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ABSTRACT 

Introduction: Multiple myeloma (MM) is an incurable plasma cell neoplasm. MM-specific alterations in 

methylation status cause gradual epigenetic changes and lead to pre-MM disease states, such as 

Monoclonal Gammopathy of Undetermined Significance (MGUS) and Smoldering MM (SMM). The 

communication between MM cells and the bone marrow (BM) stromal cells serves a pivotal role in MM 

development by supporting transformed cell growth and proliferation. MM cells are known to modify the 

BM microenvironment through secretion of exosomes, which enhances disease progression by the 

induction of angiogenesis, immune suppression as well as drug resistance. This form of intercellular 

communication is thought to be mediated by several types of cargo molecules prevalent in exosomes, 

including microRNAs (miRNAs).  

 

Methods: The main obstacle in the treatment of MM is the difficulty in eliminating the residual cancer 

cells. Even if there are multiple treatment options, none is curative, and remissions have an unpredictable 

relapse onset. We attempt to address the two hurdles in terms of the difficulty in predicting the duration 

of remission and the challenge, which currently remains out of reach, treatment regiments that guarantee 

cancer-free bone marrow and propose a computational strategy based on our analysis of patient samples 

and patient cultures. 

 

Results: Our method will allow performing quantitative live-cell companion diagnostics by evaluating 

the relative contribution of different signaling pathways in drug resistance and response via quantitative 

exosome imaging, beyond MM, in primary tumor cells originating from different organs and tissues. It 

will allow to identify putative drug targets for the treatment of refractory disease for which currently there 

is no known suitable treatment regimen in acute myeloid leukemia, primary pancreatic, and bone 

metastatic prostate tumors.  
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INTRODUCTION 

Available Drugs in MM 

MM (Palumbo and Anderson, 2011) remains incurable – a fact underscored by a large number of drugs 

(available as 37 combinations and counting) used to treat the disease. The available drugs belong to 

categories chemotherapy (Child et al., 2003), steroids (McIntyre, 1979), immunotherapy (Garfall et al., 

2015), proteasome inhibitors (Anderson, 2009), histone deacetylase inhibitors (Hideshima et al., 2016; 

Prince et al., 2008), and monoclonal antibodies (Raje and Longo, 2015), and drugs from different 

categories (Laubach, 2019) are used together as combination therapies. Dexamethasone, for instance, is a 

corticosteroid medication offered for the treatment of relapsed/refractory MM in combinations with 

different classes of drugs like plitidepsin, selinexor, carfilzomib, daratumumab, lenalidomide, and 

bortezomib, which have different mechanisms of action (Attal et al., 2017; Chari et al., 2019; Facon et al., 

2019; Landgren et al., 2019; Spicka et al., 2019). The complexity of the MM regimens (Choudhry et al., 

2018) highlights the incredible ability of the malignant plasma cells to survive and suggests the need to 

develop quantitative methods for evaluation of both the short and long-term effects of drug treatments on 

their cellular target before initiating treatment. 

 

Drug Resistance and Residual Disease  

The main hurdle in treatment of MM is that even if there are multiple treatment options, none is curative 

and remissions have an unpredictable relapse onset. With this contribution we will attempt to address the 

difficulty in anticipating drug resistance based on ex vivo treatment analyses of patient-derived primary 

cells. Our model system will utilize cells extracted from bone marrow biopsies and cultured in 

microfluidics to mimic the tumor microenvironment. We will utilize quantitative dual-color high 

resolution time-lapse live-cell confocal microscopy to image the motion of patient exosomes as well as 

the changes in morphology of the histone acetylation. Our central hypothesis is that rates of multiple 

myeloma cells exosome secretion can be correlated with drug response and, thus, predict resistance to 
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treatment. We measure the associated with drug treatment changes in the rates of exosome generation as 

the number of new particle trajectories as well as the motion of the exosomes, i.e., their speeds of 

translocation on the cell surface during secretion for instance before and after treatment with 

Daratumumab (Facon et al., 2019) and/or vincristine (Wang et al., 2023) as well as bortezomib (Attal et 

al., 2017) and/or MPTOG413 (Huang et al., 2019) to investigate the mechanisms behind drug resistance 

(see schematics on Fig. 1).  

  

Histone Acetylation and Role of miRNAs 

We also hypothesize that epigenetic nuclear reorganization and changes in the image texture of histone 

markers and morphology after acetylation can serve for the purposes of pre-clinical microscopic 

evaluation of drug efficacy. Our aim is to validate these hypotheses with analyses of patient-derived cells 

 
 

Figure 1. Regulation of drug resistance in multiple myeloma. The myeloma cell is in blue and the interplay with cellular 

and other components, in particular those related to microtubule regulation, is depicted on the schematics.  
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and comparison with actual patient response in the clinic. Further, we will be performing longitudinal 

analysis of body fluids with the objective of monitoring gradual changes in the regulation of the BM 

expressed in alteration in the expression levels of nucleic acids such as miRNAs. In this context, we 

hypothesize that drug resistance in MM could be overcome by sensitizing tumor cells with small 

molecules which correct the dysregulated miRNAs which have been associated with refractory disease. 

