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Abstract 

Alzheimer's disease (AD) presents a significant societal challenge, with no current cure and 

an increasing prevalence among older adults. This study addresses the pressing need for early 

detection by harnessing the potential of machine learning applied to longitudinal MRI data. The 

dataset, sourced from the Open Access Series of Imaging Studies (OASIS) project, comprises MRI 

records of 150 subjects aged 60 to 96, each scanned at least once. Notably, 72 subjects were 

classified as 'Nondemented,' 64 as 'Demented,' and 14 underwent a transition from 'Nondemented' 

to 'Demented,' forming the 'Converted' category. What we propose is to develop a machine learning 

sound model capable of predicting the progression of mild cognitive impairment, leveraging key 

biomarkers extracted from MRI data. The chosen biomarkers include years of education (EDUC), 

socioeconomic status (SES), Mini-Mental State Examination (MMSE), Clinical Dementia Rating 

(CDR), Estimated Total Intracranial Volume (eTIV), Normalized Whole Brain Volume (nWBV), and 

Atlas Scaling Factor (ASF). Prior work in the field is referenced, highlighting studies that 

predominantly focused on raw MRI data analysis. In contrast, this study introduces a unique 
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approach by utilizing a curated set of biomarkers, allowing for a more targeted and potentially 

interpretable model. Machine learning models such as Logistic Regression, Support Vector Machine, 

Decision Tree, Random Forest Classifier, and AdaBoost are employed, with performance measured 

using established metrics. Information about severity and state are stored during the EADDLS 

module and used for ADmod. ADmod uses the stored MRI data during the EADDLS module to model 

the growth of amyloid β build-up in the brain using convolution, resulting in both generalizable 

approaches and patient-specific approaches. There have been numerous mathematical 

instantiations to model amyloid β build-up using partial differential equations (or PDEs), these 

however have remained unincorporated due to prolonged runtimes and storage limitations along 

with those of pre-set conditions. We propose a novel amyloid β growth model using deep encoder-

decoder networks in conjunction with convolution. The study contributes to the growing body of 

research in early Alzheimer's detection, offering insights, results, and a discussion of limitations. The 

conclusion outlines a unique approach, emphasizes the practical implementation of the proposed 

model, acknowledges limitations, and suggests avenues for further research. Early detection of AD 

can significantly better the patient's quality of care and lead to future preventative or risk assessment 

measures. 

1.1 Introduction 

Alzheimer's disease (AD) stands as a formidable societal challenge, marked by its absence 

of a cure and a rising prevalence among older adults. The urgency for early detection has never been 

more pronounced, prompting researchers to explore innovative approaches to harness the potential 

of machine learning. This study responds to the critical need for early identification by delving into 

longitudinal MRI data, aiming to develop a robust machine learning model capable of predicting the 

progression of mild cognitive impairment. The dataset under scrutiny is derived from the Open 

Access Series of Imaging Studies (OASIS) project, encompassing MRI records of 150 subjects aged 

between 60 to 96, each subjected to at least one scan. The subjects are classified into 

'Nondemented,' 'Demented,' and a distinctive 'Converted' category, comprising 14 individuals who 

transitioned from 'Nondemented' to 'Demented.' This unique classification sets the stage for a 

nuanced exploration of the disease's progression. 

This study proposes a machine-learning model that incorporates key biomarkers extracted 

from MRI data. These biomarkers encompass a spectrum of factors including years of education 

(EDUC), socioeconomic status (SES), Mini-Mental State Examination (MMSE), Clinical Dementia 
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Rating (CDR), Estimated Total Intracranial Volume (eTIV), Normalized Whole Brain Volume (nWBV), 

and Atlas Scaling Factor (ASF). The deliberate selection of these biomarkers represents a departure 

from conventional approaches that predominantly focused on raw MRI data analysis. This curated 

set of biomarkers aims to provide a more targeted and potentially interpretable model for predicting 

the progression of mild cognitive impairment in individuals. The literature review within this 

introduction places the study in context by referencing prior work in the field. Notably, existing 

studies are highlighted for their emphasis on raw MRI data analysis. In contrast, this study takes a 

novel route by introducing a curated set of biomarkers, distinguishing itself through a more focused 

and potentially interpretable modeling approach. This departure from the conventional path 

underscores the study's commitment to pushing the boundaries of current research in Alzheimer's 

detection. 

