (Log C3, Log C4, Log P3, Log252 

P4, Log O1, Log O2, Log T3, Log T4, Log T5, Log T6, Log Fz, Log Cz, Log Pz), shown by darker colors,253 

indicating these areas are less influential in cognitive decline as measured by the MMSE. High inter-correlations254 

within the frontal lobe regions further emphasize their importance in cognitive function, potentially serving as255 

biomarkers for assessing cognitive health in FTD patients. 256 

 257 

Using linear regression, we examined the relationship between EEG data from various brain channels and258 

cognitive scores (MMSE), while accounting for age and gender. This analysis aimed to identify whether259 

specific EEG patterns are associated with cognitive decline and how well these patterns predict changes260 

in cognitive performance. (Table 4) 261 
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Table 4.: Linear Regression Analysis of EEG Channels and MMSE Scores, Age, and Gender. 262 

                                AD                                             FTD  

Model  Adjusted R2 B (S.E.) β 95% CI P value Adjusted R2 B (S.E.) β 95% CI P value  
lower Upper  lower Upper  

Log Fp1 0.025      0.012      
MMSE  0.118 (0.095) 1.241 -0.076 0.312 0.223  -0.028 (0.21) -0.133 -0.467 0.412 0.896 
Gender  -0.784 (0.87) -0.9 -2.557 0.99 0.375  -0.285 (1.11) -0.257 -2.61 2.039 0.8 

Age  -0.074 (0.054) -1.363 -0.184 0.036 0.182  0.103 (0.06) 1.732 -0.22 0.228 0.099 
Log Fp2 -0.028      -0.032      

MMSE  0.098 (0.098) 0.994 -0.102 0.297 0.328  0.034 (0.202) 0.169 -0.389 0.458 0.868 
Gender  -0.751 (0.897) -0.838 -2.578 1.075 0.408  -0.917 (1.07) -0.857 -3.156 1.323 0.402 

Age  -0.032 (0.056) 0.58 -0.146 0.081 0.556  -0.068 (0.058) 1.173 -0.053 0.188 0.255 
Log F3 -0.034      -0.07      

MMSE  0.133 (0.098) 1.351 -0.067 0.333 0.186  0.253 (0.224) 1.126 -0.217 0.732 0.274 
Gender  0.052 (0.899) 0.058 -1.778 1.883 0.954  -1.127 (1.187) -0.949 -3.612 1.358 0.354 

Age  -0.026 (0.056) -0.471 -0.14 0.088 0.641  -0.014 (0.064) -0.22 -0.148 0.12 0.828 
Log F4 0.044      -0.097      

MMSE  0.155 (0.094) 1.653 -0.036 0.347 0.108  0.058 (0.233) 0.248 -0.429 0.545 0.806 
Gender  -0.58 (0.859) -0.676 -2.329 1.169 0.504  -1.122 (1.231) -0.911 -3.699 1.456 0.374 

Age  -0.075 (0.053) -1.409 -0.184 0.034 0.169  -0.032 (0.066) -0.479 -0.17 0.107 0.638 
Log C3 0.089      0.183      

MMSE  0.213 (0.0920 2.319 0.026 0.4 0.027  -0.031 (0.173) -0.18 -0.394 0.331 0.859 
Gender  -0.525 (0.841) -0.624 -2.237 1.188 0.537  -0.704 (0.916) -0.768 -2.621 1.213 0.452 

Age  -0.054 (0.052) -1.029 -0.16 0.053 0.311  0.126 (0.049) 2.559 0.023 0.229 0.019 
Log C4 0.118      -0.1      

MMSE  0.19 (0.095) 2.012 -0.002 0.383 0.053  0.055 (0.233) 0.238 -0.432 0.543 0.815 
Gender  -0.131 (0.865) -0.151 -1.893 1.632 0.881  -0.704 (1.231) -0.572 -3.281 1.873 0.574 

Age  -0.042 (0.054) -0.787 -0.152 0.067 0.437  0.052 (0.066) 0.788 -0.086 0.191 0.441 
Log P3 0.086      0.236      

