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ABSTRACT

Study Objectives. To investigate whether a foundational transformer model using 8-hour, multi-
channel data from polysomnograms can outperform existing artificial intelligence (AI) methods for
sleep stage classification.

Methods. We utilized the Sleep Heart Health Study (SHHS) visits 1 and 2 for training and validation
and the Multi-Ethnic Study of Atherosclerosis (MESA) for testing of our model. We trained a self-
supervised foundational transformer (called PFTSleep) that encodes 8-hour long sleep studies at
125 Hz with 7 signals including brain, movement, cardiac, oxygen, and respiratory channels. These
encodings are used as input for training of an additional model to classify sleep stages, without
adjusting the weights of the foundational transformer. We compared our results to existing AI
methods that did not utilize 8-hour data or the full set of signals but did report evaluation metrics for
the SHHS dataset.

Results. We trained and validated a model with 8,444 sleep studies with 7 signals including brain,
movement, cardiac, oxygen, and respiratory channels and tested on an additional 2,055 studies. In
total, we trained and tested 587,944 hours of sleep study signal data. Area under the precision recall
curve (AUPRC) scores were 0.82, 0.40, 0.53, 0.75, and 0.82 and area under the receiving operating
characteristics curve (AUROC) scores were 0.99, 0.95, 0.96, 0.98, and 0.99 for wake, N1, N2, N3,
and REM, respectively, on the SHHS validation set. For MESA, the AUPRC scores were 0.56, 0.16,
0.40, 0.45, and 0.65 and AUROC scores were 0.94, 0.77, 0.87, 0.91, and 0.96, respectively. Our
model was compared to the longest context window state-of-the-art model and showed increases in
macro evaluation scores, notably sensitivity (3.7% increase) and multi-class REM (3.39% increase)
and wake (0.97% increase) F1 scores.

Conclusions. Utilizing full night, multi-channel PSG data encodings derived from a foundational
transformer improve sleep stage classification over existing methods.

1 Introduction

Sleep deprivation and disorders are a public health epidemic affecting about 30% of the US population, yet only 5%
have been properly diagnosed [1, 2]. These conditions disrupt daily activities, mental health, and longevity, contributing
to major health issues such as cardiovascular disease, cancer, diabetes, and hypertension [3, 4]. Economic and social
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factors, as well as climate change, are worsening sleep conditions globally [5, 6]. Thus, there is an urgent need for tools
for accurate sleep staging, event detection, and long-term monitoring to improve diagnosis and sleep habits.

Polysomnography (PSG) is the standard method for diagnosing sleep disorders. Physiological signal data, including
electroencephalogram (EEG), electrooculogram (EOG), electrocardiogram (ECG), and electromyogram (EMG) are
collected during a sleep study, in addition to vital signs such as respiration rate and oxygen saturation [7]. These signals
are manually annotated and reviewed by a clinician where they identify sleep stages [8]. The manual annotation and
review process is time and resource intensive and may limit scalability [8–10].

PSG, in addition to at home sleep studies and wearable devices, all generate high frequency physiological signal data
that would benefit from a harmonized approach to the interpretation of these signals during sleep [11]. State-of-the-art
AI algorithms, such as the transformer architecture [12], could provide a tool for the assessment and annotation of sleep
signals throughout the night. Here, we focus on building a standardized approach to encode PSG data and as proof of
concept, use the encodings to predict sleep stages.

Previous work has primarily concerned using machine learning models for specific tasks with PSG data, especially the
supervised classification of sleep stages with good accuracy [13–27]. Other machine learning methods have used PSG
data to predict sleep related events, such as respiratory and cardiac events [28–34]. For sleep staging, these models
have limitations. First, models only utilize EEG, EOG, and/or EMG. While these signal channels may be adequate
for sleep stage classification, they limit the ability of the models to be transferred to other sleep tasks (via fine tuning,
probing, few shot, or zero shot learning approaches). Further, these models typically are trained on time-frequency
images generated from time series signal data in thirty second epochs (sleep stages are labeled every thirty seconds,
per American Academy of Sleep Medicine guidelines [7], also known as a “sleep epoch”). This limits automated
full night sleep staging using a particular model because for every channel, each sleep epoch of signal data must be
processed to generate a time-frequency image and passed through the model, increasing inference time. Lastly, most
recent state-of-the-art sleep stage classification models do not learn long term dependencies between sleep epochs
throughout an entire night’s sleep. The longest context window in a state-of-the-art model is 90 minutes [17] while
others typically only utilize 30 seconds of sleep data.

