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Abstract

Aircraft wastewater surveillance has been proposed as a novel approach to monitor the global spread of
pathogens. Here we develop a computational framework to provide actionable information for designing
and estimating the effectiveness of global aircraft-based wastewater surveillance networks (WWSNs). We
study respiratory diseases of varying transmission potentials and find that networks of 10 to 20 strategically
placed wastewater sentinel sites can provide timely situational awareness and function effectively as an
early warning system. The model identifies potential blind spots and suggests optimization strategies to
increase WWSNs effectiveness while minimizing resource use. Our findings highlight that increasing the
number of sentinel sites beyond a critical threshold does not proportionately improve WWSNs capabilities,
stressing the importance of resource optimization. We show through retrospective analyses that WWSNs
can significantly shorten the detection time for emerging pathogens. The presented approach offers a
realistic analytic framework for the analysis of WWSNs at airports.

Recent health crises have highlighted the dual role of airports both in spreading infectious diseases
globally and simultaneously acting as convenient frontlines for detecting and monitoring emerging health
threats [1–5]. In this context, aircraft-based wastewater surveillance is gaining increasing scientific and
operational interest. Traditionally, wastewater surveillance has been used to monitor community preva-
lence of pathogens such as SARS-CoV-2 variants [6, 7], polio [8, 9], and influenza [10, 11]. Expanding
wastewater surveillance at airports to create a global wastewater surveillance network (WWSN) has been
recently proposed as a novel, early warning system against emerging pathogens [12–17]. Sampling aircraft
wastewater provides a noninvasive method to monitor the spread of pathogens, but the creation of a global
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WWSN poses strategic and operational challenges. These challenges include efficient sample collection,
logistics for genomic analysis, decisions such as what pathogens to test for, selecting optimal airports
for surveillance, scaling the network, and addressing surveillance blind spots to balance effectiveness and
cost [18]. While there have been studies on the feasibility of aircraft wastewater surveillance at several
major airports [19–22], fully understanding the performance of a WWSN—in terms of its size, distributed
locations, and operations—remains to be addressed.

Here, we use the Global Epidemic and Mobility Model (GLEAM) [23–25] to study the performance
of global WWSNs, providing valuable insights into how pathogens spread and are detected within these
networks. GLEAM is a stochastic, spatial, age-structured metapopulation model. It divides the global
population into over 3,200 subpopulations across approximately 200 countries and territories, all intercon-
nected by air travel and commuting networks. The air travel component of the model includes data on
flight segments and origin-destination information for more than 4,600 airports, obtained from the Official
Aviation Guide (OAG) database (see Methods and Sec. 1 in the Supplementary Information, SI). The
mobility framework is coupled with an epidemic compartmental model tracking individuals within various
disease stages (ex. Susceptible, Latent, Infectious, etc.) and their movement across subpopulations at a
global level. GLEAM has been successfully applied to model global health threats including pandemic
influenza, Ebola, Zika, and SARS-CoV-2 [26–28]. To simulate a surveillance system within GLEAM, we
create a global WWSN that consists of multiple surveillance sites—called sentinels. We assume each
sentinel airport will test the wastewater from a certain fraction of arriving international flights per day.

Given any initial conditions for an outbreak, the model generates stochastic realizations of the global
epidemic spread. Simulated data include international and domestic infection importations, incidence of
infections, and individual-level detection at sentinel sites with a daily resolution. The early growth phase of
the modeled epidemics can be mapped onto a multitype branching process allowing for the computationally
efficient derivation in terms of probability generating functions (PGFs) of several key analytics that quantify
the efficiency of the WWSN. These include the time to first detection of an emerging pathogen and, from
measured detections at sentinels, the identification of the source location, the estimation of the reproduction
number, and the timing of the outbreak’s onset. These metrics provide a general framework for assessing
the WWSN’s effectiveness in real-time for surveillance and public health response.

Results

We start our analysis by considering a baseline Wastewater Surveillance Network (WWSN) with 20 sentinel
sites. To achieve sufficient regional coverage, we selected the three busiest international airports from each
of the six World Health Organization regions and added two additional sites in South America and Oceania.
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The locations are shown by airport markers in Fig. 1 and reported in Table S4 in the SI.

The efficiency of the WWSN is related to the intrinsic characteristics of a pathogen as well as its
detectability. To test the effectiveness of the WWSN we assume a SARS-CoV-2-like respiratory infection
is spreading with a detectable period in wastewater similar to what is reported in Refs. [6, 29, 30]. We
map an individual’s disease history to a Susceptible–Latent–Detectable–Recovered (SLDR) compartmental
structure, as shown in Fig. 1A. Susceptible (S) individuals can get infected through exposure to infectious
individuals. Latent (L) individuals have been exposed but are not yet transmitting the pathogen and
remain undetectable in the wastewater. Detectable (D) individuals include both infectious (I) individuals
who can transmit the pathogen and post-infectious (P) individuals who no longer infect others but are still
detectable through wastewater. Finally, recovered (R) individuals are no longer detectable and cannot be
reinfected (See Methods for details and key time-to-event intervals).

