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ABSTRACT 

Importance: Nonlinear changes in brain function during aging are shaped by a complex interplay of 

factors, including sex, age, genetics, and modifiable health risk factors. However, the combined effects 

and underlying mechanisms of these factors on brain functional connectivity remain poorly understood.  

Objective: To comprehensively investigate the combined associations of sex, age, APOE genotypes, and 

ten common modifiable health risk factors with brain functional connectivities during aging.  

Design, Setting, and Participants: This analysis used data from 36,630 UK Biobank participants, aged 

44–81, who were assessed for sex, age, APOE genotypes, 10 health risk factors, and brain functional 

connectivities through resting-state functional magnetic resonance imaging. 

Main Outcomes and Measures: Brain functional connectivities were evaluated through within- and 

between-network functional connectivities and connectivity strength. Associations between risk factors 

and brain functional connectivities, including their interaction effects, were analyzed. 

Results: Hypertension, BMI, and education were the top three influential factors. Sex-specific effects 

were also observed in interactions involving APOE4 gene, smoking, alcohol consumption, diabetes, BMI, 

and education. Notably, a negative sex-excessive alcohol interaction showed a stronger negative effect on 

functional connectivities in males, particularly between the dorsal attention network and the language 

network, while moderate alcohol consumption appeared to have protective effects. A significant negative 

interaction between sex and APOE4 revealed a greater reduction in functional connectivity between the 

cingulo-opercular network and the posterior multimodal network in male APOE4 carriers. Additional 

findings included a negative age-BMI interaction between the visual and dorsal attention networks, and a 

positive age-hypertension interaction between the frontoparietal and default mode networks. 

Conclusions and Relevance: The findings highlight significant sex disparities in the associations 

between age, the APOE-ε4 gene, modifiable health risk factors, and brain functional connectivity, 

emphasizing the necessity of jointly considering these factors to gain a deeper understanding of the 

complex processes underlying brain aging. 
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INTRODUCTION 

Brain structural and functional aging exhibits substantial variability, influenced by factors such as sex, 

age, genetics, and modifiable health risk factors (MHRFs) including socioeconomic status (SES), lifestyle, 

and cardiovascular risk factors (CVRFs) 1,2. Our previous research examined the impact of MHRFs and 

their interactions on brain structure during aging 3. Building on this, it is essential to explore how these 

factors collectively affect brain functionality. 

Age, sex, and Apolipoprotein E (APOE) genotypes are well-studied non-modifiable risk factors affecting 

brain function and cognition during aging4. Cognitive domains follow different trajectories, with 

vocabulary remaining stable while memory, reasoning, and processing speed decline 5–7. These cognitive 

changes can be partially explained by aging-related alterations in brain networks, including reduced 

connectivity within and between networks, decreased default mode network (DMN) connectivity, and 

network reorganization8–16. APOE-ε4 (APOE4), a key genetic risk factor for Alzheimer's disease (AD), is 

associated with altered connectivity in memory and cognitive networks, accelerated age-related 

connectivity loss, and sometimes increased hyperconnectivity 17–21. The effects of APOE4 differ by sex 22 

and age 23, with a stronger impact on attention in women and memory and executive functions in men 24. 

However, most studies emphasize the vulnerability of female APOE4 carriers, with limited data on 

functional atrophy in males 3,22,25. The joint influence of age, sex, APOE, and other MHRFs on brain 

function also remains unclear. 

CVRFs, lifestyle factors, and SES are extensively studied in relation to brain and cardiovascular health. 

Key CVRFs identified by the Framingham Heart Study—such as hypertension, smoking, cholesterol, 

diabetes, obesity, and family history of heart disease—can impair brain health and contribute to aging and 

neurodegenerative diseases 26–30. The American Heart Association’s Life’s Essential 8 highlights crucial 

lifestyle measures like diet, physical activity, and sleep for maintaining cardiovascular and brain health 31. 

Recent studies show a strong link between cardiovascular and brain aging, with cardiovascular 
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dysfunction from risk factors potentially impairing brain health 32–34. The 2020 Lancet Commission report 

suggests that modifying 12 major dementia risk factors could prevent or delay up to 40% of dementia 

cases 35.   