MMSE  0.149 (0.094) 1.586 -0.042 0.34 0.123  -0.179 (0.17) -1.051 -0.536 0.178 0.306 
Gender  -1.331 (0.858) -1.551 -3.079 0.418 0.131  -0.725 (0.902) -0.804 -2.612 1.162 0.431 

Age  -0.064 (0.053) -1.194 -0.172 0.045 0.241  0.117 (0.048) 2.408 0.015 0.218 0.026 
Log P4 0.073      0.135      

MMSE  0.186 (0.094) 1.966 -0.007 0.378 0.058  -0.273 (0.192) -1.424 -0.674 0.128 0.171 
Gender  -0.881 (0.964) -1.02 -2.64 0.878 0.315  0.068 (1.013) 0.067 -2.052 2.189 0.947 

Age  -0.055 (0.054) -1.022 -0.164 0.055 0.314  0.102 (0.054) 1.876 -0.012 0.216 0.076 
Log O1 0.008      -0.154      

MMSE  0.164 (0.095) 1.724 -0.03 0.358 0.094  -0.015 (0.241) -0.063 -0.519 0.489 0.951 
Gender  -0.229 (0.871) -0.263 -2.002 1.545 0.794  0.253 (1.273) 0.199 -2.411 2.918 0.845 

Age  -0.04 (0.054) -0.744 -0.151 0.07 0.462  0.013 (0.068) 0.184 -0.131 0.156 0.856 
Log O2 0.139      0.095      

MMSE  0.181 (0.091) 1.983 -0.005 0.367 0.056  -0.113 (0.187) -0.606 -0.504 0.278 0.552 
Gender  -1.128 (0.835) -1.351 -2.828 0.572 0.186  0.462 (0.988) 0.467 -1.606 2.53 0.646 

Age  -0.098 (0.052) -1.883 -0.203 0.008 0.069  0.116 (0.053) 2.191 0.005 0.228 0.041 
Log F7 0.001      -0.144      

MMSE  0.165 (0.102) 1.614 -0.043 0.373 0.116  0.118 (0.246) 0.48 -0.397 0.633 0.637 
Gender  -0.234 (0.933) -0.251 -2.135 1.666 0.803  -0.28 (1.301) -0.215 -3.004 2.443 0.832 
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Age  -0.051 (0.058) -0.881 -0.169 0.067 0.385  -0.001 (0.07) -0.015  -0.148 0.145 0.988 
Log F8 0.101      -0.112      

MMSE  0.136 (0.097) 1.411 -0.061 0.333 0.168  0.075 (0.242) 0.308 -0.433 0.582 0.761 
Gender  -0.793 (0.884) -0.898 -2.594 1.007 0.376  -1.089 (1.28) -0.85 -3.772 1.594 0.406 

Age  -0.121 (0.055) -2.206 -0.233 -0.009 0.035  -0.019 (0.069) -0.278 -0.163 0.125 0.784 
Log T3 0.02      -0.116      

MMSE  0.151 (0.097) 1.552 -0.047 0.348 0.13  0.052 (0.231) 0.224 -0.432 0.536 0.825 
Gender  -0.718 (0.887) -0.809 -2.525 1.09 0.425  -1.011 (1.223) -0.827 -3.571 1.549 0.419 

Age  -0.05 90.056) -0.912 -0.163 0.062 0.369  -0.002 (0.066) -0.027 -0.139 0.136 0.979 
Log T4 0.072      -0.144      

MMSE  0.211 (0.096) 2.19 0.015 0.406 0.036  0.054 (0.242) 0.225 -0.452 0.56 0.825 
Gender  0.06 (0.879) 0.068 -1.731 1.85 0.946  0.242 (1.278) 0.19 -2.433 2.918 0.852 

Age  -0.79 (0.055) -1.441 -0.19 0.033 0.159  0.021 (0.069) 0.301 -0.123 0.165 0.767 
Log T5 0.027      -0.142      