As pre-cancerous changes in methylation status have been linked to changes in the miRNAs expression 

levels, we will investigate the pre-myeloma epigenetic changes to test whether they can be reversed also 

by targeting the dysregulated miRNAs.  

 

RESULTS 

Urinary Nucleic Acids 

We performed longitudinal analysis of body fluids with the objective of monitoring gradual changes (Fig. 

2) in the regulation of the bone marrow expressed in alteration in the abundance levels of nucleic acids 

such as miRNAs (Pichiorri et al., 2008; Roccaro et al., 2009). Longitudinal analysis of nucleic acids will 

allow for the development of novel targeted drugs, such as the liver-specific miRNA-122 inhibitor 

miravirsen (Gebert et al., 2014). Recent literature has described a plethora of examples of miRNAs that 

could be targeted in disease. Therefore, monitoring of their levels in healthy individuals (Matov, 2024f) 

and patients undergoing disease treatment will likely provide valuable datasets for the pharmaceutical 

industry as well as for practicing physicians, ultimately allowing them to select the most efficacious 

treatment sequence and drug combinations for each patient. Our current focus is the identification of 

personalized biomarker panels whose measurable changes, exceeding the intrinsic stochastic variability 

in the post-transcriptional regulation of gene expression in normal physiology, uniquely define the 

degenerative diseases at an early stage when better treatment options are available. 
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Our aim is to outline a rational for overcoming drug resistance in MM by sensitizing tumor cells with 

small molecules that correct the dysregulated miRNAs, which have been associated with refractory 

disease. As pre-cancerous changes in methylation status have been linked to changes in the miRNAs 

abundance levels, one could also investigate the pre-myeloma epigenetic changes to test whether they can 

be reversed also by targeting the dysregulated miRNAs. Elucidating the specific molecular mechanisms 

of drug resistance will allow for a better understanding of the reasons behind the failure of all existing 

treatment regimens to cure MM. In this context, the utilization of a real-time computer vision system 

(Matov, 2024e) that can reliably evaluate drug action ex vivo will also provide an additional platform for 

functional testing of putative compounds and combination therapies.  

  

 
 

 

Figure 2. An established panel of miRNAs deregulated in multiple myeloma, which are also identified in our 

preliminary urine data. (A) Based on the list of established biomarkers for multiple myeloma, we show the changes occurring 

for one person over three time points taken at two months intervals. All biomarkers but the last one are upregulated in multiple 

myeloma (see also the miRNAs inset on Fig. 1 and (Pichiorri et al., 2008; Roccaro et al., 2009)); therefore, for this particular 

subject, two biomarkers, miR-181a-5p and miR-221-5p (both encircled on the figure), albeit minimally, are changing toward 

a disease state (see color-coding figure legend for time progression labeling). (B) Schematic representation of the dysregulation 

of miRNAs in multiple myeloma; therapeutic strategies can be designed to apply drug treatments that change the miRNAs’ 

abundance levels toward correcting the expression of their underlying gene. Longitudinal analysis of urine samples can, thus, 

provide a non-invasive drug efficacy readout assay.  
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Analysis of Exosomes 

Drug Efficacy  

Optimal drug selection is a challenging task and has been the topic of multiple investigations (Belloni et 

al., 2018; Candini et al., 2019; Geisler, 2019), and it has become clear that gene expression profile alone 

is inadequate in predicting therapeutic response (Amin et al., 2014). An image analysis system for drug 

selection in MM (Silva et al., 2017) has been shown to automatedly enumerate the dead cells using 

brightfield microscopy at a low spatial and temporal resolution, but ex vivo systems for high spatial and 

temporal resolution analysis are still missing.  

 

Answers about the potential efficacy of a drug can, thus, be obtained by using software systems that 

measure, in great detail, the effects of a regimen on its cellular targets (Matov, 2024b). Molecular 

manipulations of living patient-derived cells ex vivo can reveal which secondary mechanisms would be 

activated after a particular drug intervention. To achieve this end, the tracks obtained during computational 

motion analysis can be used for disease classification and patient stratification purposes. Depending on 

the methods used, the resulting analysis images may consist of either flow vectors (Matov, 2024e; Matov 

et al., 2024) or full trajectories (Applegate et al., 2011; Matov et al., 2010) and can be classified into 

sensitive or resistant using artificial intelligence (AI) methods. Tracking data image stacks, in the 

thousands, with tracks of the exosomes visualized, can be utilized for disease classification by training a 

generative transformer (Ren et al., 2024), or another large language model, which takes image patterns as 

input (Horiuchi et al., 2024). Such computational clinical research can aid the discovery of an optimal 

drug regimen selection by assigning a sensitive or resistant label to every patient cell analyzed. 