Each traveling detectable individual arriving at a sentinel on an international flight is detected with
probability pdet. The detection rate pdet combines the fraction of sampled aircraft, the probability an
individual uses the lavatory during a flight, and the probability a detectable individual is shedding enough
virus to lead to a detection. Current detectability estimates for SARS-CoV-2 in aircraft wastewater vary
considerably [14, 16, 21], therefore, our analysis varies the detection probabilities, pdet, from 4 to 32%

(see Methods for a detailed discussion). While sampling individual aircraft independently is optimal for
detection accuracy, it may be more cost-effective to test combined wastewater from multiple aircraft at a
consolidation point such as the airport triturator. Consequently, we assume that through pooled sampling,
multiple detectable individuals traveling through the same sentinel on the same day cannot lead to more
than one detection, leading to binary detection time series as illustrated in Fig. 1A. It is worth highlighting
that most of these assumptions can be relaxed in order to use different detection schemes, cadence, and
sentinel site locations.

Baseline WWSN performance. A key metric for evaluating the effectiveness of a WWSN is the time
to first detection tfd of an emerging pathogen. This metric is defined as the number of days from the
onset of an outbreak until the first detection at any sentinel. In our analysis, we seed an epidemic in
a single subpopulation with a small, initial cluster of 10 latent and 10 infectious individuals. The time
to first detection inherently depends on the WWSN configuration, the outbreak’s origin, the pathogen
characteristics, and the operational detection rate. At the same time, there are also fluctuations stemming
from the stochastic nature of each outbreak and the individuals’ traveling and detection events.

In Fig. 1B, we show the full probability distribution P (tfd) for the time to first detection for four dif-
ferent origins: Geneva (Switzerland), São Paulo (Brazil), Kotabaru (Indonesia), and Kalemie (Democratic
Republic of the Congo). In this figure, we assume that the detection rate in the WWSN is pdet = 16%

and is uniform across all 20 sentinels. We see that the time to first detection can vary significantly, with a
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Figure 1: Time to detect a novel pathogen with a global surveillance network at airports. The surveillance
system corresponds to a baseline network of 20 sentinel airports, chosen based on their high volume of international
passengers and favoring geographical diversity (see Table S4 in the SI). We use an average basic reproduction number
⟨R0⟩ = 2 at the source, a generation time of 4 days, and a post-infectious period of 10 days, resulting in a detectable
period of ∼12.7 days. For detectable individuals, the probability of detection on an international flight incoming
to a sentinel is 16%. (A) Schematic of the Susceptible–Latent–Detectable–Recovered (SLDR) compartmental model
and example of binary detection time series at sentinel airports generated by GLEAM, utilizing São Paulo as the
origin. Only sentinels (identified by their IATA code) with at least one detection are shown. (B) Time to first
detection by the sentinel system for four different origins (with the ISO 3166-1 alpha-3 codes of the origin countries
in parentheses). Each dot is a GLEAM simulation and the box plot summarizes the results (n = 100 for each origin).
The center line of the box plot indicates the median, the box covers the interquartile range and the whiskers cover
the 90% central prediction interval. The curves correspond to analytical distributions from the PGF methodology.
(C) Mean time to first detection by the surveillance network, considering each subpopulation as the potential origin
for an epidemic. Each subpopulation is colored according to the mean time to first detection if it were the origin of
an outbreak. The histogram in the lower left corner compiles the results from 3244 subpopulations.

mean of 14.2 (90% PI, 4–22) days for Geneva, to 66.5 (90% PI, 53–76) days for Kalemie, where PI refers to
the central prediction interval (5th and 95th percentiles for the 90% PI). To obtain a global picture of the
WWSN performance for different epidemic origin locations, we calculate the mean time to first detection,
Tfd, for each potential source across all of the 3,200+ subpopulations in our model (see Fig. 1C). A notable
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20 40 60 80 100
Mean time to first detection (days)

South America

Africa

Asia

North America

Europe

Oceania

continent min P5 median mean P95 max

S. America 19.5 27.1 44.7 45.4 63.4 97.3
Africa 9.9 23.0 43.1 45.3 71.0 98.3
Asia 8.4 21.3 41.1 41.1 58.7 102.1
N. America 6.9 20.8 35.2 34.6 46.1 64.7
Europe 13.5 19.1 33.0 33.7 54.5 83.3
Oceania 7.4 18.0 31.9 33.9 55.6 68.8

Figure 2: Heterogeneity of the time to first detection within geographical regions. We aggregate the mean
time to first detection Tfd obtained in Fig. 1 over continents (S. America, n = 297; Africa n = 338; Asia n = 867;
N. America n = 854; Europe n = 596; Oceania n = 292). The center line of the box plot indicates the median,
the box covers the interquartile range, the whiskers cover the 90% central prediction interval (P5–P95), and black
dots correspond to outliers outside this interval. Numerical values for some of the statistics of the mean time to first
detection are reported in the table on the right.

aspect is the significant spatial variability of Tfd based on the epidemic’s origin. For certain locations in
Central Africa, Tfd is of the order of 100 days, while for many places in Europe, 15-25 days is more typical.

