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Precis 36 

The study found high accuracy for glaucoma detection from OCT optic nerve head RNFL scans in a diverse study 37 

population by adapting an existing foundation model (RETFound). Performance improved with larger datasets and 38 

more training cycles, achieving an AUC of 0.91 with RNFL scans alone. Results suggest RETFound is promising 39 

for automated OCT RNFL-based glaucoma detection across demographics and training conditions. 40 

 41 

Abstract  42 

Purpose: To fine tune and evaluate the performance of the retinal foundation model (RETFound) on a diverse 43 

longitudinal clinical research dataset in glaucoma detection from optical coherence tomography (OCT) RNFL scans. 44 

Subanalyses of the model performance were evaluated across different subgroups, various dataset sample sizes and 45 

training cycles (epochs).  46 

  47 

Design: Evaluation of a diagnostic technology  48 

  49 

Subjects, Participants, and Controls: 15,216 Spectralis OCT RNFL circle scans of 747 individuals of diverse race 50 

(56.9% White, 37.8% Black/African American, and 5.3% Other/Not reported, glaucoma severity (30.8% mild, 51 

18.4% moderate-to-severe, and 50.9% no glaucoma), and age (44.8% <60 years, 55.2% >60 years) from the 52 

Diagnostic Innovations in Glaucoma Study (DIGS) and the African Descent and Glaucoma Evaluation Study 53 

(ADAGES). All OCT scans were labeled as "Non-glaucomatous" or "Glaucomatous." 54 

  55 

Methods: RETFound was employed to perform binary glaucoma classification. The diagnostic accuracy of 56 

RETFound was iteratively tested across different combinations of dataset sample sizes (50 to 2000 OCT RNFL 57 

circle scans), epochs (5 to 50), and study subpopulations stratified by severity of glaucoma, age, and race). 58 

  59 

Main Outcome Measures: Area under receiver operating characteristic curve (AUC) for classifying RNFL scans as 60 

"Non-glaucomatous" or "Glaucomatous." 61 

  62 
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Results: Performance metrics improved with larger training datasets and more training cycles, rising from an AUC 63 

of 0.61 (50 training images and 5 epochs) to AUC 0.91 (2,000 training images and 50 epochs). Gains in performance 64 

were marginal as training size increased beyond 500 scans. Performance was similar across race for all training size 65 

and cycle number combinations: African American (AUC=0.90) vs other (AUC=0.93). RNFL scans from older 66 

patients (>60 years) led to worse performance (AUC=0.85) compared to younger patients (<60 years, AUC=0.95). 67 

Performance was significantly higher for RNFL scans from patients with moderate-to-severe glaucoma vs mild 68 

glaucoma (AUC=0.99 vs 0.88, respectively).   69 

  70 

Conclusions: Good RETFound performance was observed with a relatively small sample size of images used for 71 

fine tuning and across differences in race and age. RETFound’s ability to adapt across a range of OCT training 72 

conditions and populations suggests it is a promising tool to automate glaucoma detection in a variety of use cases.   73 

  74 

Keywords:  75 

Foundation Model, Deep Learning, Glaucoma, Artificial Intelligence, RETFound, Self-Supervised Learning, Ocular 76 

Coherence Tomography 77 
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Introduction 79 

Glaucoma, a leading cause of blindness worldwide, is characterized by progressive optic neuropathy that 80 

can lead to irreversible vision loss if not detected and managed early.1,2 Optical coherence tomography 81 

(OCT) is fundamental in the diagnosis and monitoring of glaucoma, providing high-resolution cross-82 

sectional images of the retina essential for detecting structural abnormalities associated with various eye 83 

conditions.3,4 However, the reliance on expert clinicians to interpret OCT images poses both substantial 84 

clinician time burden as well as issues with inter-physician variability in assessment, demonstrating the 85 

need for reliable automated systems.5 86 

 87 

The advent of artificial intelligence (AI) promises to revolutionize ophthalmology by addressing these 88 

issues to aid in the diagnosis and monitoring of glaucoma.6,7 Recent studies have leveraged artificial 89 

intelligence and deep learning (DL) techniques to enhance glaucoma detection using OCT images, 90 

demonstrating promising results.8–12 For instance, Akter et al. employed VGG16, SqueezeNet, and 91 

ResNet18 models on a dataset of 780 segmented and 780 raw TSNIT OCT B-scans, resulting in an AUC 92 

of 0.93 on test data.13 Another multi-institutional study developed a DL model to diagnose early-onset 93 

glaucoma using spectral-domain OCT images. Pre-trained on 4,316 OCT images from 1,371 eyes with 94 

open-angle glaucoma and 193 normal eyes, and then trained on a dataset from 94 patients with early 95 

glaucoma and 84 normal subjects, the model achieved an AUC of 0.937, outperforming random forests 96 

and support vector machine models.14 Moreover, another study evaluated various training strategies for 97 

DL models and explored the influence of demographic and clinical factors from the study groups on the 98 

efficacy of glaucoma detection from optic disc images. It contrasts the effectiveness of deep learning 99 

algorithms by two independent investigators in different glaucoma populations, showing optimal 100 

performance with AUCs of 0.92 for any glaucoma, 0.91 for mild glaucoma, and 0.98 for moderate-to-101 

severe glaucoma across significant datasets like DIGS/ADAGES and the Matsue Red Cross Hospital 102 

(MRCH) datasets, involving varied patient demographics from the U.S. and Japan.12  103 
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However, these DL models often require large, high-quality labeled datasets for effective training, which 104 

are not universally available and are resource-intensive to produce.12,15 This reliance on specialist-105 

annotated data limits their scalability and applicability in diverse clinical settings.12,15 106 

 107 

Self-supervised learning (SSL) helps address this labeling issue. SSL enhances data utilization by 108 

extracting features without the need for ground truth labels, creating versatile feature representations for 109 

various applications.16–18,19  Using large pools of unlabeled data, this approach can train robust, 110 

generalizable models that can be adapted for a variety of tasks and can outperform supervised learning 111 

methods in classification tasks.20,21 This characteristic makes SSL-based models a promising approach for 112 

medical applications with limited labeled data.22,23 113 

 114 

Recently, an SSL-based foundation model that was trained on a large number (>1.6 million) of 115 

ophthalmic images, RETFound, was described.24 A primary intended use of foundation models such as 116 