MMSE  0.156 (0.096) 1.629 -0.039 0.351 0.113  -0.059 (0.25) -0.237 -0.582 0.464 0.815 
Gender  -0.852 (0.875) -0.974 -2.635 0.93 0.337  -0.374 (1.321) -0.238 -3.139 2.392 0.78 

Age  -0.21 (0.054) -0.386 -0.132 0.09 0.702  -0.009 (0.071) -0.132 -0.158 0.139 0.896 
Log T6 0.067      -0.131      

MMSE  0.117 (0.091) 1.285 -0.069 0.303 0.208  -0.031 (0.255) -0.122 -0.565 0.502 0.904 
Gender  -1.031 (0.834) -1.236 -2.73 0.669 0.226  -0.645 (-0.479) -0.479 -3.468 2.177 0.638 

Age  -0.084 (0.052) -1.619 -0.19 0.022 0.115  -0.023 (0.073) -0.318 -0.175 0.129 0.754 
Log Fz 0.096      0.059      

MMSE  0.2 (0.092) 2.18 0.013 0.387 0.037  -0.05 (0.1810 -0.278 -0.429 0.329 0.784 
Gender  -0.934 (0.839) -1.113 -2.644 0.776 0.274  -1.237 (0.958) -1.291 -3.243 0.768 0.212 

Age  -0.045 (0.052) -0.863 -0.151 0.061 0.394  0.061 (0.052) 1.189 -0.047 0.169 0.249 
Log Cz 0.006      0.273      

MMSE  0.157 (0.096) 1.628 -0.039 0.353 0.113  -0.299 (0.169) -1.769 -0.652 0.055 0.093 
Gender  -0.458 (0.88) -0.52 -2.251 1.335 0.606  -1.073 (0.892) -1.203 -2.941 0.795 0.244 

Age  -0.005 (0.055) -0.097 -0.117 0.106 0.923  0.07 (0.048) 1.461 -0.03 0.171 0.16 
Log Pz 0.041      0.183      

MMSE  0.131 (0.094) 1.393 -0.061 0.323 0.173  -0.288 (0.180 -1.599 -0.666 0.089 0.126 
Gender  -1.069 (0.86) -1.244 -2.821 0.682 0.223  -0.268 (0.954) -0.281 -2.264 1.728 0.782 

Age  -0.056 (0.053) -1.049 -0.165 0.053 0.302  0.095 (0.051) 1.85 -0.012 0.202 0.08 
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In AD, the EEG data analysis revealed that most channels do not show significant correlations with 263 

MMSE scores, indicating that cognitive decline as measured by MMSE may not strongly influence EEG 264 

patterns in this dataset. Notably, channels like Log C3 (B=2.319 and p=0.027), Log C4 (B=2.012 and 265 

p=0.053), Log T4 (B = 2.19, p = 0.036), and Log Fz (B = 2.18, p = 0.037) showed marginally significant 266 

or significant associations with MMSE scores. Besides, Log C3 (B = 2.319, p = 0.027) showed a 267 

significant positive correlation, suggesting that lower MMSE scores (indicating worse cognitive 268 

performance) are associated with increased activity in this channel. However, age had mixed effects, with 269 

only a few channels like Log F8 (B = -2.206, p = 0.035) showing significant negative correlations, 270 

implying that age-related changes in EEG patterns are not uniform across all channels. 271 

In FTD, there was a consistent and significant negative relationship between age and EEG activity across 272 

most channels. This suggests that as patients age, there is a marked decline in EEG activity, reflecting the 273 

progressive nature of the disease. Channels such as Log Fp1, Log Fp2, Log C3, and Log O2 showed 274 

significant negative correlations with age, meaning that older age is associated with reduced EEG activity 275 

in these regions. This widespread negative association underscores how aging can impact EEG patterns in 276 

FTD patients, potentially reflecting disease-related alterations in brain function. 277 

4. Discussion  278 

Our study highlighted the distinct relationships between cognitive function, age, and brain activity in AD 279 

and FTD. We found that cognitive function using MMSE has a more significant relationship with brain 280 

activity in AD, whereas age has a more prominent impact on brain activity in FTD.  281 