This heterogeneity is further highlighted in Fig. 2 at the level of continents. While Fig. 2 shows that
epidemics emerging from some continents take more time than others to be detected by a global WWSN,
we note an important heterogeneity within continents as well. For instance, in Africa, the 90% PI of the
Tfd ranges from 23 to 71 days. Even looking down at the level of statistical subregions as defined by the
United Nations geoscheme in Fig. S5 of the SI, we still find very broad distributions of Tfd for all subregions.
Middle Africa for instance is very dispersed, with a 90% PI ranging from 28.2 to 84.5 days. This means
that within all regions, and at various scales, there are potential blind spots for a global WWSN: locations
that if they are the source of an epidemic, will take a very long time to lead to a detection.

These blind spots within the WWSN can be attributed in part to the per capita volume of travel. In
the SI we show a strong indirect correlation between the per capita volume of travel and the mean time
to first detection (Fig. S7). However, this is not the only factor contributing to blind spots: detections at
sentinel sites are not solely the result of direct importations from the outbreak’s origin, but sometimes rely
on importations from secondary outbreak locations experiencing community transmission. This indirect
path to reach a sentinel further increases the detection time.

Effects of pathogen characteristics on the WWSN. It is important to note that the natural history
of a disease, particularly its key characteristic times and reproductive number, significantly impacts the
detection time (Tfd). In Fig. 3A, we show how the global distribution of Tfd, aggregated over all locations,
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Figure 3: Changing the transmission dynamics predictably affects the time to first detection. We use the
same baseline WWSN as in Fig. 1 and the same detectable period. Unless specified, we keep an average reproduction
number of 2, a generation time of 4 days, and a 16% detection rate at sentinels. All prediction intervals are obtained
with n = 3244 subpopulations. (A) Tfd from all origins, with varying reproduction number, generation time, and
detection rate. The center line of the box plot indicates the median, the box covers the interquartile range and
the whiskers cover the 90% central prediction interval; the outliers outside the interval are not shown. (B-C) We
vary the generation time between 4 and 36 days, resulting in doubling times between 3.4 and 26.2 days. (B) Tfd

and Tfd/T2 + log2 T2 as a function of the doubling time. Circles indicate the median and the error bars cover the
interquartile range. The dashed lines are there to guide the eyes. (C) Distributions of Tfd and Tfd/T2 + log2 T2 over
all origins for different doubling times. We use kernel density estimates (KDE) for the distributions to improve the
visualization.

changes as the reproduction number R0, the generation time Tgen, and the surveillance detection rates pdet
are varied. A larger reproduction number and a shorter generation time lead to shorter Tfd, and vice-versa;
the smaller the probability of detection the longer Tfd, although with limited impact. This can be explained
by the exponential growth of epidemics in their early stages. The WWSN will typically start detecting
cases when there is a sufficient number of detectable individuals D traveling through the WWSN. This
number is approximately D ∝ 2Tfd/T2 , where T2 is the doubling time of the epidemic (here measured in
days). Adjusting the basic reproduction number, R0, or the generation time, Tgen, significantly affects the
time to first detection due to alterations in T2. Conversely, changes in the detection probability pdet do not
similarly impact the timing. Indeed, a two-fold reduction in pdet implies a two-fold increase in D before
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detection. However, this increase in D happens in the span of a single doubling time, T2. The exponential
growth also implies that the ratio Tfd/T2 should be approximately constant as we vary the doubling time
of the epidemic. More precisely, as shown in Fig. 3B, the complete invariant quantity reads as

Tfd/T2 + log2 T2 = const. (1)

The correction term log2 T2 is necessary to account for the stochastic nature of the detection process [31]
(see SI, Sec. 2). In Fig. 3C, we also show how the distributions of mean time to first detection collapse onto
one another when considering the invariant quantity in Eq. (1). In practical terms, altering the disease
characteristics effectively results in a linear transformation of Tfd across all locations (see also Fig. S9 in
the SI). Therefore, focusing on a specific parametrization does not result in any loss of generality of the
results, allowing for consistent and generalizable analyses. Other aspects of disease transmission affecting
Tfd—overdispersion of the secondary-infection distribution, length of the detectable period, and seasonal
change in the air-travel network—have a very limited impact (see Table S3 in the SI).