 

Motion Tracking  

To track the motion of exosomes (Fig. 3), we will pre-process images making up the microscopy video 

and select features (Shi and Tomasi, 1994) for motion tracking on-the-fly. Using this data, we will define 
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exosomes’ dynamics signatures to distinguish 

between drug resistance signaling pathways. For 

each exosome type, based on different exosome 

markers, we can extract a set of distinctive key 

features (Rublee et al., 2011), identify descriptor 

vectors of the features and compute motion metrics 

to distinguish between drug-resistant and sensitive 

profiles in cells derived from patients’ BM, and 

elucidate mechanisms of resistance. After classifying 

all exosome motion trajectories as sensitive or 

resistant, within the resistant trajectories, we will 

assign different classes of motion behavior to 

differentiate between the mechanisms of drug 

resistance.  Our analysis will allow us to identify the 

relative contributions of different types of exosomes to different resistance mechanisms and pathways. As 

the differences between exosomes are reflective of the underlying exosome cell type, our novel research 

tool will offer a mechanistic insight that will contribute to understanding the variety in tumor cell response.  

 

This analysis will, therefore, allow for the identification of the key signaling pathways involved in 

resistance, which may contribute to the personalization of drug regimens and the functional testing of 

putative compounds. This computational tool will allow supplementing existing genetic tools with an 

orthogonal approach to elucidating drug resistance in quantitative detail based on the phenotypical 

changes in the intracellular communications between tumor cells and their immediate microenvironment. 

A key novelty is that our computational platform outputs results in real-time during image acquisition 

 
 
 
Figure 3.  Exosomes in a multiple myeloma cell. Spinning-

disk confocal image of the suspension MM1S cell lines 

acquired five days after labeling with CD63-RFP. A 

grayscale maximal intensity projection image was 

aggregated from 20 z-sections to display the 3D volume of 

exosomes in 2D. The image has been processed with a low 

pass filter with a cut-off (σ = 1.25) corresponding to the 

optical limit of the collection frequencies based on the 

diffraction limit of a 1.45 NA objective. For visualization 

purposes, the low intensity values were computationally 

clipped. Scale bar equals 5 µm. 
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(Matov, 2024d), which will facilitate and speed up research efforts by providing instant delivery of data 

and statistical analysis.  

 

Drug Selection 

Currently, most patients receive very similar upfront regimens regardless of genotype or phenotype. Very 

little, if any therapy, is genome-guided, except perhaps for the intensity of upfront therapy as a function 

of prognostic markers. The genetic analysis process does not involve a microscopic consideration of drug-

target engagement at the cellular level. There are multiple factors that pre-determine the ability of a 

particular drug to engage its target effectively. Important is the ability to precisely measure and provide 

statistical analysis of the intercellular communication between primary tumor cells under drug treatment 

in a lab setting. Even if initial treatments induce a state of remission, the disease eventually returns (Lonial, 

2010) and, in most cases, does respond to other therapies, even though resistant to the previously given 

one. This type of drug response indicates that it is important to develop tools for an upfront optimal drug 

selection from the presently available treatment options at the onset of therapy.  

 

Our aim is to dissect the changes in the MM cell after treatments at a microscopic level. We will use an 

approach for ex vivo anticipation of drug resistance based on the (i) ex vivo evaluation of IC50 values for 

MM cells treated in a microfluidics device and (ii) changes in live-cell behavior in terms of morphology 

(Matov and Modiri, 2024) and dynamics (Matov, 2024b) of cellular, molecular markers over 24 hours or 

longer. In this context, we will rely on a statistical analysis of large populations of molecular markers over 

an extended period of time to distinguish between disease phenotypes, which otherwise appear similar 

based on the currently utilized patient stratification methods.  

  

Role of Exosomes 
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Exosomes are critical to the progression of cancer through the transport of a variety of molecular cargos, 

including proteins, lipids, and nucleic acids. MM cell‑derived exosomes promote BM stromal cells 

viability, induce changes in pro‑survival pathways, and the inhibition of their uptake suppresses the 

functional response in BM stromal cells (Zheng et al., 2019). Cellular exosome uptake depends on 

cholesterol-rich membrane micro-domains called lipid rafts (Plebanek et al., 2015). Despite recent 

advances in treatment, MM remains an incurable malignancy, and in vitro, ex vivo and in vivo approaches 

have identified lipid rafts to constitute a new target in MM (Mollinedo et al., 2010). Novel compounds 

target and accumulate in MM cell membrane rafts, inducing apoptosis through the co-clustering of rafts 

and death receptors. Raft disruption by cholesterol depletion inhibited drug uptake by tumor cells as well 

as cell killing (Plebanek et al., 2015). Modulation of cholesterol flux can, therefore, lead to potent 

inhibition of tumor cell-derived exosomes, which could deliver a marker for ex vivo testing of drug uptake. 