RETFound is to serve as a starting model that can then be adapted and/or fine-tuned to perform a specific 117 

task of interest without needing a restrictively large or expensive training dataset.24 Preliminary 118 

evaluations of RETFound show its utility across multiple diseases, tasks, and imaging modalities. 119 

However, its development and testing have been primarily confined to publicly available datasets with 120 

inconsistent image and label quality and an initial dataset from the UK. To ensure its robustness and 121 

applicability in real-world settings, it is crucial to further validate RETFound using larger, more diverse 122 

datasets from multiple regions and demographic groups.  123 

 124 

To address this need, our research focuses on a validation study of RETFound using a comprehensive 125 

dataset of OCT images from eyes with and without glaucoma. This study assesses RETFound's 126 

performance in detecting glaucoma using OCT optic nerve head (ONH) circle scans from our unique, 127 

diverse dataset. We explore the number of images and training iterations required for fine-tuning 128 

RETFound to achieve high accuracy in this new context. Our investigation tests RETFound’s ability to 129 
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detect glaucoma using OCT images, examining the impact of varying training durations and data 130 

volumes. Additionally, we assess its generalizability across different ethnicities, ages, and stages of 131 

disease to understand its performance, variability, and applicability in glaucoma detection. 132 

 133 

Methods 134 

Data Collection 135 

This research used OCTs from the Diagnostic Innovations in Glaucoma Study (DIGS, clinicaltrials.gov 136 

ID: NCT00221897)25 and the African Descent and Glaucoma 137 

Evaluation Study (ADAGES, clinicaltrials.gov ID: NCT00221923).26 The recruitment process and 138 

methodology were approved by the institutional review boards at each participating site, adhering to the 139 

ethical standards outlined in the Declaration of Helsinki and the Health Insurance Portability and 140 

Accountability Act. All subjects provided informed consent during recruitment. While comprehensive 141 

descriptions of these studies have been presented in earlier publications,25,26 the critical aspects pertinent 142 

to this work are highlighted below. 143 

 144 

The DIGS and ADAGES studies are a joint initiative between multiple institutions: the University of 145 

California San Diego Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology, the 146 

University of Alabama at Birmingham Department of Ophthalmology, and the Columbia University 147 

Medical Center Edward S. Harkness Eye Institute. The participants in these studies are a diverse mix of 148 

individuals with African, European, and Asian heritage. The studies' protocols involve biannual collection 149 

of OCT photographs, stereo fundus images, and visual field (VF) tests as part of their ongoing research.  150 

 151 

This analysis included a total of 15,216 Spectralis (Heidelberg Engineering GmbH, Heidelberg, 152 

Germany) OCT images of 747 participants (1231 eyes), taken from 2008 to 2019. It included macula-153 

centered posterior pole scans from the Glaucoma Module Premier Edition, which consisted of 61 B-scans, 154 

each with 768 A-scans, covering a 30° × 25° region. Quality assessment for the SD-OCT images was 155 
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conducted by the University of California, San Diego Imaging Data Evaluation and Analysis Reading 156 

Center following standardized protocols. Any SD-OCT images with low signal quality or those 157 

containing artifacts were discarded. 158 

 159 

VF assessments were carried out with the Humphrey Field Analyzer II, using the 24-2 test pattern and the 160 

Swedish Interactive Thresholding Algorithm standard testing algorithm. Tests with fixation losses, false-161 

negative, or false-positive errors exceeding 33% were discarded. To gauge the severity of glaucoma 162 

damage at the time of imaging, the mean deviation (MD) from the VF test taken closest to the time of 163 

image capture, and within a year, was used for all ONH images. 164 

 165 

Glaucoma Labels 166 

Ground truth glaucoma status required patients to have both repeatable glaucomatous visual field damage 167 

(GVFD) and glaucomatous optic neuropathy (GON). Eyes from patients who had neither GVFD or GON 168 

were labeled as “non-glaucomatous.” In determining GON, stereophotographs underwent review by two 169 

independent, blinded graders using a stereoscopic viewer. If the two graders disagreed, a third 170 

experienced grader adjudicated. GVFD was defined as a VF PSD (P< 0.05) and/or Glaucoma Hemifield 171 

Test outside normal limits on at least two consecutive tests. Glaucomatous eyes were further categorized 172 

into two groups based on the severity of glaucoma as indicated by 24-2 VF mean deviation (MD). 173 

Patients with an MD of -6.0 or worse decibels (dB) were classified as having "moderate-to-severe" 174 

glaucoma, while those with a VF MD better than -6.0 dB were categorized as having "mild" glaucoma. 175 

 176 

Image Preprocessing 177 

SD-OCT images were resized to a uniform 224 × 224 pixel dimension to meet the input requirements for 178 

RETFound. This resolution also has proven sufficient for diagnosing primary open-angle glaucoma 179 

(POAG) in earlier experiments.27  180 

 181 
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Evaluation of RETFound using OCTs for glaucoma label assignment 182 

We assessed the practical use and performance of RETFound in detecting glaucoma from these 183 

preprocessed OCT images. We conducted comprehensive iterative testing to measure RETFound's 184 

performance, captured as the area under the receiver operating characteristic (AUC), to predict glaucoma 185 

status. This involved training RETFound with different datasets of OCT images varying in size (50, 100, 186 

200, 500, 1,000, 2,000) and for different numbers of training epochs (5, 10, 20, 50). Through this 187 

approach, we aimed to determine whether RETFound could achieve or exceed the performance of other 188 

deep learning models in classification tasks with relatively minimal training (fine-tuning) on smaller, 189 

labeled datasets. Additionally, we evaluated whether RETFound's results were generalizable across 190 

differences in glaucoma severity, age, and race. 191 

 192 

Number of Images Variation & Dataset Split 193 

A total of 15216 images from 747 patients were randomized into training (10708 images from 512 194 

patients), validation (1497 images from 99 patients), and test (3011 images from 212 patients) pools using 195 

a standard 70-10-20 patient-based split (as illustrated in Figure 1). Demographic information for the entire 196 

dataset and for each of these pools is available in Table 1. RETFound was then evaluated across various 197 

dataset sizes (50, 100, 200, 500, 1,000, 2,000) and epochs (5, 10, 20, 50), totaling 24 size-epoch 198 

combinations. These specific ranges were selected after initial testing indicated they provided a 199 

comprehensive spectrum of model performance, from subpar to optimal. 200 

 201 

For each of these size-epoch combinations, models were trained, validated, and tested on subsets 202 

randomly sampled from the predetermined training, validation, and test pools in a 70-10-20 ratio. The 203 

total number of images reported represented the current size for the specific size-epoch combination being 204 

evaluated (number of training samples + number of validation samples = current size), as shown in Figure 205 