Scaling and optimization of WWSNs. Key features like the number of sentinel airports and their geo-
graphical placement are crucial for optimizing the effectiveness of the WWSN. The strategic optimization
of these features represents a classic resource-constrained optimization problem. To systematically assess
the network’s efficiency, we define Tfd(S, l) as the mean time to first detection for a WWSN configuration.
Here, S denotes the set of sentinel sites, and l indicates the subpopulation at the epidemic’s origin. We can
then average this metric over multiple origins l by weighing each location according to a prior distribution
P (l) for the occurrence of an outbreak, resulting in the (average) mean time to first detection

Tfd(S) =
∑
l

P (l)Tfd(S, l) . (2)

While Tfd(S) is a well-defined indicator of performance, its value is sensitive to variation of the disease
transmission characteristics (see Eq. (1)). To provide a more informative measure of network efficiency,
we compare Tfd(S) with Tfd(C), where the latter represents the average mean time to first detection for a
hypothetical complete WWSN that includes all international airports globally. This comparison helps us
quantify the relative performance of a specific sentinel configuration S. We define the excess time to first
detection for the sentinel system S using the following formula:

E(S) = 100× Tfd(S)− Tfd(C)
Tfd(C)

. (3)

This metric represents the additional percentage of time it takes for the system S to achieve its first
detection compared to the complete network.

We use three different strategies to define the geographic distribution of the sentinel network: (1) ranking
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Figure 4: Scaling and optimization of a global surveillance network at airports. We use the same disease
parametrization as in Fig. 1, but we use different strategies to choose the sentinel airports and we vary their number.
We evaluate Tfd and compute the excess time to first detection compared to the complete WWSN. (A) Global
optimization: we assume all subpopulations are equiprobable for the origin of an epidemic. The star corresponds to
the excess time for the baseline network. (B) Targeted optimization: the greedy strategy is tuned to minimize the
excess time for epidemics originating from Africa. (A-B) The radar charts illustrate the excess time to first detection
using the greedy strategy (global and targeted), assuming the origin is within a specific continent. A balanced
strategy will minimize the excess time equally for all geographical regions, while a smaller excess time for a specific
region indicates a bias, the intended feature of a targeted optimization procedure. (C) Spatial distribution of the 20
first sentinels for the global and targeted greedy optimization strategies.

airports based on their international inbound passenger volume [15], (2) ranking airports by their entropy
in traffic flows—a measure of diversity that favors airports offering wide geographical connectivity, and (3)
using a greedy optimization strategy that minimizes the mean time to first detection (see Methods). In
Fig. 4A, we show the excess time to first detection for the three different strategies considered, assuming
a homogeneous prior for the source of an epidemic, irrespective of the area or population size (i.e., P (l) =

const. for all l). While the greedy approach systematically provides the smallest excess time, all three
strategies have similar performances, despite different network configurations (see Table S4). The radar
chart also suggests that the greedy strategy provides a relatively balanced geographical surveillance when
compared to the complete WWSN. The most striking result of the optimization analysis, however, resides
in the clear case of diminishing returns when increasing the number of sentinels. Our findings show that a
network with 20 sentinels would only take approximately 20% longer to achieve a first detection compared
to a system that includes thousands of airports. Furthermore, doubling the number of sentinels from this
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number results in marginal gains, improving detection time by less than 10%. This result indicates a
highly cost-effective trade-off between the efficiency of the Wastewater Surveillance Network (WWSN) and
the resources allocated to it. With just a small number of sentinels, the network achieves nearly the full
efficiency of a system comprising thousands of airports.

Some diseases are only endemic in certain parts of the world or have clear seasonal patterns. Besides,
we have shown that Tfd is higher for some geographical areas than others (see Fig. 2). For these reasons, it
might be relevant to tailor the WWSN to specific geographical areas by biasing the optimization procedure
to improve the detection capabilities for specific regions or subpopulations. The greedy optimization
approach can be easily adapted to do so by tuning the prior function P (l). For instance, if we aim to
minimize the excess time to first detection for epidemics originating in Africa, we can set P (l) = const. if
l is in Africa, otherwise P (l) = 0. In Fig. 4B, we present the excess time to first detection and compare
the conventional global greedy optimization method with our targeted greedy optimization strategy. The
radar chart in Fig. 4B illustrates the bias introduced by the targeted optimization strategy, particularly
showing a skewed coverage favoring the African continent at the expense of performance in other regions.
The maps in Fig. 4C show how sentinel placement changes markedly when the optimization process targets
a specific geographical area; focusing on the African continent results in a higher concentration of sentinels
in Africa and Europe, aligning with traffic flow considerations. These results open the paths to optimize
the surveillance system dynamically, adapting the WWSN to evolving knowledge on the epidemic and its
geographical dispersion.

Situational awareness with WWSNs. WWSNs can be used to provide evolving situational awareness
on emerging infectious diseses threats. To illustrate the potential use of WWSNs to gather epidemiological
information, we explore the emergence of the SARS-CoV-2 Alpha variant (B.1.1.7) in Fall 2020 (see SI
Sec. 3 for details) [32–34]. More precisely we consider a hypothetical scenario where the baseline WWSN
illustrated in Fig. 1 is assumed to be operational. The study uses air-travel data from September to
November 2020 and in Fig. 5A, we present probable distributions for the time to first detection of the
Alpha variant. Our findings indicate that, even with the 4% detection rate, the variant would likely have
been detected as early as November. Specifically, the median time to first detection is projected to be
November 13, with a 90% PI ranging from October 15 to December 1. With a 16% detection rate, our
analysis suggests that the first detections of the Alpha variant would likely have occurred by late October,
with a median detection date of October 29, 2020, and a 90% PI from October 2 to November 16. Given
that the Alpha variant was first reported by the United Kingdom government on December 14, 2020, this
analysis shows the potential of a global WWSN to serve as an effective early warning system.