Exosomes produced by MM cells have been shown to promote angiogenesis and immunosuppression, 

both crucial events in MM progression (Wang et al., 2014). Microfluidics-based platforms (Aleman et al., 

2019; Zhang et al., 2014) are utilized for ex vivo culturing of primary MM cells to emulate the dynamic 

physiology of the bone niche.  

 

Quantitative Imaging in 3D 

We generated preliminary imaging data using 3D spinning disk confocal microscopy with the 

glucocorticoid-sensitive cell line MM1S (Greenstein et al., 2003) without a drug and after a 24-hour 

treatment with dexamethasone at concentrations of 60 nM, 120 nM, and 250 nM (the lab IC50 value is 

300 nM (Matulis et al., 2016)). To obtain preliminary data, we performed overnight lentiviral transduction 

and were able to observe the expression of the fluorescent tetraspanin exosome marker CD63-RFP 

(enriched in extracellular proteins) (Lotvall et al., 2014) 16 hours post infection, which suggests that we 

could deliver a phenotypical evaluation of the drug-treatment regimen that overcomes the drug resistance 

mechanisms in refractory disease within a week of patient biopsy collection.  
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To compute a faithful representation of the 

image stack within the entire time-lapse 

sequence, we will utilize SIFT 3D (Scovanner et 

al., 2007) and Fig. 4 shows our preliminary 

results for computing SIFT 3D Flow (Liu et al., 

2011). To simultaneously optimize both the 

segmentation and assignment steps, we will 

utilize a 3D CNN (Hou et al., 2019) using 

separable convolution with dilation, which is 

suitable for real-time analysis. Adding dilation 

rates will allow us to capture multi-scale feature 

representations without significantly increasing 

the computation cost of 3D convolution. 

Because of the low signal-to-noise ratio in the 

high-resolution exosome images due to 

photobleaching, we expect false-negative 

selections during the image segmentation phase. 

In this context, we will utilize a Bayesian 

algorithm, which addresses the problem of 

decision-making given incomplete information. 

Incomplete information could arise from 

datasets where certain features are missing in 

various locations. Importantly, through 

Bayesian methods, decision-making with 

uncertainty estimates can be produced (Chandra 

 
 

Figure 4. 3D SIFT displacement field analysis of exosome 

images of untreated cells and of cells 24 hours after treatment 

with 60 nM, 120 nM or 250 nM dexamethasone. Spinning-disk 

confocal images of cells from the suspension MM1S cell line at 

high resolution. Images were acquired 11 days after labeling with 

CD63-RFP via lentiviral transduction, and for some cells, was 

performed a 24-hour titration with dexamethasone at 

concentrations 60 nM, 120 nM, and 250 nM. 3D z-stacks, 

consisting of 20 2D slices with a 500 ms exposure time at a 2 µm 

vertical spacing, were acquired. The lateral resolution of the 

objective is 220 nM. The temporal frequency with which the 3D 

image stacks were obtained was 11 seconds. Maximal intensity 

projection (MIP) images were generated in which every pixel has 

the highest intensity value from the z-axis vector for each x-y 

position. This transformation allows for the visualization of the 

combined 3D volume of exosomes in a 2D figure. For evaluation 

of the 3D SIFT Flow and displacement fields, adjacent in time 2D 

slices were combined in single 3D files/triplets. Thus, the 

displacement computation between (A-B) is done over a period 

of 33 seconds. The cells were immobilized with poly-l-ornithine 

for imaging. For this reason, a vast proportion of the SIFT flow 

measured and displayed in (C) is due to the diffusion of culture 

medium. To visualize the flow fields in (C), each pixel denotes a 

flow vector for which the angular orientation and magnitude value 

are represented by the hue and the saturation of the pixel, 

respectively. Scale bar equals 10 µm. 
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et al., 2019). Further, as an improvement to spinning disc confocal microscopy, we will perform 3D 

imaging using lattice light-sheet microscopy to image intercellular communication via exosomes to ensure 

a minimal damage to the cells and long-term imaging without photobleaching at comparable x-y-z 

resolution limits (Chen et al., 2014). 

 

Ferroptosis and Elimination of Residual Disease 

Role of Ferroptosis 

Ferroptosis has a dual role in cancer. It plays a role in tumor initiation, tumorigenesis, which depends on 

inflammation-associated immunosuppression triggered by ferroptotic damage (Chen et al., 2021) and 

later, during treatment, in tumor suppression (Hangauer et al., 2017). We sought to identify therapeutically 

exploitable vulnerabilities in cancer cells. Initial data was obtained with a metastatic rectal cancer organoid 

(we established from 1 mg resected tissue protruding from the sternum following a modified protocol 

from the Witte lab (Goldstein et al., 2011)) with the standard first line metastatic colorectal cancer 

chemotherapy FOLFOX. We plated organoids with diameters 40-60 µm in 24 wells and performed 

titration with concentration of 1 µM, 10 µM and 100 µM for two weeks. We repeated the same with 

docetaxel with concentration of 100 nM and 1 µM (Fig. 5), and the experiment showed clear residual 

disease measured by CellTiter-Glo assay (ATP luminescence had values of up to 6,000 – not shown). This 

was the first example of “persister” cancer cells in 3D patient-derived organoids cultured in 30 µL 