1. To account for and assess variability across different training runs, each size-epoch combination 206 

underwent 10 separate training runs, with the sampling process repeated for each. For each of these 207 
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training runs, an additional 100 bootstrap runs were performed, resulting in a total of 240 training runs 208 

and 24,000 bootstrap runs. Further implementation details are provided in Supplementary Table 2. 209 

 210 

Analysis 211 

Given the balanced distribution of glaucoma cases within the DIGS/ADAGES dataset (as outlined in 212 

Table 1), each run's performance was measured using the area under the receiver operating characteristic 213 

(AUC). 95% confidence intervals (CIs) for these were calculated using a cumulative density function, 214 

sorting the bootstrapped estimates and selecting the values corresponding to the 2.5th and 97.5th 215 

percentiles to determine the CI range. This approach effectively captures variability between runs, 216 

especially when the image count is high. The generalizability of the models was also assessed by 217 

stratifying the results by race (Black vs. non-Black), age (<60 years vs. ≥60 years), and severity of 218 

glaucoma (MD >-6.0 dB vs. MD ≤-6.0 dB)). 219 

 220 

Results 221 

This study included 15216 images from 747 subjects and 1232 eyes, divided into subsets for testing (3011 222 

images from 212 subjects and 356 eyes), training (10708 images from 512 subjects and 812 eyes), and 223 

validation (1497 images from 99 subjects and 167 eyes), as shown in Table 1. The average age of 224 

participants in the study is 60.3 years, with 44.8% (n=335) under 60 years of age and 55.2% (n=412) over 225 

60 years. Females (n=438, 58.6%) outnumber males (n=309, 41.4%). The majority of the study 226 

population is White (56.9%, n=425), followed by Black (37.8%, n=282) and Asian (3.9%, n=29) 227 

individuals. The racial status for 6 (0.8%) participants was unspecified or unrecorded. Eye-level 228 

characteristics such as VF MD, axial length, spherical equivalent, intraocular pressure (IOP), and central 229 

corneal thickness (CCT) are documented for the training, validation, and test sets in Table 1. 30.8% 230 

(n=379) of patients’ eyes indicated mild glaucoma (VF MD >-6 dB) compared to 18.4% (n=226) with 231 

moderate-to-severe glaucoma (VF MD <-6 dB), while 50.9% (n=626) had no glaucoma. The datasets are 232 
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evenly distributed between the two outcomes of interest at the latest visit: Glaucoma (n=605, 49.1%) and 233 

Not Glaucoma (n=626, 50.9%). 234 

 235 

Table 2, Figure 2, and Supplementary Figures S1 and S2 demonstrate the model's performance across 236 

various epoch and OCT image sample size combinations. Increases in either epoch count or sample size 237 

were associated with increased performance, however, sample size had a larger impact than epoch count. 238 

Across all epochs, as the image count grew from 50 to 2000, the AUC also increased; at a constant of 50 239 

epochs, this increase ranges from 0.64 at 50 images to 0.85 at 200 images and 0.91 at 2000 images. At a 240 

constant sample size of 2,000 images, AUC increased from 0.86 at 5 epochs to 0.91 at 50 epochs. The rate 241 

of improvement diminished as the sample size increased, with large gains in performance when moving 242 

from 50 to 500 images and relatively small gains when adding additional images after 500.  243 

 244 

The 95% confidence intervals for AUC narrow with the increase in the number of images, indicative of 245 

higher confidence in the AUC values with larger datasets; at a constant 50 epochs, the 95% CI range is 246 

0.37 at 50 epochs, 50 images and decreases to 0.12 at 50 epochs, 2000 images. This narrowing of 95% 247 

CIs with the increased sample size and epoch count indicates better model stability and performance 248 

consistency, as more data is available for training over greater numbers of epochs. An increase in the 249 

number of images appears to have a larger effect than a proportional increase in epochs. For 2000 training 250 

and validation images, the CI range only decreases from 0.14 at 5 epochs to 0.12 at 50 epochs. Model 251 

performance at 2000 images, over 50 epochs, consistently achieves excellent performance with a mean 252 

AUC of 0.91. 253 

 254 

Model performance was also assessed in relation to demographic factors (Table 2, Figure 3 and 255 

Supplemental Figure 3) across sample sizes and epoch numbers. With respect to age groups (<60 years 256 

vs. ≥60 years), AUCs were comparable at small sample sizes, but AUC was consistently higher in the <60 257 

years group at larger sample sizes (0.95 (0.83 – 0.99) vs. 0.85 (0.73 – 0.93) at 2,000 images and 50 258 
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epochs). These differences were not statistically significant. Similarly in comparing racial groups (Black / 259 

African American vs. White), results were comparable at small sample sizes, but AUC slightly in the 260 

White participants at larger sample sizes (0.93 (0.84 – 0.97) vs. 0.90 (0.76 – 0.98) at 2,000 images and 50 261 

epochs). Again, these differences were not statistically significant. Finally, with respect to disease 262 

severity, AUC was consistently higher for the moderate-to-severe group than the early glaucoma group 263 

(0.95 (0.83 – 0.99) vs. 0.85 (0.73 – 0.93) at 2,000 images and 50 epochs). These results were statistically 264 

significant at the 500, 1,000, and 2,000 sample size cases across all epoch numbers (0.93 (0.84 – 0.97) vs. 265 

0.90 (0.76 – 0.98) at 2,000 images and 50 epochs). 266 

 267 

Discussion 268 

RETFound demonstrates strong diagnostic performance for OCT images, benefiting from larger datasets 269 

and longer training times. Its efficiency and accuracy make it a promising tool for clinical applications. 270 