Alongside tracking the initial international spread, the WWSN can also deliver timely information on the
origin of an outbreak and help in understanding its growth dynamics. In Fig. 5(B), we show the probability
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Figure 5: A global WWSN would provide an early warning system for international spreading and timely inferential
capabilities. We consider a counterfactual scenario of the emergence of the SARS-CoV-2 Alpha variant where a global
WWSN would have been available. We use the baseline surveillance system illustrated in Fig. 1. We considered an
effective reproduction number of Rws

eff = 1.1 for the wild strain SARS-CoV-2 virus, and an increased transmissibility
of 55% for the Alpha variant, resulting in an effective reproduction number of Ralpha

eff = 1.7. We also assumed a
generation time of 6.5 days, and a post-infectious period of 10 days. We assume an initial cluster of 20 infectious and
20 latent individuals in the London and South East England region on September 15, 2020. (A) Distributions for
the time to first detection with varying detection rates. (B)-(C) Inference experiment using data generated by the
mechanistic GLEAM model, assuming a 16% detection rate. (B) Geolocalisation of the source as more detections
cumulate. We compute the posterior distribution for the origin of the epidemic based on the detection counts at each
sentinel. The markers indicate the median posterior value and the error bars cover the interquartile range obtained
from 1250 detection time series. (C) Joint posterior distribution on the increased transmissibility of the Alpha variant
and the epidemic start date, averaged over 125 possible instances of the detection time series. Gouraud interpolation
is used to improve the visualization. The blue star indicates the ground truth values for the simulation experiment,
corresponding to September 15 and an increased transmissibility of 55%.

that the WWSN correctly identifies the continent and country of origin as multiple detections accumulate
in the system. This is achieved by calculating the posterior distribution P (l|d) for each subpopulation l to
be the origin of an epidemic based on the cumulative number of detections at each sentinel d = (dν)ν∈S

(see SI Sec. 3). Our analysis indicates that the source country could have been accurately identified after
approximately 20 detections, which would likely have occurred by December 5th in over 50% of the model’s
realizations with a 16% detection rate. In practice, a more efficient adaptive localization strategy could
be employed. This would involve targeted sampling from individual aircraft in regions suspected to be the
epicenter of the outbreak, thereby enabling more precise and timely identification of the source.

Multiple detection events can also be utilized to estimate key epidemic parameters, such as the growth
rate, the onset time, and, given some knowledge of the generation time of the contagion process, the
reproduction number of the epidemic. Here, we focus on the inference of the epidemic start date and
the increased transmissibility of the Alpha variant compared to the original SARS-CoV-2 strain. As of
December 14, 2020, the time at which the United Kingdom first reported the Alpha variant, the time
series of detection events across the sentinel sites would yield the joint posterior distribution of the inferred
epidemic start date (90% CI, July 29–Oct. 12) and increased transmissibility (90% CI, 25–91%) reported
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in Fig. 5C. The high posterior density region also matches closely the value of the simulation experiment,
i.e., a start date of September 15 and a 55% increased transmissibility. The detailed inference procedure
and individual posterior distributions for different time series are reported in Sec. 3 of the SI. Additional
evidence of the timely situational awareness capacities provided by a global WWSN is presented in the SI
Sec. 3 with the hypothetical scenario where a global WWSN would have been operational at the time of
the emergence of SARS-CoV-2 in Wuhan.

Discussion

The modeling framework we have presented offers a systematic analysis of global wastewater surveillance
networks (WWSNs) at airports, their potential to characterize the international spread of diseases, and
their capability to provide timely insights about an unfolding epidemic. Our findings demonstrate the
significant role of WWSNs in shortening the time to first detection of pathogens, overcoming some of the
challenges faced with standard symptoms-based passenger screening across regions [35]. It is important
to emphasize that gaining even a few additional days of situational awareness regarding the introduction
of a pathogen can be crucial in effectively controlling an outbreak. Moreover, in scenarios like the one we
analyzed for the B.1.1.7 SARS-CoV-2 variant, the sentinel system could also be utilized for retrospective
data assessment. This analysis can help establish the date of pathogen introduction and the potential
geographical spread, enabling the optimization of travel restrictions and border screening policies. While
these measures are costly, they are frequently implemented too narrowly or too late, diminishing their
effectiveness. Wastewater Surveillance Networks (WWSNs) are ideally positioned to provide timely and
precise surveillance data, enabling more effective public health responses. Finally, our framework allows
the identification of the potential blind spots of each WWSN, paving the way to the integration of com-
plementary surveillance methods, such as environmental wastewater monitoring in communities to cover
gaps and enhance the network’s overall efficacy [36].