Matrigel (Corning) drops, i.e., in their natural 3D environment (Fig. 5) and not as single patient cells 

cultured on a flat plastic surface in a 2D Petri dish. The state of persistence was initially identified in 

bacterial antibiotic resistance and it is a non-mutational mechanism of acquired drug resistance (Fisher et 

al., 2017) during which a small population (<5%) of the cells become quiescent. In cancer, the quiescent 

surviving persister cells minimize the rates of proliferation and, thus, become not susceptible to treatment 

with mitotic inhibitors and targeted therapies. This reversible process of becoming drug-tolerant is linked 

to upregulation of mesenchymal markers and downregulation of epithelial markers in the persister cells. 
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During drug holiday, the cells revert to normal metabolism and expand their population, while becoming 

again susceptible to drug treatment. This cycle repeats multiple times during patient treatment. While the 

tumor is under drug pressure, however, the few drug-tolerant persister cells pay a metabolic price and 

become temporarily vulnerable to GPX4 inhibition (Hangauer et al., 2017). Targeting these persister cells 

eliminates residual disease and, thus, impedes tumor relapse. Going forward, we envisage to use persister 

cells derived from tumor organoids as a discovery platform to identify therapeutic agents that can 

eliminate residual persisters that remain after initial successful cytotoxic drug treatment. 

  

During the first few days of drug treatment, the rectal organoids retained their distinct morphology (Fig. 

5). One possible approach to evaluate the variety of changes in shape and surface patterns of whole 

(treatment-resistant) organoids, after drug treatment, which can also be applied to the analysis of changes 

in MM histone morphology after acetylation, can be accomplished by morphology and texture analysis of 

organoid images. Such quantitative readout can be used as a biomarker for clinical response therapy in 

grayscale value images of patient-derived tumor organoids (Fig. 5). 

 
 

Figure 5. Metastatic rectal cancer organoids receding in dimeter after a 48-hour treatment with docetaxel at 1 µM. (A) 

The organoid has shrank about twice in size after drug treatment. Crypts are still visible. Many dead cancer cells are visible 

around the receded organoid. (B) Crypts are clearly visible on this image and even if the organoid edges are still intact, they 

appear very uneven due to the docetaxel treatment. Scale bars equal 100 µm. Phase contrast microscopy, 20x magnification. 
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Organoid Texture Analysis 

Patient organoids are considered sensitive to treatment when multiple image features’ changes are 

statistically significant, such as the shift in metrics related to the organoid edge and the contraction or 

oblongation of the organoid shape. Using this method, we are correlating changes in organoid images with 

clinical response to therapy, in order to develop a model predictive of drug response. To develop this 

computational platform, we started by analyzing microtubule cytoskeleton changes in a panel of 

docetaxel-sensitive (MKN-45, SNU-1, TMK-1, AZ-521) and resistant (MKN-7, SCH, Hs746T) cell lines. 

In this context, we examined 20 types of changes, termed features, between cells at baseline and after 

docetaxel treatment (data not shown).  

 

A key to the success of an automated system for organoid pattern analysis is the design of suitable 

numerical descriptors (features) that capture essential information from images without being overly 

sensitive to variations induced by organoid shape or orientation. Many types of features have been 

investigated in the field of computer vision and we selected specific features to describe and quantify the 

changes in organoids during drug treatment, such as Haralick features (angular second moment, pixel 

variance, pixel entropy, etc.) (Haralick, 1983) and computation of Zernike moments (shape similarity of 

organoid images to Zernike polynomials - 49 polynomials and 49 features) (Boland and Murphy, 2001). 

Additional features that can be computed pertain to organoid morphological features, organoid edge 

features, the morphological skeleton, and convex hull. The morphological features comprise of the number 

of bright objects in the organoid image, Euler number of the organoid image, average bright object size, 

variance of object size, to name a few. The edge related features are the fraction of above an intensity 

threshold pixels along the organoid edge, the homogeneity of the gradient of organoid edge intensity, 

homogeneity in the direction of the organoid edge, and other. The morphological skeleton features are the 

average length of the morphological skeleton of the organoids, the ratio of the number of branch points in 

the morphological skeleton to the overall length of the skeleton, and other. The convex hulls features 
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consist of organoid eccentricity, the roundness of the organoid convex hull, and the fraction of the 

organoid convex hull pixels above an intensity threshold. 

 

Our results after docetaxel treatment show that in populations of sensitive cells a high number of (25%-

60% of all) features undergo statistically significant shifts. This shows that an affected microtubule 

network correlates with drug-target engagement and response. Moreover, sensitive cells exhibit changes 

in different subsets of features suggesting different underlying mechanisms of docetaxel sensitivity. 