The performance of RETFound varied with the number of images and epochs during training and was 271 

generalizable across differences in age and race. As the number of images and epochs increases, there is a 272 

general trend of improvement in diagnostic accuracy, with limited improvement in diagnostic accuracy 273 

after increasing the sample size from 500 (average AUC 0.87, 25.0 patients, 40.1 eyes) to 1000 (average 274 

AUC 0.90, 50.0 patients, 80.2 eyes) images. This suggests that although RETFound benefits from a larger 275 

volume of data and extended training, good diagnostic performance is possible with relatively small 276 

sample sizes. Likely because this foundation model is pre-trained on a large dataset using a self-277 

supervised approach, it is able to acquire strong prior knowledge of informative retinal image features, 278 

allowing for efficient fine-tuning using smaller sample sizes and fewer epochs to achieve strong 279 

performance. 280 

 281 

RETFound matches or exceeds the performance of previously developed convolutional neural networks 282 

(CNNs) based DL methods while requiring significantly fewer samples for training.28 When trained for 50 283 

epochs on 200 images, it begins to approach the performance of ResNet-50, which was trained on much 284 
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larger DIGS/ADAGES OCT datasets comprising tens of thousands of images while using a similar 285 

definition of glaucoma (GVFD and GON) as well as comparable distribution of severity of disease.28 286 

Specifically, RETFound achieves an AUC of 0.87 (95% CI: 0.77–0.93) with just 500 images, matching 287 

the performance of the prior CNN (AUC = 0.86, 95% CI: 0.84–0.87, n=25,751).28 Additionally, 288 

RETFound surpasses previous CNNs when trained and validated on more than 500 images, achieving an 289 

AUC of 0.90 (95% CI: 0.83–0.95) for 1000 images. Even with only 20 epochs of training, RETFound 290 

exceeds the performance of prior CNNs with an AUC of 0.88 (95% CI: 0.80–0.93) when trained on 1000 291 

OCT images. RETFound OCT also shows comparable if not superior performance to previous CNNs 292 

using ONH fundus images. Specifically, RETFound OCT achieved an AUC of 0.91 (95% CI: 0.83–0.95) 293 

when trained and validated on only 2000 OCT images, similar to the AUC of 0.91 (95% CI: 0.89–0.92) 294 

reported for CNNs trained on 20,828 ONH fundus images.28  295 

 296 

RETFound's performance also compares favorably to previous transformer models applied to the 297 

DIGS/ADAGES dataset. While a transformer model achieved an AUC of 0.92 on 22,464 OCT images 298 

from the DIGS/ADAGES dataset,29 RETFound achieved similar results with an AUC of 0.91 (95% CI: 299 

0.83–0.95) using just one-tenth of the data. This outcome demonstrates RETFound's efficiency, as it 300 

requires fewer labeled training samples to match or surpass the performance of prior approaches, 301 

benefiting from both increased training time and sample size. 302 

 303 

In the original study,24 RETFound's application to a publicly available dataset for glaucoma classification 304 

yielded comparable or mildly inferior outcomes compared to its performance following fine-tuning on the 305 

clinical DIGS/ADAGES dataset. This includes glaucoma detection on the PAPILA dataset, for which 306 

they reported a mean AUC of 0.86 (0.84, 0.87).24 However, it should be noted that the original study did 307 

not directly test RETFound's performance with OCT for glaucoma prediction, only fundus images for 308 

Glaucoma and "Multi-class disease", such that a direct comparison cannot be cleanly made.  309 

 310 
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Further, discrepancies in performance may result from various factors, including variations in ground 311 

truth definition of glaucoma disease severity, study population, image quality, or other elements.30 312 

Numerous studies have reported high accuracy in glaucoma detection; however, direct comparisons 313 

across studies can be difficult due to data source differences, including variations in disease severity, 314 

which is often not reported despite its significant impact on accuracy.7,31 In particular, accuracy for 315 

identifying mild glaucoma is often substantially lower than identifying moderate-to-severe disease,12,32 as 316 

shown in this work, where mean AUC for detecting moderate-or-severe glaucomatous disease rose to 317 

0.99 (0.95, 1.00) at 2000 images and 50 epochs, compared to 0.88 (0.79, 0.94) for detecting mild disease.   318 

 319 

When comparing RETFound model performance when stratified for detecting mild versus moderate-to-320 

severe glaucoma, significant differences are observed. At 50 epochs, the model's performance on 1000 321 

images from patients with mild glaucoma shows a mean AUC of 0.87 (95% CI: 0.787 to 0.934), whereas 322 

for moderate to severe glaucoma, the mean AUC significantly improves to 0.986 (95% CI: 0.950 to 323 

0.999). Similarly, with 2000 images, the AUC for mild glaucoma is 0.881 (95% CI: 0.791 to 0.937), 324 

compared to an AUC of 0.991 (95% CI: 0.954 to 0.999) for moderate to severe cases. Notably, even with 325 

just 200 images, the model achieved an impressive AUC of 0.965 (95% CI: 0.887 to 0.992) for moderate 326 

to severe glaucoma. These findings highlight the model's enhanced sensitivity in detecting more advanced 327 

stages of glaucoma. This may be attributed to the more pronounced structural changes in the optic nerve 328 

head and retinal nerve fiber layer in moderate-to-severe glaucoma, which are more easily recognized by 329 

the model. The subtle changes in mild glaucoma may present a greater challenge for detection, requiring 330 

higher image resolution or additional clinical features to improve model performance. 331 

 332 

This study also finds that the RETFound model maintains strong performance across various 333 

demographic groups, showing no statistically significant differences in AUC when stratified by race. This 334 

outcome implies that the model effectively generalizes across diverse populations, a crucial trait for its 335 

clinical use in different real-world scenarios. However, while not reaching statistical significance, our 336 
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results suggest that the RETFound model's performance may vary between age groups. Specifically, when 337 

trained for 50 epochs on 2000 images the model achieved an AUC of 0.95 (95% CI: 0.83 to 0.99) for 338 

subjects below 60 years of age, whereas for those above 60, the AUC was lower at 0.85 (95% CI: 0.73 to 339 