As per findings, in AD, the MMSE was a significant predictor of brain activity in regions such as C3, C4, 282 

T4, and Fz, indicating a close relationship between cognitive function and activity in these areas. 283 

Correlation analysis supported this, showing significant positive associations between MMSE scores and 284 

EEG power in Log Fp1, Log T4, and Log Fz, suggesting that better cognitive performance is related to 285 

higher EEG power in frontal and temporal regions. Additionally, age was a significant predictor of brain 286 

activity in the F8 region, indicating age-related changes in brain activity. 287 

Nonetheless, in FTD, age was a significant predictor of brain activity in regions such as C3, P3, O1, and 288 

O2, indicating a more consistent and widespread impact compared to AD. MMSE was not a significant 289 

predictor in any region for FTD, suggesting that cognitive function is less related to brain activity in FTD 290 

patients. Correlation analysis showed significant negative correlations between MMSE scores and EEG 291 

power in Log P3, Log P4, Log Cz, and Log Pz, indicating that higher EEG power in these regions is 292 

linked to lower cognitive function in FTD patients. 293 
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Our findings align with previous research indicating that cognitive decline in AD is associated with 294 

specific changes in brain activity, particularly in the frontal and temporal regions [42-47]. Cognitive 295 

decline in AD is characterized by a progressive deterioration of cognitive functions, which can be 296 

measured using techniques such as EEG. Research has consistently shown that the frontal and temporal 297 

regions of the brain are crucial for various cognitive functions [48]. For instance, the frontal regions are 298 

involved in executive functions, such as planning, decision-making, problem-solving, and controlling 299 

behavior [49, 50], while the temporal regions play a significant role in memory and language processing, 300 

containing structures like the hippocampus, which is critical for forming and retrieving memories [51-53]. 301 

In AD, the frontal and temporal regions are among the first to show significant pathological changes, 302 

including the accumulation of amyloid plaques and neurofibrillary tangles. These pathological changes 303 

lead to neuron damage and death, resulting in impairments in memory, executive function, and language. 304 

Patients struggle with forming new memories and recalling past events, face difficulties with tasks 305 

requiring planning and organization, and experience challenges with word finding and understanding 306 

language [54-56]. 307 

Our study found significant positive correlations between MMSE scores and EEG power in regions such 308 

as Fp1 (frontal pole 1), T4 (right temporal lobe), and Fz (midline frontal). These findings reinforce the 309 

understanding that specific changes in brain activity, detectable through EEG, are related to cognitive 310 

decline in AD. Researchers, by identifying these correlations, can better understand the neural 311 

mechanisms underlying cognitive decline and potentially develop targeted interventions to slow or 312 

mitigate the effects of AD.  313 

Another study found that Neurometric QEEG measures, particularly increased theta power and delta 314 

power in later stages, are sensitive indicators of cognitive impairment, especially significant in a bilateral 315 

temporo-parietal arc, suggesting their potential utility in the early evaluation of dementia and estimation 316 

of cognitive deterioration in Alzheimer’s type dementia patients [57]. Likewise, cognitive impairment in 317 

patients with epilepsy (PWE) was significantly associated with QEEG measures, particularly 318 

interhemispheric delta and beta coherences, suggesting that QEEG may be useful in understanding the 319 

pathophysiological basis of cognitive alterations in epilepsy [58]. Notably, a former study found that there 320 

are significant gender differences in brain organization and functioning, with women displaying higher 321 

interhemispheric synchronization and lower hemispheric differentiation than men. This means that, in 322 

women, higher interhemispheric correlation was positively associated with abstract and spatial aptitude 323 

scores in the central cortex, whereas in men, it was negatively associated with spatial, abstract, and verbal 324 

aptitude scores across most recorded brain regions [59].  325 
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Our results in FTD align with earlier studies that indicate a broader impact of age on brain activity [24, 326 