Oppositely, after treatment of resistant cells with docetaxel, a change in a very few (0%-20%) of the 

features was a hallmark of resistance.  

 

Preventing Relapse 

We also derived drug-tolerant persister cells in prostate cancer (MSK-PCa3) 3D organoids (Gao et al., 

2014), which were obtained at MSKCC from tumor resection at a retroperitoneal lymph node after 

receiving prior therapy with ADT, bicalutamide, docetaxel, and carboplatin, i.e., the tumor was refractory 

to both hormonal and systematic therapy. We tested therapeutic treatments to kill these persisters. Due to 

a disabled antioxidant program, persister cells are unable to tolerate lipid hydroperoxide accumulation and 

are susceptible to ferroptotic drugs (Hangauer et al., 2017). To achieve this end, we performed experiments 

showing that cells derived from two to seven weeks of docetaxel treatment are sensitive to the novel 

compounds RSL3 and ML210, both small molecule GPX4 inhibitors. 

 

We, therefore, sought to test if the small molecule ML210 is electively toxic to persister cells without 

inducing significant toxicity in parental organoid MSK-PCa3 cells. Organoids with diameter 40-60 µm 

were plated in 12 wells and half of the wells were treated for five weeks with ML210 at 5 µM. After five 

weeks of organoid culture and reaching a phase of exponential growth, the organoids had diameter size of 

60-600 µm (Fig. 6). The differences in numbers of viable cells between the untreated organoids and the 
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ML210-treated wells were not statistically significant, which demonstrated that ML210 was not toxic to 

the parental tumor organoid cells. 

 

We then plated organoids with diameter 40-60 µm in 12 wells of which four were treated with docetaxel 

at 100 nM for seven weeks, four wells were treated for two weeks with docetaxel at 100 nM followed by 

a five-week co-treatment with docetaxel at 100 nM and ML210 at 5 µM, and four wells were treated for 

two weeks with docetaxel at 100 nM followed by a five-week co-treatment with docetaxel at 100 nM, 

ML210 at 5 µM, and ferrostatin-1 at 2 µM (Fig. 7). The organoids had a diameter of 40-60 µm at baseline 

and the two weeks treatment with docetaxel eliminated the vast majority of the organoid cells and induced 

a persister state in the residual cancer cells. A follow-up co-treatment with the GPX4 inhibitor ML210 

reduced the number of viable residual cells two-fold in median values (a median value of ATP 

luminescence of 3,000 after seven weeks of docetaxel treatment was reduced to a 1,500 median value – 

not shown). We measured a significant decrease of 63% in mean ATP luminescence values (p < 0.05) 

with only about a third of the persister cells remaining viable after ML210 co-treatment when we 

compared the numbers of viable cells after seven weeks of docetaxel-only treatment. Further, co-treatment 

 
 

Figure 6. Lymph-metastasis patient-derived prostate cancer organoids after no treatment and after treatment with a 

ferroptosis inhibitor only. Organoids with diameter 40-60 µm were plated in 12 wells and half of the wells were treated for 

five weeks with ML210 at 5 µM. After five weeks of culturing, the organoids had diameter size of 60-600 µm. Overall, the 

differences in numbers of viable cells between the control cells and the ML210 treated cells were not statistically significant, 

which demonstrates that ML210 requires docetaxel-induced persister state to be toxic to the parental tumor organoid cells. (A) 

Image of organoids at baseline. (B) Image showing the organoids after five weeks with no drug added. (C) Image showing 

organoids after five weeks treated with ML210 only. Scale bars equal 2 mm. Transmitted light microscopy, 4x magnification. 
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with the lipophilic antioxidants ferrostatin-1 rescued the persister cells from the toxic effects of GPX4 

inhibition and we measured a 44% increase in mean cell viability (p < 0.05) in the wells for which we also 

added ferrostatin-1 at 2 µM in comparison to the viability of the cells co-treated with ML210 only; 

however, the median ATP luminescence values for this experiment remained the same, which 

demonstrates a partial rescue and suggests that higher levels of ferrostatin-1 could rescue more efficiently 

the persister cells from the toxic effects of GPX4 inhibition. We also observed extensive Matrigel damage 

in some of the wells with ferrostatin-1, which likely contributed to the very low cell viability numbers in 

these particular affected wells; the Matrigel damage likely contributed also to the overall high variability 

and low statistical significance (p = 0.05) of the rescue experiment.   