0.93). This may be due in part to differences in the severity of disease among these populations. This 340 

suggests that the model is more effective at detecting glaucoma in younger patients, potentially due to 341 

more pronounced retinal changes in younger individuals or differences in disease pathology. The ROC 342 

curve in Figure 3 further illustrates these differences, with the curve for subjects under 60 showing higher 343 

sensitivity and specificity across most thresholds compared to those over 60. This discrepancy could be 344 

due to age-related changes in retinal structures that are harder to detect in older individuals or reflect 345 

differences in the underlying disease pathology. These findings underscore the importance of considering 346 

demographic factors such as age in the development and evaluation of AI models for medical diagnostics. 347 

While the RETFound model shows promise, its varying performance across age groups highlights the 348 

need for further refinement and possibly the development of age-specific models or adjustments 11. 349 

 350 

One limitation is that this study did not explicitly explore the impact of batch size on training dynamics, 351 

as theoretically batch size could affect gradient smoothness and convergence stability. However, initial 352 

experiments showed no significant effect on results, and relevant hyperparameters are included in 353 

Supplemental Table 2. The methodology of this study is also limited by its binary classification approach, 354 

distinguishing only between glaucoma and non-glaucoma. This simplification may not adequately capture 355 

the nuanced spectrum of ocular diseases and the variability in normal human optic nerve head structure. 356 

Enhanced diagnostic accuracy in stratifying disease severity suggests that a model with a broader range of 357 

categories that includes glaucoma suspects, or glaucomatous optic nerve damage without visual field 358 

damage, could be more beneficial for glaucoma detection.24 However, a binary classification system is 359 

essential for generating referral suggestions and plays a key role in telehealth, screening, primary care, 360 

and clinical decision-making tools. Relying solely on OCT RNFL imaging also has its limitations, and 361 

incorporating additional imaging techniques or diagnostic information could enhance the model's 362 
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performance. Additionally, using a relatively uniform dataset in this study may limit the applicability of 363 

the results to diverse populations. These limitations are not unique to glaucoma detection and reflect 364 

broader challenges often faced when implementing AI-driven methods in ophthalmology.  365 

 366 

Overall, the findings underscore RETFound's adaptability and efficiency across various training 367 

configurations, demonstrating significant performance gains even with limited training samples or 368 

computational resources—common constraints in real-world clinical settings. Many healthcare facilities 369 

face challenges in acquiring large volumes of expertly labeled data and the necessary computational 370 

infrastructure for extensive model training. Models developed externally on separate data often may 371 

suffer worse performance when applied to an independent local dataset. As such, RETFound's reduced 372 

dependence on extensive labeled datasets and its ability to maintain high performance across diverse 373 

training conditions make it a viable and innovative tool for integrating AI into ophthalmological practices. 374 

Fine-tuning enables models to be adapted to specific clinical settings, patient demographics, and disease 375 

presentations, thereby optimizing their diagnostic accuracy and utility. Crucially, models can reach high 376 

performance with small dataset sizes; this study suggests fine-tuning with only 500 or even 200 images 377 

may be sufficient for accurate glaucoma detection. This study highlights the potential of foundational 378 

models trained on large, unlabeled datasets to overcome barriers to AI adoption, enhancing glaucoma 379 

detection in telehealth, primary care, community, and clinical environments. 380 

 381 

Future efforts will focus on integrating fundus images as well as OCT data in models to enable a 382 

multimodal approach. By combining fundus and OCT imaging for multimodal assessment of RETFound, 383 

its diagnostic potential can be further evaluated and performance may be improved. Expanding the 384 

validation study to cover a broader spectrum of eye conditions, beyond just glaucoma, to include multiple 385 

disease categories, could also greatly enhance our understanding of RETFound’s flexibility and 386 

significance. Foundational AI models have the potential to significantly advance the field of 387 

ophthalmology, but they require extensive validation before they can be implemented in clinical practice. 388 
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Furthermore, including diverse and representative datasets in these studies will be essential for evaluating 389 

the models' real-world performance and reliability. 390 
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 463 

Figures 464 

Figure 1: Diagram showing model workflow, involving OCT preprocessing, fine-tuning runs, & 465 

bootstraps. 466 

 467 

  468 
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Figure 2: Plots demonstrating the relationship between number of images (x) vs and performance, as measured by 469 

Area under the receiver operating characteristic curve (AUC) (y), at each tested epoch number.  470 

 471 

  472 
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Figure 3: Best performing RETFound models for age, race, and severity of glaucoma. Area under the receiver 473 

operating characteristic curve (AUC) curves are stratified by Glaucoma Severity (left: Mild, Moderate-to-severe), 474 

Age (middle: >60y, <60y) and Race (right: African Descent, Other). The best performing model was defined as the 475 

model with the highest combined (AUC), fine-tuned from a single training run with 2000 images.  476 

 477 
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Tables  479 

Table 1: Overview of all Cohorts  480 

 
Overall (n = 747 

subjects; 1231 eyes; 

15216 images) 

Training (n = 512 

subjects; 812 eyes; 

10708 images) 

Validation (n = 99 

subjects; 167 eyes; 

1497 images) 

Testing (n = 212 

subjects; 356 eyes; 

3011 images) 

Age 60.3 (59.2, 61.4) 61.7 (60.4, 63.0) 54.8 (51.4, 58.2) 58.1 (56.1, 60.1) 

Age Classification 
    

     Age < 60 335 (44.8%) 205 (40.0%) 60 (60.6%) 114 (53.8%) 

     Age > 60 412 (55.2%) 307 (60.0%) 39 (39.4%) 98 (46.2%) 

Sex 
    

     Female 438 (58.6%) 282 (55.1%) 65 (65.7%) 134 (63.2%) 

     Male 309 (41.4%) 230 (44.9%) 34 (34.3%) 78 (36.8%) 

Race 
    

     American Indian/ Alaska Native 2 (0.3%) 1 (0.2%) 0 (0.0%) 1 (0.5%) 

     Asian 29 (3.9%) 23 (4.5%) 3 (3.0%) 3 (1.4%) 

     Black or African American 282 (37.8%) 185 (36.1%) 31 (31.3%) 104 (49.1%) 