A variety of machine learning models are employed in this study, including Logistic 

Regression, Support Vector Machine, Decision Tree, Random Forest Classifier, and AdaBoost. The 

performance of these models is rigorously evaluated using established metrics, ensuring a 

comprehensive assessment of their efficacy in predicting the progression of mild cognitive 

impairment. This study's contribution to the growing body of research in early Alzheimer's detection 

is anticipated to be significant. The subsequent sections of the paper will delve into the insights 

gained, results obtained, and a nuanced discussion of the limitations encountered. Conversely, we 

purpose a novel spatio-temporal-aware brain amyloid β growth model using deep encoder-decoder 

networks in conjunction with a convolutional image to image regression architecture  

2 Materials and Methods: 

2.1.1 Exploratory Data Analysis 

In this section, we have focused on exploring the relationship between each feature of MRI 

tests and the dementia of the patient. The reason we conducted this Exploratory Data Analysis 

process is to state the relationship of data explicitly through a graph so that we could assume the 

correlations before data extraction or data analysis. Assisting us to understand the nature of the data 

and to select the appropriate analysis method for the model later. 
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Figure 1: Table showing a subset of patient data storage. 

The table is part of a dataset focused on Alzheimer's disease detection using MRI data, where 

each row represents a unique subject identified by a Subject ID. The 'Group' column categorizes 

subjects as 'Nondemented' or 'Demented.' Information includes visit details, time delay for MRI 

scans ('MR Delay'), demographic data (gender, handedness, age), education ('EDUC'), and 

socioeconomic status 

('SES,' some with missing values). Clinical assessments ('MMSE' and 'CDR') offer insights into 

cognitive function. MRI-related measurements encompass 'eTIV,' 'nWBV,' and 'ASF.' The 'Group' 

column is a potential target for predicting Alzheimer's status based on these features. 

 

Figure 2: Demented vs Non-demented AD rate compared between males (0) and females (1). 

depicts that males are more likely to get AD than women, when demented, according to this 

dataset. 
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According to a study at the Johns Hopkins School of Public Health; the link between cognitive 

decline and an elevated risk of Alzheimer's disease (AD) dementia is often attributed to sleep apnea 

and inadequate sleep quality. Considering the higher prevalence of sleep apnea in men, the impact 

of this risk factor may be more pronounced in the overall context of men's health (Mielke). 

Normalized Whole Brain Volume is also found to be lower in the non-demented group rather 

than the demented group. This is shown in Figure 3. 

 

Figure 3: Non demented (1) nWBV vs Demented(0) nWBV. Graph indicating MRI Data, for which group 

(1) has overall a higher score of nWBV when compared to those of demented individuals. 

 

In summary of the data exploratory analysis; men have a higher likelihood of developing 

dementia, including Alzheimer's Disease, compared to women. Demented patients generally exhibit 

lower levels of education in terms of years of schooling. Additionally, the demented group tends to 

have lower brain volume compared to the nondemented group, which is a common characteristic of 

neurodegenerative diseases. Moreover, there is a higher concentration of individuals aged 70-80 in 

the demented group, aligning with the typical age of onset for many forms of dementia, while the 

nondemented group includes a relatively lower proportion of individuals in this age range. 

2.1.2 Data Pre-processing 

In the given dataset, the SES (Social Economic Status) column has 8 missing values. To 

address this issue, two approaches are employed. In the first approach (5. A), the rows with missing 

SES values are simply dropped, resulting in a dataset without any missing values in the SES column. 

The new dataset, named df_dropna, consists of 72 instances in the "0" group and 70 instances in the 

"1" group. In the second approach, missing SES values are imputed by the corresponding median 
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values based on the education level (EDUC), as SES is treated as a discrete variable. A scatter plot 

between EDUC and SES is drawn, and the imputation is performed manually using the median SES 

values for each education level. 

This is shown in Figure 4. 

 

Figure 5: EDUC v.s. SES. Graph indicating a correlation between EDUC and SES. 