This study aims to perform a comprehensive association analysis between brain functional connectivity 

(FC) and various risk factors, including APOE genotype, age, sex, and ten MHRFs (Figure 1). These 

MHRFs encompass six adverse factors—hypertension 36–40, diabetes 41–43, smoking 44–46, obesity 47–49, 

excessive alcohol consumption 50,51, and social deprivation 52—and four beneficial ones—education 53–56, 

physical activity 57, healthy diet 58 and sleep 59 that may affect brain FCs. Using resting-state functional 

magnetic resonance imaging (rsfMRI) data from 36,630 UK Biobank (UKB) subjects, this study seeks to 

uncover new insights into the dynamics of aging and preclinical dementia risks, particularly focusing on 

sex disparities. 

METHODS 

Study Population  

The UKB dataset comprises around 500,000 participants, including over 40,000 who underwent MRI 

scans. We analyzed data from 39,354 subjects with both T1-weighted and rsfMRI scans, including 36,339 

with British ancestry and 3,015 with non-British ancestry. The primary analyses focused on 36,630 

unrelated individuals with complete brain imaging, genetic, and MHRF data. Key findings were based on 

33,824 white British subjects, with subsequent validation in 2,806 non-British subjects.  

Imaging Data Processing  

Imaging data acquisition and preprocessing followed protocols outlined in the UKB Brain Imaging 

Documentation (https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf). RsfMRI data 

underwent motion correction, intensity normalization, and ICA-based artifact removal. High-quality T1-

weighted images were preprocessed and co-registered rsfMRI data to MNI standard space. The HCP-
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MMP 60 atlas was employed to generate 64,620 functional connectivity (FC) traits per subject, which 

were then classified into twelve resting-state networks (Ji-12 network) 61, namely, the somatomotor 

(SMN), auditory (AN), visual1 (Vi1), visual2 (Vi2), dorsal attention (DAN), DMN, frontoparietal (FPN), 

language (LAN), cingulo-opercular (CON), posterior multimodal (PMN), ventral multimodal (VMN), and 

orbito-Affective (OAN) networks. For each rsfMRI scan, the mean time series from each of 360 ROIs 

were extracted and the correlation between each pair of regional time series was transformed from 

Pearson correlations to z-statistics using Fisher transformation. For each pair of the 12 networks we 

calculated the between- and within-network functional connectivity (NFC; or mean FC) and edge strength 

(NES; or mean absolute value of FC) measures. We also generated 100 × 100 FC matrices based on 

Schaefer 100 parcellation atlas and network-level traits for the Yeo-7 and Yeo-17 atlases 62. Detailed 

imaging protocol and processing steps were provided in Supplement 1. 

APOE Genotyping and covariates 

APOE haplotypes were determined using SNPs rs7412 and rs429358, defining three alleles—APOE-ε2 

(APOE2), APOE-ε3, and APOE4. Details on MHRFs and other covariates are provided in Supplement 1. 

Statistical Analysis 

Statistical analyses were conducted using R version 4.1.0. APOE2 and APOE4 were modeled using 

additive models. We analyzed between- and within-network NFC and NES measures, considering APOE4 

and APOE2 counts, sex, age, and MHRFs as covariates of interest. To investigate interactions between 

age or APOE genotype and MHRFs on FC measures, we included two-way interactions (age or APOE 

with MHRFs) as well as age-APOE-MHRF interactions. To assess sex differences, two-way interactions 

between sex and age, APOE genotype, and MHRFs were incorporated, along with sex-related three-way 

interactions (sex-age-MHRF, sex-APOE-MHRF, and sex-age-APOE).  Each main and interaction effect 

was tested separately, controlling for age, sex, all the other risk factors, head motion, brain position, 

volumetric scaling, study site, phase, and living with a partner. Age-squared and sex-age-squared 
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interactions were also controlled, except when sex, age, or sex-age interaction were terms of interest. 

Detailed models are available in eTable 2, Supplement 2. Type II ANOVA F-tests were used to assess 

the main and interaction effects 63. Our preliminary findings, based on white British subjects, were 

evaluated using Bonferroni-corrected significance levels of 0.05/m (details on the number of tests m, are 

provided in eTable 3, Supplement 2). Results were validated in non-British UKB populations by 

consistency of association directions. Post hoc analyses of specific ROIs within identified networks were 

conducted for each risk factor, with the same confounding covariates and Bonferroni correction methods 

(m being the number of ROI pairs in identified networks for each risk factor). 