 

Inducing ferroptosis is a viable strategy for the elimination of residual disease in MM as well (Logie et 

al., 2021). The development of a real-time computer vision system (Matov, 2024d), which can reliably 

evaluate drug action ex vivo will provide an additional platform for functional testing of putative 

compounds and combination therapies, including those exploiting vulnerabilities in cancer cells, like the 

susceptibility to ferroptosis—inducing small molecules, to eliminate residual disease. Quantitative 

imaging could be displayed during tumor board meetings, which would allow the discussion of tentative 

 
 

Figure 7.  Lymph-metastasis patient-derived prostate cancer organoids before and after treatment with a cytotoxic 

drug in combination with a ferrortosis-inducing small molecule with or without added rescue drug. (A) Image of 

organoids at baseline. (B) Image showing dead organoid cells in Matrigel after combination treatment with docetaxel at 100 

nM and ML210 at 5 µM. (C) Image taken after treatment with docetaxel at 100 nM and ML210 at 5 µM together with the 

rescue drug ferrostatin-1 at 2 µM shows very small organoids. Scale bar equals 100 µm. Phase contrast microscopy, 20x 

magnification. 
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regimens based on the supporting information provided by the microscopic evaluation of patient-derived 

cultures.  

 

Patient-Derived MM Models 

The model system we propose can be based on cells extracted from BM biopsies. It can utilize different 

marrow cellular components to recreate the tumor microenvironment in the lab. Through flow cytometry, 

several cell types can be selected, based on surface antigens such as CD138 for myeloma, CD34 for stem 

cells, and CD105 for mesenchymal cells. A BM biopsy could yield about ten million cells and after FACS 

sorting, one expects to collect about 200k MM cells, 20k stem cells, <100k mesenchymal cells. Patient 

samples can be obtained by overnight shipping of fresh biopsies at room temperature. At the biopsy site, 

one would immediately isolate the BM mononuclear cells and then sort for the three markers. The BM 

cells are suspension cells with diameters of about seven to 15 µm (Orkin and Zon, 2008), and their 

exosomes have sizes between 20 and 100 nm (Thery et al., 2018). MM/BM cells are extremely sensitive 

to ex vivo culture and die (100% rate) when plated in a standard 2D culture dish. To culture them in the 

lab, there are culture methods that recreate their 3D microenvironment. To provide a similar environment, 

we will culture them on hFOB 1.19 cells, which mimic the human bone, in a specialized microfluidics 

device. The BM culture medium consists of RPMI with L-glutamine, patient plasma, CaCl2, sodium 

succinate, hydrocortisone, heparin (Zhang et al., 2015), and one should allow for 48 hours of metabolic 

recovery after the biopsy before an ex vivo drug treatment. After plating patient cells in microfluidics, 

about 70% of them will survive (Zhang et al., 2014). To increase the rates of patient-cell survival after 

plating further, we will test additional media components based on novel media formulations to improve 

the cell viability (Aleman et al., 2019). Lentiviral-mediated expression of the fluorescent exosome markers 

(Lotvall et al., 2014) CD63-RFP, CD9-GFP, and CD81-YFP can be used to mark exosomes for 

visualization. A combination of the three tetraspanins can be used to analyze exosomes of different origins, 

enriched in different, transmembrane or lipid-bound, extracellular proteins.  
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Real-Time Motion Tracking 

We have developed a software suite (DataSet Tracker (Matov, 2024e)) for real-time analysis designed to 

run on computers, smartphones, and smart glasses hardware and suitable for resource-constrained, on-the-

fly computing in microscopes without internet connectivity. To extend the current functionality into 

obtaining the full trajectories, we will utilize the vectors obtained in each frame, together with the 

associated information on feature intensity and morphology, to generate embeddings (Vaswani et al., 

2017) for a generative transformer network in which the tokens are the spatial coordinates of the features 

we track. This will allow training of the network to associate the most likely next feature in an image 

sequence, similar to the way large language models generate text. Further, we will retrain a transformer 

network with a new set of tokens - with lists of 2D or 3D coordinates rather than words and with 

trajectories (lists of linked coordinates) rather than sentences of human speech, i.e., we will retrain a large 

language model with motion trajectory data. Having the ability to test in quantitative detail a number of 

drugs and combinations ex vivo will be critical in the treatment of pathologies for which there is no known 

cure. Once the specific impaired molecular mechanisms is identified for the particular patient, treatment 

options which correct the aberrations can be selected in real time. 

 

CONCLUSIONS 

One avenue to address the difficulty in anticipating drug resistance in MM is the ex vivo drug treatment 

analyses of patient-derived primary cells imaged by quantitative multi-color high resolution time-lapse 

live-cell confocal microscopy to track the motion of exosomes as well as the changes in histone 

morphology after acetylation. The rates of MM cells exosome secretion are regulated by a variety of genes 

and changes in the rates of secretion can be correlated with drug response and, thus, predict resistance to 

therapy. Differential regulation might affect some of the associated with drug treatment changes in the 

rates of exosome secretion, such as the number of new particle trajectories as well as the speed of their 

motin on the cell surface membrane during secretion before and after drug treatment. As the drug response 
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motion trajectory differences between exosomes will be reflective of the cell type, the approach described 

in this article will offer a mechanistic insight that will contribute to understanding the variety in tumor cell 

response.  