The completeness of the data is confirmed, with all 150 data points utilized. Subsequently, 

the dataset is split into train/validation/test sets for both the imputed dataset and the dataset after 

dropping missing value rows. Feature scaling is applied to normalize the data. 

A 5-fold cross-validation is conducted to determine the best parameters for different models, 

including Logistic Regression, SVM, Decision Tree, Random Forests, and AdaBoost. The tuning 

parameters are optimized based on accuracy. Finally, the performance metrics, including accuracy, 

recall, and AUC, are compared for each model. The entire process aims to evaluate and compare the 

impact of the chosen approaches (dropping vs. imputing missing values) on the performance of 

machine learning models using the given dataset. 

2.1.3 Model Construction and Testing 

We use the area under the receiver operating characteristic curve (AUC) as our main 

performance measure. We believe that in the case of medical diagnostics for non-life threatening 

terminal diseases like most neurodegenerative diseases, it is important to have a high true positive 

rate so that all patients with Alzheimer's are identified as early as possible. But we also want to make 
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sure that the false positive rate is as low as possible since we do not want to misdiagnose a healthy 

adult as demented and begin medical therapy. Hence AUC seemed like an ideal choice for a 

performance measure. We will also be looking at accuracy and recall for each model. 

 

Figure 6: Visualization for model validation. 

In the logistic regression model, the parameter C, representing the inverse of regularization 

strength, is tuned over the range [0.001, 0.1, 1, 10, 100]. The performance metrics, including 

accuracy, recall, and AUC, are evaluated using 5-fold cross-validation. The best-performing model is 

then selected based on the parameters that yield the highest accuracy on the validation set. The 

logistic regression model with imputation outperforms the one without imputation, demonstrating 

better accuracy (88.95% vs. 85%) and recall (85% vs. 80%). Moving on to the SVM model (6. C), the 

hyperparameters C, gamma, and kernel type are tuned over predefined ranges. The best-performing 

SVM model, determined through cross-validation, achieves an accuracy of 91.58% on the test set 

with a recall of 80%. The selected parameters include C=100, gamma=0.1, and the radial basis 

function (RBF) kernel. 

2.1.3 Results of the Early Detection Module 

In the decision tree model, the maximum depth is tuned over the range [1, 2, ..., 8]. The best 

decision tree model is chosen based on cross-validated accuracy, resulting in a maximum depth of 

1. The test set performance indicates an accuracy of 91.58% and a recall of 75%. The random forest 

classifier is optimized by tuning the number of trees (n_estimators), the maximum number of 
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features considered at each split (max_features), and the maximum depth of the tree (max_depth). 

The best random forest model, with parameters M=14, d=5, and m=7, achieves a test set accuracy 

of 94.21% and a recall of 90%. 

Finally, the AdaBoost model (6.F) is fine-tuned by adjusting the number of trees (M) and the 

learning rLRe (lr). The best AdaBoost model, with M=2 and lr=0.0001, exhibits a test set accuracy of 

94.21% and a recall of 75%. Feature importance analysis reveals the contribution of each feature in 

the selected models. In summary, the models are systematically tuned and evaluated, with the 

random forest classifier demonstrating the highest accuracy and recall on the test set among the 

models considered. The performance comparison provides insights into the effectiveness of 

different machine learning algorithms in predicting the target variable based on the provided 

features. These results are represented in Figure 7. 

 

Figure 7: Results of testing Early Alzheimer's Detection deep learning system. 

This model also achieved a higher average accuracy than those previously tested. This is shown in 

Figure 8 below. 
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Figure 8: Previous early detection models. This table shows the accuracy of the previous 

study’s models. 

2.2.1 Data Curation and Masking 

We utilize a dataset from the OSASIS open source database, as published in the Journal of 

Nuclear Medicine. This dataset comprises 8 positron MRI scans of patients. MRI is instrumental in 

detecting amyloid β plaques in the brain.  