RESULTS 

Participant Characteristics 

Demographic information for the 36,630 UKB subjects is summarized in Table 1. Correlation plots for 

APOE gene and MHRFs (eFigure 1, Supplement 3) show weak correlations (r < 0.3 except for moderate 

and excessive alcohol consumption). Population-mean NFC and NES matrices for the Ji-12, Yeo-7, and 

Yeo-17 atlases (eFigures 43-45, Supplement 3) reveals anti-correlations between both the DMN and 

VMN with the AN, CON, DAN, PMN, SMN, Vi1, and Vi2 networks, suggesting competitive or 

complementary functions critical for cognitive processing. Demographic differences between populations 

are detailed in eTables 4 and 5 (Supplement 2). With a Bonferroni-corrected significance level of 0.0038, 

the non-British cohort was, on average, two years younger, with fewer ever-smokers (-3.3%) and fewer 

partnered individuals (-6.9%), but higher proportions of advanced education (14.1%), higher SoDep index 

(17.1%), excessive alcohol consumption (10.8%), and diabetes (1.5%).  

Overall Findings 

Findings for NFC and NES measures across the Ji-12, Yeo-7, and Yeo-17 atlases are summarized in 

eTable 6, Supplement 2, and depicted in eFigures 37-42, Supplement 3. Main effects are presented in 

eFigures 2-7, Supplement 3, while two-way and three-way interaction effects are shown in eFigures 8-19, 
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Supplement 3. In the white British population, we identified 113, 54, and 123 associations between NES 

measures and MHRFs for the Ji-12, Yeo-7, and Yeo-17 atlases, respectively, with 89.4% or more 

validated in non-British populations. For NFC measures, 113, 68, and 185 associations were identified, 

with 80-83% validated. Effect sizes were consistent across ethnicities, demonstrating generally robust 

associations (eFigures 31-36, Supplement 3). 

Associations between Age, Sex and APOE and Brain Functions 

Figure 2A shows associations between age, sex, APOE, and FC measures. Consistent with previous 

research 8,64, most within- and between-network NES measures decrease with age, except for increases 

within the FPN and between the FPN-DAN and FPN-VMN networks (eFigure 2, Supplement 3). These 

exceptions align with the posterior-anterior shift in aging (PASA), reflecting increased frontal activity as 

posterior occipital activity declines 10,12,13. Sex differences revealed that males generally exhibited higher 

NES measures across most networks, except for the DMN, where females had higher connectivity, 

consistent with prior findings 65,66 . Positive age-sex interactions showed that males experienced more 

pronounced increases in FPN and LN connectivity and larger reductions in visual networks with aging, 

while females showed stronger reductions in connectivity between the AN, DMN, VMN, and CON 

networks.   No significant effects were observed for the APOE2 variant, but APOE4 carriers showed 

reduced connectivity, particularly within the Vi2, DAN, DMN, and FPN networks, consistent with earlier 

studies 17. A negative sex-APOE4 interaction (Figure 2C) in the CON-PMN networks (ES: -0.020, p = 

5.2E-4) suggested reduced CON-PMN connectivity in male APOE4 carriers, offering new insights. 

Further ROI analysis revealed reduced CON-PMN connectivity in male APOE4 carriers between L_p32pr 

and R_TPOJ2 (Figure 2D; ES: -0.023, p = 7.02E-05).  

Associations between ten MHRFs and Brain Functions  

Hypertension. Negative effects of hypertension were widespread across networks, including AN, SMN, 

OAN, VMN, CON, LAN, and DMN and 26 between-network NES measures (Ji-12), supporting its role 
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in accelerating aging 37,38. A positive age-hypertension interaction was found on NFC between the FPN 

and DMN (Figure 3C and eFigure 20, Supplement 3) networks (ES: 0.029, p = 4.9E-6). Further post-

hoc analyses revealed a positive age-hypertension interaction between L_p9-46v and R_9m (Figure 3D 

and eFigure 28, Supplement 3; ES: 0.029, p = 1.2E-5), indicating reduced anti-correlation, or decreased 

functional segregation in participants with hypertension during aging 39,40. 