     Native Hawaiian or Other Pacific 

Islander 

3 (0.4%) 3 (0.6%) 0 (0.0%) 0 (0.0%) 

     Unknown or Not Reported 6 (0.8%) 4 (0.8%) 2 (2.0%) 0 (0.0%) 

     White 425 (56.9%) 296 (57.8%) 63 (63.6%) 104 (49.1%) 

Ethnicity 
    

     Hispanic 18 (2.4%) 13 (2.5%) 5 (5.1%) 3 (1.4%) 

     Not Hispanic 647 (86.6%) 446 (87.1%) 82 (82.8%) 181 (85.4%) 

     Unknown or Not Reported 82 (11.0%) 53 (10.4%) 12 (12.1%) 28 (13.2%) 

Diabetes 
    

     No 652 (87.3%) 437 (85.4%) 93 (93.9%) 189 (89.2%) 

     Yes 95 (12.7%) 75 (14.6%) 6 (6.1%) 23 (10.8%) 

Hypertension 
    

     No 463 (62.0%) 299 (58.4%) 68 (68.7%) 142 (67.0%) 

     Yes 284 (38.0%) 213 (41.6%) 31 (31.3%) 70 (33.0%) 

24-2 VF MD (dB) -3.31 (-3.71, -2.92) -4.10 (-4.62, -3.59) -1.61 (-2.42, -0.80) -1.08 (-1.54, -0.63) 

Baseline Disease Severity 
    

     Mild Glaucoma 379 (30.8%) 313 (37.9%) 25 (15.0%) 41 (11.5%) 

     Moderate-to-severe Glaucoma 226 (18.4%) 195 (23.6%) 13 (7.8%) 18 (5.1%) 

     Non-Glaucomatous 626 (50.9%) 317 (38.4%) 129 (77.2%) 297 (83.4%) 

Axial Length (mm) 23.9 (23.9, 24.0) 24.0 (23.9, 24.1) 23.7 (23.5, 24.0) 23.8 (23.7, 24.0) 

Spherical Equivalent -0.51 (-0.64, -0.38) -0.58 (-0.74, -0.42) -0.58 (-0.90, -0.26) -0.31 (-0.55, -0.07) 

IOP (mmHg) 14.7 (14.4, 14.9) 14.7 (14.4, 15.1) 14.6 (14.1, 15.2) 14.6 (14.2, 15.0) 

CCT (µm) 539 (536, 542) 539 (535, 542) 544 (536, 552) 538 (533, 543) 

Baseline Visit Glaucoma Classification 
    

     GVFD & GON 605 (49.1%) 508 (61.6%) 38 (22.8%) 59 (16.6%) 

     Non-glaucomatous 626 (50.9%) 317 (38.4%) 129 (77.2%) 297 (83.4%) 

Last Visit Glaucoma Classification 
    

     GVFD & GON 605 (49.1%) 508 (61.6%) 38 (22.8%) 59 (16.6%) 

     Non-glaucomatous 626 (50.9%) 317 (38.4%) 129 (77.2%) 297 (83.4%) 

IOP: intraocular pressure, CCT: central corneal thickness, VF: visual field, MD: mean deviation  481 
*Number of patients when stratified by characteristic may not sum to total (2104 for “All”); this remainder were unreported for the characteristic 482 
of interest.  483 
**Age of 5 subjects progressed past 60y during the study; these are here reported at baseline age <60y. 484 

 485 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 5, 2024. ; https://doi.org/10.1101/2024.08.04.24311475doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.04.24311475


Table 2: Summary of the model performance on the local datasets as captured by AUC, with 95% confidence 486 

intervals. The number of images represents the sum of images used for training and validation. Stratified by Age, 487 

Disease Severity, and Race. 488 

Epoch Number 

of 

Images 

Overall 

(n = 212 

subjects; 356 

eyes; 3011 
images) 

Age Disease Severity Race 

Age Below 60 

(n = 114 subjects; 

196 eyes; 1421 
images) 

Age Above 60 

(n = 101 subjects; 

164 eyes; 1590 
images) 

Mild Glaucoma 

(n = 29 subjects; 

43 eyes; 666 
images) 

Moderate-to-severe 

Glaucoma 

(n = 19 subjects; 27 
eyes; 221 images) 

Black or African 

American 

(n = 104 subjects; 172 
eyes; 1425 images) 

Other Races 

(n = 108 subjects; 

184 eyes; 1586 
images) 

5 50 0.61 (0.44, 0.70) 0.59 (0.37, 0.69) 0.61 (0.50, 0.71) 0.60 (0.44, 0.69) 0.64 (0.41, 0.76) 0.61 (0.40, 0.75) 0.61 (0.43, 0.71) 

5 100 0.65 (0.56, 0.73) 0.60 (0.42, 0.71) 0.65 (0.57, 0.74) 0.64 (0.55, 0.72) 0.70 (0.55, 0.79) 0.63 (0.52, 0.76) 0.66 (0.57, 0.76) 

5 200 0.71 (0.64, 0.79) 0.67 (0.57, 0.79) 0.68 (0.59, 0.77) 0.69 (0.61, 0.76) 0.80 (0.71, 0.88) 0.70 (0.59, 0.83) 0.72 (0.63, 0.79) 

5 500 0.80 (0.71, 0.87) 0.78 (0.67, 0.88) 0.75 (0.62, 0.85) 0.76 (0.67, 0.83) 0.93 (0.85, 0.97) 0.80 (0.66, 0.92) 0.80 (0.70, 0.87) 

5 1000 0.84 (0.76, 0.91) 0.81 (0.64, 0.93) 0.79 (0.67, 0.89) 0.80 (0.72, 0.88) 0.96 (0.91, 0.99) 0.82 (0.67, 0.94) 0.85 (0.77, 0.91) 

5 2000 0.86 (0.78, 0.92) 0.84 (0.69, 0.96) 0.80 (0.68, 0.89) 0.82 (0.74, 0.90) 0.97 (0.93, 0.99) 0.84 (0.69, 0.95) 0.87 (0.79, 0.93) 