2.2.2 Synthetic Plaque Generation 

To augment the number of training samples for deep learning, synthetic plaque seed 

locations were randomly generated within the patient's anatomy. This approach helps the neural 

model learn plaque growth patterns across various anatomical conditions. A total of one hundred 

synthetic plaques were created within the brain geometries of the eight patients. The randomized 

"plaque seeds" are produced within a NIfTI mask, which simplifies the scan by merging different 

segmentations. Seeds that are too close to the brain geometry are excluded to avoid complications 

in diffusivity outside the brain. This exclusion is based on an approximation of the central brain 

volume, derived from the average patient data obtained in section 2.1.1, "Exploratory Data 

Analysis." An example of the NIfTI mask is shown in Figure 10 below. 

 

Figure 10: The central brain volume approximation utilized to restrict boundaries in which synthetic 

Aβ plaque seeds can be generated. 

Additionally, examples of Aβ generated plaque seeds are shown below, derived from their 

corresponding MRI scans; identification of plaque location from MRI scans was done using an in-

house CNN. 
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Figure 11: Montage of plaque seeds generated in XY-plane at varying Z values. Red asterisk 

represents the location of plaque seeds (x, y, z). These are two different patients T1 and T2. Where x 

∈ [0, 240], y ∈ [0, 160], z ∈ [130, 170]. 

 

2.2.3 Deep Learning for Plaque Evolution 

For convolution operations to effectively extract valuable features, the data must be 

arranged such that these features are spatially ordered. In ADmod, we use time-series images with 

temporally ordered predictions. However, exploiting the spatial properties of these images requires 

a different configuration than that used for tabular data in Section 2.2. While a hypothetical 1 × 3 

convolution kernel could be applied to tabular data, it would sequentially process (x, y, z) and then 

(y, z, c), which is inadequate for spatial understanding. Therefore, tabular data must be transformed 

into a four-dimensional matrix suitable for convolution filters. These four dimensions are (i) height, 

(ii) channels, (iii) depth, and (iv) width. Ideally, interpolation to a 256 × 256 × 256 matrix is preferred; 

however, practical computational limits necessitate interpolation to a 64 × 64 × 64 matrix by 

normalizing each (x, y, z) point from 0 to 64 and assigning it the value of channel one. This results in 

a single-channel grayscale matrix. 

Out of six patients and a total of 5,435 synthetic plaques, one patient is reserved for testing the 

model's generalizability to unseen brain geometries. For the remaining five patients, with 100 

plaques per patient and 10 initial starting times, 5,000 samples span days 0 through 500. From 

these, two four-dimensional matrices each containing 4,500 samples are created: 1) an input 

matrix with samples from day 0 to 450, and 2) an output matrix with samples from day 10 to 500. 

The encoder-decoder model's fixed depth requires the training data to have a consistent interval. 

2.2.4 Parameter Organization and Model Architecture 
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To predict future plaque conditions, it is crucial to understand both the biophysical 

characteristics and the patient's brain geometry. Deep learning is employed to enhance the 

integration of these traits and to comprehend the underlying spatiotemporal features, providing an 

advantage over traditional PDE-based methods. ADmod uses an innovative encoder-decoder 

neural network for image-to-image regression, enabling the prediction of future plaque states. The 

model architecture consists of a 33-layer deep encoder-decoder network with 36,500 learnable 

parameters. The architecture features 3D Convolution → Batch Normalization → Swish → 3D Max 

Pool operations, followed by Transposed Convolution → Batch Normalization → Swish operations. 

Hyperparameters were iteratively tuned based on training dataset performance. This 

iterative optimization approach prevents overfitting while maintaining high performance. The 

learning rate followed a piecewise schedule, being multiplied by a decay factor each epoch. This 

initial learning rate offered a balanced tradeoff between convergence and precise training. The 

decay was implemented to enhance network generalization and improve the learning of complex 

patterns during later training stages. The hyperparameters are detailed in Figure 12. 

 

Figure 12: Table showing values of hyperparameters used. The type of hyperparameter is listed to the 

left and its specific value is listed in the left hand column. 

2.2.4 Parameter Organization and Model Architecture 

Key architectural modifications include replacing Rectified Linear Unit (ReLU) activation 

with Swish activation, incorporating batch normalization, and employing larger kernel sizes in initial 

convolutions. Swish activation has demonstrated superior performance over ReLU, albeit with 

higher computational demands. Batch normalization is integrated within the encoder-decoder 

framework between convolution and nonlinearity to expedite model convergence and reduce 

training duration. Larger kernel sizes, such as the 7 × 7 × 7 filter in the first convolution followed by 
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smaller 3 × 3 × 3 filters later in the model, are adopted to capture a broader context of both the 

plaque surroundings and its edges. 