BMI. BMI exhibited complex effects on connectivity, with negative effects on NES within the OAN and 

19 between-network pairs, and positive effects within the DAN and CON networks (Figures 3A and 3B, 

and eFigures 21-23, Supplement 3). A negative age-BMI interaction on Vi2-DAN NES suggests that 

higher BMI accelerates age-related decline in FC (eFigure 49, Supplement 3); negative sex-BMI 

interactions were found on NES within Vi1 (ES: -0.023, p = 1.2E-4), and between Vi1 and Vi2 networks 

(ES: -0.020, p = 6.4E-4), indicating a more rapid decline in visual connectivity strength in males (Figures 

3A and 3C). Further post-hoc analyses revealed 19 ROI-level negative associations in the within-Vi1 and 

Vi-Vi2 networks (Figures 3C and 3D, and eFigure 29, Supplement 3), 18 of which (94.7%) were 

validated in non-British populations.  

Diabetes. Although no main effects of diabetes were observed, a positive sex-diabetes interaction was 

found on NFC between the Vi2 and AN networks (ES: 0.021, p = 5.7E-4) (Figure 3C). Further post-hoc 

analyses revealed positive sex-diabetes interaction effects on FCs between L_PBelt and ROIs L_V3A, 

L_V7, R_V3, R_V8, and R_V3B, and between R_V8 and R_A4 (Figures 3C and 3D and eFigure 30, 

Supplement 3), highlighting the greater negative impact of diabetes on visual-auditory connectivity in 

females 41.  

Smoking. Consistent with previous literature 44–46, smoking was associated with widespread negative 

effects, including within FPN and VMN, between VMN and six networks, and between DAN and OAN 

(Figures 4A and 4B).  However, a positive effect was noted between the CON and AN networks. A 

negative sex-smoking interaction on NFC between the VMN and CON (ES: -0.020, p = 2.3E-4) 
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suggested greater detrimental effects from smoking in males (Figures 4A and 4C). ROI-level analyses 

confirmed these effects between PeEc and pOFC (Figures 4C and 4D). 

Alcohol. Excessive alcohol consumption negatively impacted NES between the DMN-OAN, DMN-Vi1, 

and OAN-Vi2 networks (Figures 4A and 4B). A negative sex-excessive alcohol interaction showed a 

stronger effect in males, particularly between the DAN and LAN networks (ES: -0.021, p = 1.9E-4; 

Figures 4A, 4C, and eFigure 25, Supplement 3). Conversely, a positive sex-moderate alcohol interaction 

was observed between the DAN-LAN and FPN-PMN networks, indicating different effects across alcohol 

consumption levels. 

Physical activity, Sleep and Education. Positive effects of physical activity and sleep were observed 

within SMN networks (Figures 4A and 4B), consistent with previous studies linking 

sensory/somatomotor network connectivity to sleep quality 59. Education was positively associated with 

NES within the OAN, VMN, and LAN networks, and across 13 network pairs (eFigure 50, Supplement 3) 

A negative sex-education interaction impacted NFC between CON and FPN (ES: -0.021, p = 1.7E-4),  

while a positive interaction enhanced NES between the PMN-DMN networks (ES: 0.023, p = 4.5E-5), 

suggesting higher education is associated with greater CON-FPN connectivity in females and PMN-DMN 

connectivity in males (eFigures 26 and 27, Supplement 3).   

DISCUSSION 

To our knowledge, this is the largest study to systematically examine the interactions of aging, sex, the 

APOE gene, and MHRFs with brain functional measures. We identified significant sex differences in 

brain FC associated with factors such as age, APOE4, BMI, diabetes, smoking, alcohol consumption, and 

education. For example, smoking, alcohol, and BMI had more pronounced negative effects in males, 

while diabetes had a greater impact on females in specific networks. Education was linked to positive 

effects on CON-FPN networks in females and PMN-DMN networks in males. Additionally, APOE4's 
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effects were more pronounced between the CON and PMN networks in males. These findings reinforce 

current understandings of sex-specific effects of MHRFs and highlight the need for further explorations. 

The sex-age interactions revealed that males experienced greater increases in NES within the FPN and 

between the DMN-LN and DAN-LN networks, along with larger reductions in the visual network. In 

contrast, females exhibited greater reductions in connectivity between the AN, DMN, VMN, and CON 

networks, suggesting distinct aging patterns: males undergoing more extensive reorganization (e.g., 

PASA) 10,12,13 and females demonstrating higher vulnerability to neurodegeneration 67. The negative sex-