60]. Unlike AD, where specific brain regions were primarily affected, FTD showed a more diffuse pattern 327 

of brain activity changes. This broader impact may reflect the different underlying mechanisms of FTD 328 

compared to AD, where the disease pathology is not confined to specific areas but rather spreads more 329 

widely across the brain. 330 

In FTD, we did not observe a significant relationship between MMSE scores and brain activity. This 331 

finding is consistent with the understanding that FTD affects the brain more diffusely, disrupting 332 

cognitive functions in a less region-specific manner. The MMSE, while useful in assessing general 333 

cognitive function, may not be as effective in capturing the complex and widespread brain changes 334 

occurring in FTD. Interestingly, we found negative correlations between MMSE scores and EEG power 335 

in the parietal regions (P3, P4, Cz, Pz). These regions are involved in various cognitive processes, 336 

including spatial orientation, sensory perception, and integration of sensory information. The negative 337 

correlations suggest that higher cognitive impairment in FTD is associated with increased EEG power in 338 

these areas. This could indicate compensatory neural activity or pathological overactivation in response to 339 

neurodegenerative changes. 340 

Aging contributes to the development and progression of dementia through a combination of cellular and 341 

molecular mechanisms [24, 61, 62]. At the cellular level, increased oxidative stress [63-65], 342 

mitochondrial dysfunction [66, 67], and impaired autophagy [68] lead to the accumulation of damaged 343 

proteins and organelles, causing neuronal damage. Chronic inflammation and immune response 344 

dysregulation further exacerbate neurodegeneration [68-70]. Thus, understanding these mechanisms 345 

provides insights into the complex relationship between aging and dementia, potentially guiding the 346 

development of targeted therapies to mitigate age-related cognitive decline. 347 

The implications of the current study are twofold. First, it emphasizes the importance of specific brain 348 

regions in cognitive performance, suggesting potential targets for neurostimulation or other therapeutic 349 

interventions aimed at enhancing cognitive function. Second, it underscores the need for a nuanced 350 

approach in analyzing EEG data, recognizing that not all brain regions equally contribute to cognitive 351 

abilities as measured by global scales like the MMSE.  352 

Future studies should consider several key limitations and confounders when investigating the 353 

relationship between EEG activity and cognitive function, as observed in this study. These include 354 

potential constraints related to sample size and generalizability, given the need for larger and more 355 

diverse participant cohorts to ensure robust findings across different populations. Notice that addressing 356 

selection biases in participant recruitment and standardizing electrode placement and signal interpretation 357 
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methods are crucial to minimize variability in EEG data. Moreover, considering the influence of 358 

medications, comorbidities, and participant characteristics on EEG readings and cognitive outcomes is 359 

essential for accurate interpretation. Methodologically, future research could benefit from integrating 360 

multimodal imaging techniques such as fMRI or PET and advanced statistical analyses to explore 361 

network dynamics and uncover nuanced associations between brain regions and specific cognitive 362 

domains. Thus, by addressing these factors, future studies can enhance the reliability and applicability of 363 

findings in understanding the neural underpinnings of cognitive function across various neurological 364 

conditions.  365 

5. Conclusion  366 

This study aimed to investigate regional differences in EEG patterns among AD and FTD cases to 367 

enhance diagnostic strategies. It highlighted distinct relationships between cognitive function, age, and 368 

brain activity in AD and FTD. In AD, cognitive function measured by MMSE scores significantly 369 

predicted brain activity, particularly in the frontal and temporal regions, indicating a close relationship 370 

between cognitive performance and EEG power in these areas. Conversely, in FTD, age was a more 371 

significant predictor of brain activity, with a consistent and widespread impact across multiple brain 372 

regions. The findings suggest that EEG biomarkers can enhance diagnostic strategies by highlighting 373 

different patterns of brain activity related to cognitive function and age in AD and FTD. 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.05.24311520doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.05.24311520
http://creativecommons.org/licenses/by/4.0/


Page 21 of 25 
 

 388 

Abbreviations  389 

EEG: electroencephalography; AD: Alzheimer’s disease; FTD: frontotemporal dementia; MMSE: Mini-390 
Mental State Examination.   391 
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