2.2.5 Results of Growth Model Module 

For evaluating ADmod, an image-to-image regression model, its performance is assessed 

using four common regression error metrics: root mean squared error (RMSE), relative root mean 

squared error (RRMSE), and relative squared error (RSE). These metrics quantify the disparity 

between predicted pixel intensities and ground-truth values across 900 image pairs representing 

plaque growth simulation. The input images cover days 0 to 450, while the output spans days 50 to 

500. ADmod's predictions are compared to mathematically predicted outputs. The evaluation on 

the test subset shows ADmod achieves an RMSE of 0.0204 ± 0.0001, RRMSE of 0.0013 ± 0.00001, 

and RSE of 0.3735 ± 0.0049. 

Furthermore, the error assessment involves quantifying the agreement between ADmod-predicted 

and ground-truth simulations on the testing dataset. Each simulation is condensed into a single 

value by summing the pixel values in the image. These values are then paired, and linear regression 

is performed on the resulting 900 pairs. Dayeh et al.’s analysis is utilized to unveil systematic errors 

in the model by measuring agreement between ADmod and ground-truth predictions. 

2.2.6 Visual and Quantitative Analysis 

While the primary focus of this study is predicting plaque concentration, accurately reconstructing 

the surrounding patient geometry is also crucial for assessing the model's success. This aspect is 

evaluated in the error analysis outlined in Section 2.2.5 and qualitatively demonstrated in Figure 15. 

The figure illustrates the reconstruction of patient geometry in a forward timestep, even amidst 

plaque growth, highlighting the model's ability to capture the broader anatomical context. 
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a) Patient anatomy with visible plaque concentration peak at time t = 150. 

 

b) Patient anatomy with 2 not apparent plaque concentration peaks at t = 100. 

Figure 15: ADmod reconstructs surrounding patient geometry while growing plaque taking about 1.54 

seconds per simulation. 
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3.0 Discussion 

In summary, the unique aspect of our approach lies in incorporating key metrics such as the Mini-

Mental State Examination (MMSE) and educational background into our model, thereby enhancing 

its ability to differentiate between normal healthy adults and those with Alzheimer's disease. The 

MMSE, a gold standard in dementia assessment, adds a crucial dimension to our predictive model. 

This distinctive feature also lends flexibility to our approach, allowing it to be extended to other 

neurodegenerative diseases diagnosed through a combination of MRI features and cognitive tests. 

The Early Alzheimer's Detection Deep Learning System can achieve up to 94% accuracy in 

detecting Alzheimer's disease. 

In terms of implementation, our primary focus was to bridge the gap between machine learning 

advancements and clinical applications. To facilitate this, we developed a web program using our 

algorithm, designed to be user-friendly for individuals regardless of their programming experience. 

Leveraging the Common Gateway Interface (CGI), our web application allows clinicians to input 

MRI results, biographic data, and other relevant patient parameters. The model, integrated into the 

web platform, then assists clinicians in identifying dementia, making our approach both accessible 

and impactful in a clinical environment. 

However, it is crucial to acknowledge the limitations of our study. The size of the dataset poses 

challenges for implementing a more complex model, and further refinement in the data cleaning 

and analysis process could potentially lead to improved prediction rates. Additionally, variations in 

dataset characteristics might impact the generalizability of our model. This issue is evident in the 

perfect recall score of 1.0 for the SVM, highlighting the need for caution when applying the model to 

different datasets. 

For future research, we emphasize the exploration of key factors contributing to dementia through 

sophisticated exploratory data analysis (EDA) with a larger sample size. This includes not only 

refining existing variables but also exploring novel dimensions such as generational grouping, brain 

tissue volume grading, and exam scores. Integrating insights gained from this process into data 

cleaning could enhance the model's decision-making ability, potentially elevating the accuracy of 

our predictive model for early Alzheimer's detection. 
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