APOE4 interaction suggests that male carriers are particularly vulnerable, with more pronounced 

reductions in connectivity between the L_p32pr-R_TPOJ2 regions and between the CON and PMN 

networks—areas critical for memory and executive function. While much of the literature focuses on the 

cognitive vulnerability of female APOE4 carriers 3,22,25, our findings suggest that APOE4 may have a 

larger impact on the decline of CON-PMN brain networks related to memory and executive functions in 

men 24. The sex-diabetes interaction suggests that diabetes affects brain connectivity differently by sex, 

with females showing a greater change in visual-auditory connectivity 41. A negative sex-smoking 

interaction was observed between the VMN and CON networks, indicating more severe smoking-related 

impairments in males. Similarly, the negative sex-excessive alcohol interaction showed a larger 

detrimental effect between the DAN and LAN networks in males, likely due to alcohol misuse leading to 

lower cortical volume, reduced white matter and hippocampal volume, and greater changes in brain 

function and behavior in men 68–70. The sex-BMI interaction highlights a larger impact of obesity on brain 

function in males, aligning with previous research that suggests men experience detrimental changes in 

brain connectivity starting from the overweight category, while women typically show declines only in 

the obese range, possibly due to obesity-induced chronic white matter damage in males 71.  

Our findings on excessive alcohol consumption corroborate previous research, indicating that reduced 

connectivity in the precuneus, postcentral gyrus, insula, visual cortex, and left executive control network 

are key areas of rsfMRI NC reduction 50,51. Meanwhile, our study highlights a sex-specific dichotomy 
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between excessive and moderate alcohol consumption on brain connectivity. In males, excessive alcohol 

had more detrimental effects between the DAN and LAN, while moderate consumption showed a 

protective effect on connectivity between the DAN and LAN, and FPN and PMN networks, suggesting a 

U-shaped nonlinear patterns between alcohol dose and brain health 72. 

We observed that higher education positively influences connectivity within and between networks 

including the OAN, VMN, LAN, and FPN, potentially enhancing cognitive reserve 53,54. Sex-education 

interactions revealed that with higher education, females showed increased connectivity in the CON-FPN 

network, while males benefited more in the PMN-DMN network. This suggests that education may 

enhance neural pathways aligned with the cognitive needs of each sex, indicating the potential for tailored 

educational programs to optimize brain health and cognitive function. 

Elevated blood pressure, a common cardiovascular risk factor, is linked to cognitive decline in later life. 

Hypertension broadly impairs connectivity within and between attentional, SMN, and DMN networks, 

likely due to its impact on neural inefficiencies 73. We observed reduced anti-correlation between the 

dorsolateral (L_p9-46v) and medial (R_9m) prefrontal cortices, suggesting decreased functional 

segregation. A recent study 39 demonstrated that higher blood pressure causally reduces brain functional 

segregation and worsening cognition in the aging population through observational and Mendelian 

randomization analyses. 

Strength and Limitations 

Leveraging large-sample fMRI data from the UKB, we investigated a broad range of modifiable and non-

modifiable risk factors, exploring their joint, conditional, and interaction effects on brain functions. These 

findings were validated across multiple atlases and ethnic populations, ensuring robustness against racial 

differences, atlas choices, outlier sensitivities, and sample size limitations. Our main analyses were based 

on parcellation-based full correlations. Although FMRIB's ICA-based X-noiseifier (FIX) has been applied 

to the UKB dataset to remove scanner artifacts and motion effects, full correlation measures can be 
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sensitive to remaining global artifacts 74, while measuring partial functional connectivity between paired 

brain regions can reduce global artifacts and remove dependencies on other brain regions 75. Future 

studies will explore parcellation-based partial correlation traits. 

CONCLUSION 

Our study revealed sex differences in the effects of APOE4 and MHRFs on brain FC measures, with male 

APOE4 carriers experiencing larger declines in FC between the CON and PMN networks. Distinct aging 

patterns emerged, where males showed more neural reorganization, and females demonstrated greater 

vulnerability to neurodegeneration. Sex-specific effects of diabetes, smoking, BMI, and education 

underscore the importance of considering sex and demographic factors in brain health research. 