 

Based on clinical data for resistance, this analysis will allow for the identification of an ex vivo clinical 

resistance baseline phenotype and for the characterization of the changes in this phenotype, or lack thereof, 

after treatments with different drug combinations of refractory disease for which currently there is no 

known suitable treatment regimen. As there is currently no cure for MM, we consider modulation of the 

cytoskeleton as a viable new option. Refractory MM can be sensitized to therapy with the use of Rho-

associated protein kinase (ROCK) inhibitors (Federico et al., 2020). ROCK regulates myosin light chain 

phosphorylation and as a result actin activity and cellular contractility (Matov et al., 2024). We 

hypothesize that tubulin inhibitors can be impactful in the treatment of refractory MM, since Rho family 

GTPases (Matov, 2024c) have been implicated as possible targets (Ahmed et al., 2022; Mulloy et al., 

2010), and that novel targets can be identified within the microtubule transcriptome (examples are 

depicted on Fig. 1, such as CLIP170 (Rozic et al., 2015)) or other proteins involved in the regulation of 

microtubule dynamics in cancer (Matov, 2024a; Matov, 2024b), for instance GSK3β (Augello et al., 

2020).   

 

MATERIALS AND METHODS 

Sample Processing 

Small RNA were extracted from de-identified urine samples by Norgen Biotek Corp. 

 

Cell Culture 

Organoids with diameter 40-60 µm were plated in 30 µL Matrigel drops in six wells per condition of a 

24-well plate per condition and treated for two or more weeks with docetaxel with concentration of 100 
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nM and 1 µM to eliminate the vast majority of the organoid cells and induce a persister state in the residual 

cancer cells. This treatment was followed by co-treatment with docetaxel 100 nM and small molecule 

ML210 5 µM or docetaxel 100 nM combined with small molecule ML210 5 µM and lipophilic 

antioxidants ferrostatin-1 2 µM, rescue treatment.  

 

Tissues were dissociated to single cells using protocols from the Witte lab (Goldstein et al., 2011). 

Organoids were seeded as single cells in three 30 µL Matrigel drops in six-well plates. Organoid medium 

was prepared according to protocols from the Clevers lab (van de Wetering et al., 2015) and the Chen lab 

(Gao et al., 2014). 

 

Exosomes in MM1S cells (a gift from the Thaxton) were visualized by lentivirus-mediated low level 

expression of CD63-RFP. To generate imaging data, we performed lentiviral infection with CD63-RFP 

and observed labeling signal in the red channel 16 hours later. We did not use blasticidin selection as the 

infection rate was over 90% and performed a 24-hour titration with dexamethasone at concentrations 60 

nM, 120 nM, and 250 nM. 

 

Docetaxel was purchased from Sigma-Aldrich. Dexamethasone was a gift from the Wiita lab. Folinic acid, 

fluorouracil, oxaliplatin, RSL3, ML210, and ferrostatin-1 were obtained from the McCormick lab.  

 

Microscopy Imaging 

We imaged CD63-RFP-expressing MM1S cells by time-lapse spinning disk confocal microscopy using a 

100x oil immersion objective and acquired 3D z-stacks, which consisted of 20 2D slices acquired with a 

500 ms exposure time at a 2 µm vertical spacing. The lateral resolution of a 1.45 NA objective is 220 nM. 

The temporal frequency with which we acquired 3D image stacks was 11 seconds. 
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Organoids were imaged using transmitted light microscopy at 4x magnification and phase contrast 

microscopy at 20x magnification on a Nikon Eclipse Ti system with camera Photometrics CoolSnap HQ2. 

 

Image Analysis 

All image data analysis programs and graphical representation of the results were developed in Matlab 

and R, and available upon request. The 3D SIFT Flow method for 3D displacement fields analysis 

computation is described and validated in (Liu et al., 2011). 

 

Statistical Analysis 

No statistical methods were used to predetermine sample size. For organoid experiments, the samples 

were not randomized. Statistical tests were performed in Matlab.  

 

The ATP luminescence datasets were not sufficiently large to directly apply a Student’s t-test. Instead, we 

used a non-parametric permutation t-test with 400 repetitions (Hesterberg et al., 2005), which compares 

the bootstrapped distributions of a condition 1 versus condition 2. This test does not make any assumption 

about the characteristic of the tested distribution and, thus, is appropriate for application to distributions 

that are far from being normally distributed. In brief, for each condition 400 values are bootstrap-sampled 

from the data of different experimental conditions. In agreement with the central limit theorem, the two 

bootstrapped distributions always follow a Gaussian distribution and, thus, could be analyzed for 

differences using a regular Student’s t-test. 

 

Ethics Declaration 

IRB (IRCM-2019-201, IRB DS-NA-001) of the Institute of Regenerative and Cellular Medicine. 

Ethical approval was given. 
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Approval of tissue requests #14-04 and #16-05 to the UCSF Cancer Center Tissue Core and the 

Genitourinary Oncology Program was given. 
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