The strategies and optimization experiments conducted here were designed to demonstrate the capabili-
ties of a WWSN rather than tailor them to a specific disease or outbreak. Future studies should therefore
broaden the application of the modeling framework by integrating knowledge and experience developed
for the surveillance of specific pathogens like arboviruses and influenza [37, 38] for instance. Additionally,
incorporating factors influencing zoonotic spillovers—shaped by socioeconomic, environmental, and ecolog-
ical dynamics—will enhance our understanding of emerging diseases and our predictive capabilities [39–
42].

Future modeling work should also integrate the specific logistic capabilities of the WWSN with a thor-
ough exploration of operational implementation such as rotating testing schedules and cadence across
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different sentinel sites in order to navigate logistical constraints. In other words, the modeling framework
should be implemented alongside the actual deployment of the surveillance system, considering the practi-
calities and challenges of on-site operations. One such practical consideration highlighted by our study is
the implementation of targeted and adaptive strategies that would not only improve pathogen screening
efficiency but also ensure resource-efficient network operation.

Like all modeling studies, our analysis contains assumptions and limitations that must be clearly iden-
tified. Our approach considers air travel as an independent process for each individual and thus neglects
clusters and household travel. On a more technical side, the analytics developed in this study rely on
a multitype branching process, which neglects saturation effects from finite population sizes. Although
these effects are minor and do not alter our conclusions at the early stage of an outbreak, they should
be carefully considered when analyzing the performance of the WWSN for the inference of incidence and
prevalence of large epidemics or endemic situations. The modeling framework also does not consider false
positive test results and the occurrence of positive tests caused by wastewater tanks not being cleaned
in between flights [21]. While this should not impact substantially our analysis of the time to first detec-
tion, it could affect the situational awareness capabilities of the WWSN. Therefore, future analysis should
incorporate the prior probability of a pathogen circulating in the statistical model, along with the test
specificity and the possibility of wastewater tank contamination between flights. This will be important
for decision-making, especially if rare but very high-consequence pathogens are detected.

Taking into account these limitations, our study offers critical insights for analyzing wastewater surveil-
lance at airports, providing a robust computational platform for informed public health decision-making.
The quantitative insight provided by our approach holds significant implications for a range of stakehold-
ers in public health, policies, and global health security. Furthermore, although our study focuses on
airport wastewater surveillance, the proposed modeling framework can be adapted to environmental mon-
itoring and other travel-based surveillance methods, such as nasal swab testing, thereby providing a full
computational framework for the analysis of genomic, travel-based disease surveillance systems.

Methods

The Global Epidemic and Mobility model. The Global Epidemic and Mobility model (GLEAM) is
a computational platform used for modeling epidemic spread, combining stochastic elements and spatial
data in an age-structured, metapopulation framework [23–25]. GLEAM divides the world into distinct
geographic subpopulations using a Voronoi tessellation of the Earth’s surface, with each subpopulation
centered around major transportation hubs such as airports. These subpopulations are detailed with
high-resolution data about population demographics, age-specific contact patterns, health infrastructure,
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Table 1: Range of disease parameters explored in the main text and SI compared with estimates for the early
transmission of SARS-CoV-2 (wild strain). †Estimates combine mean generation time and serial interval.

Parameter Range considered SARS-CoV-2 (wild strain) References

Reproduction number [1.5, 3] [2, 3.5] [43–46]
Mean generation time [4, 36] days [4, 7.5] days† [44, 47]
Mean detectable period [7.7, 22.7] days [7, 22] days [6, 29, 30]

and other relevant attributes based on available data. GLEAM incorporates a human mobility layer into
its modeling, using data from various sources, including the Official Aviation Guide (OAG) and IATA
databases. This layer includes both short-range (e.g., commuting) and long-range (e.g., flights) mobility
data, and creates a network of daily passenger flows between airports worldwide. The model uses a
worldwide homogeneous standard for commuting and compensates for missing information with synthetic
data based on the “gravity law” calibrated with real data [23, 25].

GLEAM tracks the number of individuals in each disease state for all subpopulations over time. It
simulates travelers’ movements through the flight network, with air travel probabilities varying by age
group. Finally, the disease dynamics and the detection process at airports within GLEAM are simulated
using stochastic binomial chain processes. These processes rely on parameter values sourced from existing
literature, defining the natural history of the infection being modeled. We refer to this implementation as
the mechanistic GLEAM approach. See Sec. 1 of the SI for a more technical description of the model. All
our analyses make use of a global air-travel network capturing the period of September 2022 to August
2023, except the case studies on the emergence of COVID-19 and the SARS-CoV-2 Alpha variant where
we use data from December 2018 to February 20191 and September to November 2020 respectively.

Disease progression and transmission dynamics. To model the disease transmission within the
subpopulations and the detections at airports following air travel, we make use of a standard compart-
mentalization scheme for the disease progression. Each individual, at any time point, is assigned to a
compartment corresponding to their particular disease-related state. An individual who gets infected will
go through the following sequence of states: susceptible (S; pre-exposure), latent (L; exposed, but do
not yet transmit the infectious pathogen), infectious (I; can transmit the disease), post-infectious (P; no
longer infectious), and recovered (R). In our model, we assume that only infectious and post-infectious can
be detected through wastewater, which we regroup under the detectable (D) state. The inclusion of the
post-infectious state in our model is necessary because diseases such as COVID-19 remain detectable in
wastewater well beyond the active infectious period. [6, 29, 30].