Additionally, we observed a sex-specific dichotomy in the impact of alcohol consumption: excessive 

drinking reduces, while moderate consumption increases functional connectivity strength between dorsal 

attention and language networks in males. 
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FIGURES 

Figure 1. The study design. (A) Multimodal data in the UK Biobank. (B) Schematic diagram illustrating 

the analyzed associations between the APOE gene, demographics, modifiable health risk factors, and 

brain functional traits. (C) Identified brain network pairs based on the Ji-12 atlas, showing network edge 

strength (NES) measures associated with APOE, alcohol, smoking, BMI, physical activity, diet, sleep, 

education, diabates and hypertension (main effects only; no interactions considered). SMN, somatomotor 

network; AN, auditory network; Vi1, Vi2, visual networks 1 and 2; DAN, dorsal attention network; DMN, 

default mode network; FPN, frontoparietal network; LN, language network; CON, cingulo-opercular 

network; PMN/VMN, posterior/ventral multimodal network; OAN, orbito-affective network; SES, 

socioeconomic status (such as education); Demog: demographics (age and sex); EDU: education; APOE: 

apolipoprotein E; CVRF: cardiovascular risk factors; BMI, Body Mass Index.  

Figure 2. Selected associations of APOE4 with brain functional network connectivity measures. (A) 

Heatmaps show association results from the white British population using three network atlases: Ji-12, 

Yeo-7, and Yeo-17, for network edge strength (NES; I) and functional connectivity (NFC; II). Significant 

results validated in the non-British population are marked with (*); significant but unvalidated results are 

indicated by (+). Non-significant results but with p-values <1e-4 and <1e-3 are denoted by (.) and (..), 

respectively. (B) Circular plots showing NES (I) and NFC (II) associations from the three atlases. 

Network spatial locations shown on the right, with colored spheres representing different networks and 

red and blue lines for positive and negative associations. (C) Boxplots and scatterplots illustrating APOE-

ε4 interaction effects on network and regional connectivity: Row 1 shows sex-APOE effect on the CON-

PMN NFC (Ji-12) and age-APOE-education effects on within-DMN NES (Yeo-7) and DM3-DM4 NES 

(Yeo-17); Row 2 shows sex-APOE effects on connectivity between L_P32pr and R_TPOJ2, and age-

APOE-education effects on connectivity between Ld32 and R47I, and between L_23d and R_47I. (D) 

Spatial locations of brain regions for sex-APOE4 and age-APOE4-education interactions. 

Figure 3. Selected associations of hypertension, BMI, and diabetes with brain functional network 
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connectivity measures. (A) Heatmaps showing association results from the white British population 

using Ji-12, Yeo-7, and Yeo-17, for network edge strength (NES; I) and network functional connectivity 

(NFC; II). Significant results validated in the non-British population are marked with (*); significant but 

unvalidated results are indicated by (+). Non-significant results but with p-values <1e-4 and <1e-3 are 

denoted by (.) and (..), respectively. (B) Circular plots showing NES (I) and NFC (II) associations from 

the Ji-12 atlas. Colors spheres represent different networks with red and blue lines for positive and 

negative associations. (C) Scatter plots and boxplots illustrating interaction effects. Columns 1-3: age-

hypertension effects on FPN-DMN NFC, sex-BMI effects on Vi2-Vi2 NES, and sex-diabetes effects on 

Vi2-AN NFC; Columns 4-6: age-hypertension effects on connectivity between L_p9-46v and R_9m, sex-

BMI effects on connectivity between L_PIT and L_ProS, and sex-diabetes effects on connectivity 

between L_V3A and L_Pbelt. (D) Spatial locations of the identified brain regions for the sex-diabetes, 

age-hypertension, and sex-BMI interactions.  

Figure 4. Selected associations of smoking, alcohol consumption, physical activity and sleep with 

brain functional network connectivity measures. (A) Heatmaps showing association results from the 

white British population using Ji-12, Yeo-7, and Yeo-17, for network edge strength (NES; I) and network 

functional connectivity (NFC; II). Significant results validated in the non-British population are marked 

with (*); significant but unvalidated results are indicated by (+). Non-significant results but with p-values 

<1e-4 and <1e-3 are denoted by (.) and (..), respectively. (B) Circular plots showing NES (I) and NFC (II) 

associations from the three atlases. Colors spheres represent different networks with red and blue lines for 

positive and negative associations. (C) Scatter plots and boxplots illustrating interaction effects. Row 1, 

columns 1-3: the sex-smoking interaction effect on the OAN-VMN between-network NFC, sex-excessive 

alcohol interaction effect on the DAN-LAN between-network NES, and sex-excessive alcohol interaction 

effect on the DM1-DM4 between-network NES (Yeo-17 atlas), respectively; row 2, columns 1-3: sex-

smoking effects on brain functional connectivities between brain regions L_PeEc and L_pOFC, between 

L_pOFC and R_PeEc, and between R_9m and R_pOFC, respectively. (D) Spatial locations of the 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2024. ; https://doi.org/10.1101/2024.08.05.24311482doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.05.24311482
http://creativecommons.org/licenses/by/4.0/


 
 

25 

identified brain regions for sex-smoking interactions. 
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TABLES 

Table 1. Demographic information, APOE gene, and modifiable health-related risk factors for 
36,630 UK Biobank subjects. No., sample size; SD, standard deviation; SoDep, social deprivation. 