10 50 0.62 (0.44, 0.72) 0.60 (0.37, 0.70) 0.62 (0.51, 0.73) 0.61 (0.44, 0.71) 0.66 (0.41, 0.79) 0.61 (0.41, 0.75) 0.62 (0.44, 0.74) 

10 100 0.72 (0.63, 0.81) 0.68 (0.53, 0.83) 0.68 (0.57, 0.77) 0.69 (0.60, 0.77) 0.83 (0.67, 0.93) 0.71 (0.58, 0.87) 0.73 (0.63, 0.81) 

10 200 0.80 (0.71, 0.87) 0.78 (0.65, 0.90) 0.74 (0.59, 0.85) 0.75 (0.66, 0.84) 0.93 (0.83, 0.97) 0.79 (0.64, 0.91) 0.80 (0.68, 0.88) 

10 500 0.85 (0.78, 0.91) 0.82 (0.64, 0.93) 0.79 (0.67, 0.88) 0.81 (0.73, 0.88) 0.96 (0.91, 0.99) 0.83 (0.69, 0.93) 0.87 (0.79, 0.92) 

10 1000 0.86 (0.79, 0.92) 0.85 (0.70, 0.96) 0.80 (0.69, 0.90) 0.83 (0.74, 0.90) 0.97 (0.92, 0.99) 0.84 (0.71, 0.96) 0.89 (0.80, 0.94) 

10 2000 0.89 (0.81, 0.94) 0.89 (0.71, 0.97) 0.82 (0.71, 0.92) 0.85 (0.78, 0.92) 0.98 (0.93, 1.00) 0.87 (0.74, 0.97) 0.91 (0.82, 0.96) 

20 50 0.69 (0.46, 0.79) 0.64 (0.41, 0.76) 0.67 (0.51, 0.77) 0.67 (0.45, 0.76) 0.77 (0.43, 0.89) 0.68 (0.45, 0.83) 0.71 (0.44, 0.80) 

20 100 0.76 (0.64, 0.85) 0.72 (0.57, 0.86) 0.72 (0.59, 0.82) 0.72 (0.62, 0.81) 0.88 (0.68, 0.96) 0.75 (0.61, 0.89) 0.77 (0.63, 0.87) 

20 200 0.82 (0.73, 0.90) 0.82 (0.67, 0.92) 0.76 (0.64, 0.88) 0.78 (0.68, 0.87) 0.96 (0.89, 0.99) 0.81 (0.66, 0.93) 0.83 (0.72, 0.91) 

20 500 0.85 (0.78, 0.91) 0.83 (0.67, 0.94) 0.80 (0.68, 0.89) 0.82 (0.73, 0.89) 0.97 (0.92, 0.99) 0.84 (0.69, 0.94) 0.87 (0.79, 0.93) 

20 1000 0.88 (0.80, 0.93) 0.88 (0.72, 0.97) 0.81 (0.69, 0.90) 0.84 (0.76, 0.91) 0.98 (0.92, 01.00) 0.85 (0.70, 0.95) 0.90 (0.83, 0.96) 

20 2000 0.90 (0.82, 0.94) 0.91 (0.76, 0.98) 0.84 (0.73, 0.92) 0.87 (0.78, 0.93) 0.99 (0.94, 1.00) 0.88 (0.73, 0.97) 0.93 (0.85, 0.97) 

50 50 0.64 (0.43, 0.80) 0.63 (0.40, 0.81) 0.64 (0.48, 0.80) 0.62 (0.43, 0.76) 0.71 (0.42, 0.94) 0.64 (0.41, 0.85) 0.64 (0.41, 0.81) 

50 100 0.77 (0.48, 0.84) 0.74 (0.38, 0.88) 0.72 (0.57, 0.84) 0.73 (0.49, 0.81) 0.88 (0.41, 0.95) 0.75 (0.46, 0.89) 0.78 (0.48, 0.86) 

50 200 0.85 (0.77, 0.91) 0.85 (0.71, 0.96) 0.79 (0.66, 0.89) 0.81 (0.72, 0.88) 0.97 (0.89, 0.99) 0.83 (0.70, 0.94) 0.87 (0.78, 0.93) 

50 500 0.87 (0.77, 0.93) 0.87 (0.72, 0.98) 0.81 (0.67, 0.90) 0.83 (0.72, 0.91) 0.98 (0.93, 1.00) 0.85 (0.69, 0.95) 0.89 (0.76, 0.95) 

50 1000 0.90 (0.83, 0.95) 0.92 (0.80, 0.99) 0.84 (0.72, 0.92) 0.87 (0.79, 0.93) 0.99 (0.95, 1.00) 0.89 (0.75, 0.97) 0.92 (0.83, 0.97) 

50 2000 0.91 (0.83, 0.95) 0.95 (0.83, 0.99) 0.85 (0.73, 0.93) 0.88 (0.79, 0.94) 0.99 (0.95, 1.00) 0.90 (0.76, 0.98) 0.93 (0.84, 0.97) 
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Supplemental Figures 490 

Supplemental Figure 1: Plots demonstrating the relationship between number of images (x) vs and performance, as 491 

measured by AUC (y), at each tested epoch number. Dashed lines correspond to the range of 95% Cis. 492 
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Supplemental Figure 2: Plots of the relationship between number of epochs (x) and diagnostic performance, as 495 

measured by area under the receiver operating characteristic curve (AUC, y), at each tested dataset sample size. 496 

Dashed lines correspond to the range of 95% Cis. 497 

 498 
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Supplemental Figure 3: Bar Plots of mean area under the receiver operating characteristic curve (AUC) 500 

values for 50 epochs, 2000 training/validation images Stratified by Age (<60 years, ≥60 years), glaucoma 501 

severity (Mild, Moderate-to-severe) and race (African Descent, Other), with confidence intervals.  502 

 503 
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Supplemental Tables 506 

Supplemental Table 1 507 

 Disease Severity Age Race 

Mild Glaucoma 

(n = 258 

subjects; 379 

eyes) 

Moderate to 

Advanced 

Glaucoma (n = 

140 subjects; 226 

eyes) 

Age < 60 (n = 

335 subjects; 576 

eyes) 

Age > 60 (n = 

412 subjects; 655 

eyes) 

AD (n = 282 

subjects; 454 

eyes) 