The contagion dynamics in each location is strongly influenced by the basic reproduction number R0—
1These were the available air-travel networks at the beginning of the COVID-19 pandemic, and the one that was used to generate

stochastic simulations from GLEAM at the time.
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the average number of secondary infections caused by an infectious individual in a fully healthy population.
In our model, the reproduction number R0 varies slightly from one subpopulation to another, since it is
proportional to the largest eigenvalue of the age-structured contact matrices [48]. Another driver of the
disease dynamics is the mean generation time Tgen, i.e., the average time between the exposures of an
infector-infectee pair. It is a function of the mean latent period Tlat and the mean infectious period Tinf .
Since the period an individual spends in a certain compartment is typically not exponentially distributed [49,
50], we add realism to our model by further decomposing the infectious states in two substates, namely
I1 and I2. The resulting infectious period is then gamma-distributed. Because of these two substates, the
mean generation time Tgen in our model is [50]

Tgen = Tlat +
3

4
Tinf . (4)

The detection process on the other hand will depend on the detectable period of the disease, Tdet, which
corresponds to Tdet = Tinf+Tpost, where Tpost is the mean post-infectious period. Similarly to the infectious
state, we decompose the post-infectious state in two substates, namely P1 and P2, but this does not affect
the expression for Tdet. In Table 1, we provide the parameters’ ranges considered in this study and compare
them with estimated ranges of SARS-CoV-2. Finally, another key characteristic of the disease dynamic
is the doubling time T2. For the specific compartmental model considered here, it can obtained from the
following implicit nonlinear equation [49] relating R0 to the growth rate λ:

R0 =
λTinf (1 + λTlat)[
1−

(
1 + λTinf

2

)−2
] . (5)

We solve this equation for λ, then we have T2 = ln 2/λ.

Aircraft wastewater detection. In our model, a detectable individual passing through a sentinel site
is detected with a probability pdet that depends on several factors, including the cadence and sampling
of airport wastewater surveillance, the duration of the flight, the diverse sociodemographic profiles of the
passengers [16], etc. In our analysis, we assume that on average, the detection probability pdet is uniform
across all inbound international flights arriving at any given sentinel site. To provide a rationale for the
spectrum of detection rates examined in this study, we break down the probability into the following
components pdet = plav × pshed × psample where plav represents the likelihood that an individual will utilize
the lavatory and consequently deposit detectable genetic traces of the pathogen in the wastewater, pshed
denotes the probability that a detectable individual is actively shedding the pathogen at levels sufficient for
detection in the wastewater, and psample refers to the proportion of flights that are subjected to sampling
at the sentinel airport.

The proportion of adult passengers defecating on flights, critical for estimating plav, is surveyed to be less

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 4, 2024. ; https://doi.org/10.1101/2024.08.02.24311418doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.02.24311418
http://creativecommons.org/licenses/by/4.0/


St-Onge et al. 15

than 13% on short-haul and less than 36% on long-haul flights [16]. Further, pshed, the probability of de-
tectable pathogen shedding in fecal matter, ranges between 30% and 60% for SARS-CoV-2 [16]. Assuming
that all international flights undergo sampling (psample = 100%), the resulting detection probability (pdet)
is calculated to be between 12% and 22%, corresponding to a detection rate of about 16% on long-haul
flights. This estimate is possibly a large underestimation for viruses like SARS-CoV-2, as individuals can
leave genetic material in the wastewater without defecating [51], such as by disposing of a used tissue or
spitting in the toilet. Indeed, previous studies [21] have shown an 83.7% accuracy in detecting COVID-
19 on repatriation flights using wastewater analysis. Translating this value to an individual’s marginal
detection probability (pdet) is complex, as the number of COVID-19 cases per flight varied significantly,
averaging 4.62 cases. Accounting for false-positive wastewater results, assuming each case had an equal
probability to be detected, and a flat prior on pdet, we find a median marginal detection rate of 51% (90%
CI, 28–72). However, this value could be inflated, notably due to the persistent nature of fecal RNA
shedding compared to respiratory shedding [52]. Given the varying estimates discussed earlier, we explore
detection rates up to 32%. However, acknowledging that not all international flights are long-haul and
that only a fraction (e.g., 25%) of flights might be sampled, pdet could be as low as 4%. Our sensitivity
analysis presents findings across this full spectrum of pdet.

Probability generating function analytics. The mechanistic GLEAM model employs large-scale
stochastic simulations, which are computationally intensive. To streamline our analysis, for most of the
results in this paper, we utilize probability generating functions (PGFs) to efficiently extract the required
analytic information from the data and model. PGFs are a standard tool in mathematical epidemiology [53,
54], and have found many applications, including the quantitative analysis of the risk of introduction of
diseases [55–58].