Characteristic Female (N=19395) Male (N=17235) Total (N=36630) 

Age at imaging: mean (SD) [range] 
63.0 (7.39)  
[45.0, 81.0] 

64.3 (7.65)  
[44.0, 81.0] 

63.6 (7.54)  
[44.0, 81.0] 

Ethnicity---British: No. (%) 17861 (92.1%) 15963 (92.6%) 33824 (92.3%) 

Ethnicity---non-British: No. (%) 1534 (7.9%) 1272 (7.4%) 2806 (7.7%) 

APOE4 = 0: No. (%) 13868 (71.5%) 12576 (73.0%) 26444 (72.2%) 

APOE4 = 1: No. (%) 5085 (26.2%) 4295 (24.9%) 9380 (25.6%) 

APOE4 = 2: No. (%) 442 (2.3%) 364 (2.1%) 806 (2.2%) 

APOE2 = 0: No. (%) 16378 (84.4%) 14619 (84.8%) 30997 (84.6%) 

APOE2 = 1: No. (%) 2904 (15.0%) 2518 (14.6%) 5422 (14.8%) 

APOE2 = 2: No. (%) 113 (0.6%) 98 (0.6%) 211 (0.6%) 

Marriage---living with a partner: No. (%) 13619 (70.2%) 13913 (80.7%) 27532 (75.2%) 

Marriage---not with a partner: No. (%) 1235 (6.4%) 520 (3.0%) 1755 (4.8%) 

Education---college degree/above: No. (%) 8626 (44.5%) 8293 (48.1%) 16919 (46.2%) 

Education---no college/below: No. (%) 9433 (48.6%) 7737 (44.9%) 17170 (46.9%) 

SoDep Index---above the median: No. (%) 8275 (42.7%) 7092 (41.1%) 15367 (42.0%) 

SoDep Index---below the median: No. (%) 11099 (57.2%) 10130 (58.8%) 21229 (58.0%) 

Smoking status---ever smoked: No. (%) 12459 (64.2%) 9867 (57.2%) 22326 (61.0%) 

Smoking status---never smoked: No. (%) 6936 (35.8%) 7368 (42.8%) 14304 (39.1%) 

Regular physical activity---yes: No. (%) 14199 (73.2%) 13267 (77.0%) 27466 (75.0%) 

Regular physical activity---no: No. (%) 5040 (26.0%) 3893 (22.6%) 8933 (24.4%) 

Health diet---yes: No. (%) 10517 (54.2%) 7371 (42.8%) 17888 (48.8%) 

Health diet---no: No. (%) 8870 (45.7%) 9854 (57.2%) 18724 (51.1%) 

Alcohol consumption---excessive: No. (%) 2742 (14.1%) 1284 (7.5%) 4026 (11.0%) 

Alcohol consumption---moderate: No. (%) 11115 (57.3%) 11096 (64.4%) 22211 (60.6%) 

Alcohol consumption---not current: No. (%) 5531 (28.5%) 4848 (28.1%) 10379 (28.3%) 

Sleeping---between 6-8 hours: No. (%) 8193 (42.2%) 7759 (45.0%) 15952 (43.5%) 

Sleeping---outside 6-8 hours: No. (%) 11145 (57.5%) 9455 (54.9%) 20600 (56.2%) 

Hypertension---yes: No. (%) 3060 (15.8%) 4259 (24.7%) 7319 (20.0%) 

Hypertension---no: No. (%) 16335 (84.2%) 12976 (75.3%) 29311 (80.0%) 

Diabetes---yes: No. (%) 573 (3.0%) 975 (5.7%) 1548 (4.2%) 

Diabetes---no: No. (%) 18822 (97.0%) 16260 (94.3%) 35082 (95.8%) 

BMI:  mean (SD) [range] 
26.0 (4.53) 
[14.7,56.6] 

27.1 (3.73) 
[16.7,56.0] 

26.5 (4.20) 
[14.7,56.6] 
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