Other Race (n = 

465 subjects; 777 

eyes) 

Age 67.7 (66.2, 
69.1) 

67.0 (64.9, 69.1) 46.3 (45.1, 47.4) 71.7 (71.0, 72.4) 59.8 (58.2, 61.4) 60.6 (59.0, 62.1) 

Age Classification 
      

     Age < 60 60 (23.3%) 36 (25.7%) 335 (100.0%) 0 (0.0%) 142 (50.4%) 193 (41.5%) 

     Age > 60 198 (76.7%) 104 (74.3%) 0 (0.0%) 412 (100.0%) 140 (49.6%) 272 (58.5%) 

Sex 
      

     Female 146 (56.6%) 67 (47.9%) 198 (59.1%) 240 (58.3%) 179 (63.5%) 259 (55.7%) 

     Male 112 (43.4%) 73 (52.1%) 137 (40.9%) 172 (41.7%) 103 (36.5%) 206 (44.3%) 

Race 
      

     American 

Indian/ Alaska 

Native 

0 (0.0%) 1 (0.7%) 2 (0.6%) 0 (0.0%) 0 (0.0%) 2 (0.4%) 

     Asian 10 (3.9%) 12 (8.6%) 17 (5.1%) 12 (2.9%) 0 (0.0%) 29 (6.2%) 

     Black or African 

American 

89 (34.5%) 48 (34.3%) 142 (42.4%) 140 (34.0%) 282 (100.0%) 0 (0.0%) 

     Native 

Hawaiian or Other 

Pacific Islander 

2 (0.8%) 0 (0.0%) 1 (0.3%) 2 (0.5%) 0 (0.0%) 3 (0.6%) 

     Unknown or 

Not Reported 

2 (0.8%) 0 (0.0%) 5 (1.5%) 1 (0.2%) 0 (0.0%) 6 (1.3%) 

     White 155 (60.1%) 79 (56.4%) 168 (50.1%) 257 (62.4%) 0 (0.0%) 425 (91.4%) 

Ethnicity 
      

     Hispanic 5 (1.9%) 3 (2.1%) 12 (3.6%) 6 (1.5%) 4 (1.4%) 14 (3.0%) 

     Not Hispanic 237 (91.9%) 123 (87.9%) 267 (79.7%) 380 (92.2%) 267 (94.7%) 380 (81.7%) 

     Unknown or 

Not Reported 

16 (6.2%) 14 (10.0%) 56 (16.7%) 26 (6.3%) 11 (3.9%) 71 (15.3%) 

Diabetes 
      

     No 207 (80.2%) 120 (85.7%) 306 (91.3%) 346 (84.0%) 218 (77.3%) 434 (93.3%) 

     Yes 51 (19.8%) 20 (14.3%) 29 (8.7%) 66 (16.0%) 64 (22.7%) 31 (6.7%) 

Hypertension 
      

     No 124 (48.1%) 68 (48.6%) 260 (77.6%) 203 (49.3%) 151 (53.5%) 312 (67.1%) 

     Yes 134 (51.9%) 72 (51.4%) 75 (22.4%) 209 (50.7%) 131 (46.5%) 153 (32.9%) 

24-2 VF MD (dB) -2.40 (-2.83, -
1.98) 

-13.52 (-14.08, -
12.96) 

-1.84 (-2.41, -
1.28) 

-4.53 (-5.05, -
4.01) 

-3.34 (-3.99, -
2.69) 

-3.30 (-3.80, -
2.80) 

Baseline Disease 

Severity 

    
  

     Mild Glaucoma 379 (100.0%) 0 (0.0%) 89 (15.5%) 290 (44.3%) 131 (28.9%) 248 (31.9%) 

     Moderate to 

Advanced 

Glaucoma 

0 (0.0%) 226 (100.0%) 55 (9.5%) 171 (26.1%) 71 (15.6%) 155 (19.9%) 

     Non-

Glaucomatous 

0 (0.0%) 0 (0.0%) 432 (75.0%) 194 (29.6%) 252 (55.5%) 374 (48.1%) 

Axial Length (mm) 24.1 (23.9, 

24.2) 

24.1 (24.0, 24.3) 24.0 (23.8, 24.1) 23.9 (23.8, 24.0) 23.8 (23.7, 23.9) 24.0 (23.9, 24.1) 

Spherical 

Equivalent 

-0.4 (-0.6, -0.2) -0.8 (-1.0, -0.5) -1.01 (-1.20, -

0.83) 

-0.10 (-0.27, 0.07) -0.22 (-0.43, -

0.01) 

-0.69 (-0.85, -

0.53) 

IOP (mmHg) 15.3 (14.8, 

15.8) 

13.3 (12.7, 13.9) 14.9 (14.5, 15.3) 14.5 (14.1, 14.8) 15.2 (14.8, 15.6) 14.4 (14.0, 14.7) 

CCT (µm) 536 (532, 541) 532 (527, 537) 544 (539, 548) 536 (532, 540) 531 (526, 536) 544 (540, 548) 

Baseline Visit 
Glaucoma 

Classification 

    
  

     GVFD & GON 379 (100.0%) 226 (100.0%) 144 (25.0%) 461 (70.4%) 202 (44.5%) 403 (51.9%) 

     Non-

glaucomatous 

0 (0.0%) 0 (0.0%) 432 (75.0%) 194 (29.6%) 252 (55.5%) 374 (48.1%) 

Last Visit 

Glaucoma 

Classification 

    
  

     GVFD & GON 379 (100.0%) 226 (100.0%) 144 (25.0%) 461 (70.4%) 202 (44.5%) 403 (51.9%) 

     Non-

glaucomatous 

0 (0.0%) 0 (0.0%) 432 (75.0%) 194 (29.6%) 252 (55.5%) 374 (48.1%) 
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Supplemental Table 2 509 

Parameter Train Command Value 

Processing Unit A40 

Mode Training 

Optimizer AdamW 

--nproc_per_node 1 

--batch_size 16 

--world_size 1 

--model vit_large_patch16 

--epochs EPOCH 

--blr 5e-3 

--layer_decay 0.65 

--weight_decay 0.05 

--drop_path 0.2 

--nb_classes 2 

--input_size 244 
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