PGFs are useful to count elements. Here we are counting individuals based on certain properties: their
age, their location, and their epidemiological state. We define sσ as the number of individuals of type σ.
For instance, sσ could represent the current number of latent individuals in a given location and a certain
age, or the cumulative number of individuals of a certain age that have been detected on a particular travel
route. We use the vector s to encapsulate all these numbers.

To capture the full stochastic evolution of the system, we need to characterize the probability distribution
P (s, t). We encode this distribution with a multivariate PGF

Ψt(x) =
∑
s

P (s, t)
∏
σ

xsσσ , (6)

where the sum (product) runs over all possible values of s (σ) and each xσ is a variable that acts as a
placeholder—it does not mean anything and only serve to encode the probability distribution. The vector
x encapsulates all these variables.
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In the early stage, a structured metapopulation epidemic model like GLEAM can be described by a
multitype branching process [59], in which case we can solve the PGF through the recursive equation

Ψt+1(x) = Ψt[F (x)] , (7)

where F (x) is a vector of PGFs and each element Fσ(x) is itself a PGF that characterizes the offspring
distribution of an individual of type σ. For instance, the offspring distribution of an individual in the I1
state would give the probability that this individual generates a certain number of new latent individuals
of each type through infections at the next time steps and the probability that this individual transitions
to the I2 state. Computing the full distribution P (s, t) is generally out of reach—the number of terms
explodes combinatorially. However, computing marginal or joint distributions for a few observables, like
the total number of individuals in a particular state or the cumulative number of detections, is possible
(see SI Sec. 1).

Altogether, the recursive evaluation of PGFs and their numerical inversion to recover probability dis-
tributions represents a very efficient computational alternative to Monte-Carlo simulations of GLEAM.
Most notably, scanning different initial conditions is computationally cheap, since in Eq. (7), the PGF
Ψ0(x) specifying the initial conditions is evaluated at the end of the recursion. This crucially allows us
to extract distributions of observables, like the time to first detection, assuming the epidemic could have
started from any of the 3200+ subpopulations of our model, a task that would be prohibitive with a purely
simulation-based framework. See Sec. 1 of the SI for an in-depth description and characterization of the
PGF methodology.

WWSN optimization algorithms. The heuristic optimization of global WWSNs selects sentinel sites
based on their rankings according to the following measures. Let Nl→ν be the number of individuals
per day who will travel and arrive at airport ν on an international flight, either as a final destination or
for a connection. The flows of international passengers generate a weighted bipartite network connecting
international airports ν to subpopulations l. We can therefore rank airports based on their volume of
international travel,

cvolν =
∑
l

Nl→ν . (8)

A second ranking measure is based on each airport traffic entropy, defined as:

centν = −
∑
l

(
Nl→ν∑
l′ Nl′→ν

)
log

(
Nl→ν∑
l′ Nl′→ν

)
. (9)

This expression is also known as Shannon’s diversity index. This measure favors airports with a broad and
homogeneous coverage of the different subpopulations.
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A more refined optimization algorithm aims at minimizing the mean time to first detection of an epidemic,
averaged over all potential origins. We can assign an arbitrary prior probability P (l) for location l to be
the origin of an epidemic, resulting in the following objective function

Φ(S) ≡ Tfd(S) =
∑
l

P (l)Tfd(S, l) , (10)

where Tfd(S, l) is the mean time to first detection, assuming the epidemic started in subpopulation l and
that the WWSN consists of the set of sentinel airports S. This corresponds to the posterior mean of
Tfd over all locations, which is proportional to E(S), the excess time to first detection. For the global
optimization, we use P (l) = const. ∀l, i.e., all subpopulations are equiprobable source. For the targeted
optimization, we use P (l) = const. for the locations in the targeted region and P (l) = 0 otherwise.

We conjecture that −Φ(S) is a monotone submodular set function [60]. We proved this statement in Sec. 2
of the SI for a very accurate approximation of −Φ(S), but the exact case remains to be proven. Monotone
submodular functions have desirable properties when it comes to discrete optimization problems. While
minimizing Φ(S) (equivalently maximizing −Φ(S)) is an NP-hard problem, we have a guarantee on the
performance of a greedy optimization algorithm—there exists an upper bound on the value of Φ(S) obtained
through this approach [60]. Most importantly, it is known that in practice, a greedy algorithm will find a
solution that is very close to the optimal one. Consequently, to minimize the objection function Eq. (10),
we use the following greedy optimization scheme:

1. define an initial set S (can be empty);

2. for each airport ν /∈ S, compute Φ(S ∪ {ν});

3. update the set S ← S ∪ {ν⋆}, where ν⋆ is the sentinel airport that minimizes the objective function;

4. repeat steps 2-3 until a desired number of sentinels is reached.

The ‘greedy’ name comes from the fact that we are successively choosing a locally optimal choice at each
stage of the algorithm (here in step 3).

Data and materials availability

Proprietary airline data are commercially available from the Official Aviation Guide (https://www.oag.com/)
and International Air Transport Association (https://www.iata.org/) databases. The mechanistic GLEAM
model is publicly available at http://www.gleamviz.org/.
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