Advances in time series machine learning have focused recently on self-supervised, representation learning using the
transformer architecture [35–38] to develop foundation models in various time series classification and forecasting
tasks. Generally, these models use low frequency data, primarily < 1 Hz, limiting their fine-tuning ability to high
frequency sleep datasets. Traditionally, the transformer architecture, the backbone behind large language models, has
not performed well for time series tasks [39]. However, recent advances in the transformer for time series, specifically
patch time series transformer (PatchTST), time frequency consistency (TFC), and MedFormer, have made the case for
utilizing the transformer in time series forecasting and classification tasks [40–42]. In the sleep domain, a foundational
transformer model trained with PSG data could assist with a variety of tasks in the clinic, including automating
annotations and predicting health outcomes, which would save clinicians time, reduce variability in manual scoring, and
help scalability by enabling treatment of more people [10]. Further, models trained on PSG data via self-supervision
could be transferred to predict multiple outcomes [43, 44].

In this work, we present a novel 8-hour, multichannel patch foundational transformer (PFTSleep) trained via masked
autoregression and based on the PatchTST architecture [40]. We utilize the Sleep Heart Health Study (SHHS) [45, 46]
and the Multi-Ethnic Study of Atherosclerosis (MESA) [46, 47] PSG dataset for training, validation, and testing of our
model. In total, our model was trained with 587,944 hours of sleep study signal data. It is state-of-the-art in sleep stage
classification and the first to effectively encode an entire night’s sleep data.

2 Methods

This work used deidentified, retrospective PSG data collected from multicenter cohort studies and made available
through the National Sleep Research Resource (NSRR) [48]. Data access was approved for use by the NSRR.

2.1 Datasets

We trained PFTSleep on 8,444 sleep studies acquired from the SHHS [45, 46] visit 1 PSG dataset collected from
1995-1998 (n=5,793) and SHHS visit 2 PSG dataset collected from 2001-2003 (n=2,651). The MESA [46, 47] PSG
dataset collected from 2010-2012 (n=2,055) was used as an independent test set. All studies were type II, unattended at
home sleep studies.
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2.2 Data Extraction and Preprocessing

We extracted signal channels from EDF files and stored them in zarr [49] format for more performant data loading.
Specifically, the C4-M1 EEG (125 Hz), left EOG (50Hz), EMG (125 Hz), ECG (visit 1: 125 Hz, visit 2: 250 Hz), SpO2
(1 Hz), thorax respiration (10 Hz), and abdomen respiration (10 Hz) were extracted from SHHS visit 1 and SHHS visit
2. Hypnograms indicating REM and NREM (wake, N1, N2, N3) sleep were labeled for each 30 seconds of sleep data
following American Academy of Sleep Medicine guidelines [7]. 30 second epochs that were labeled as unknown were
ignored during training. Sleep stage 4 was truncated into stage 3. Similarly, channels were extracted from the MESA
study including the C4-M1 EEG (256 Hz), Left EOG (256 Hz), EMG (256 Hz), ECG (256 Hz), SpO2 (1 Hz), thorax
respiration (32 Hz), and abdomen respiration (32 Hz). Again, hypnograms were extracted, and unknown 30 second
epochs were ignored during testing. Sleep studies were trimmed to 8 hours or extended to 8 hours with zero padding.
All channels were resampled to 125 Hz. No additional preprocessing was performed. After resampling and padding,
the length of an input sample into our model was 7x3.6 million.

2.3 Input Data Preparation

Each 8-hour sleep study after resampling was normalized via a learned reversible instance normalization layer [50]
(sample-channel wise unit variance scaling with a learnable affine parameter) and patched into 6 second patches,
effectively creating a 3D tensor with 7 channels (like an image with 3 RGB channels). Each channel’s patches were
then passed through an individual linear layer to embed the 6 second patches into a vector of size 512 for input into the
transformer encoder architecture. The input into the transformer is a 3D tensor of shape 7x4800x512.

2.4 Model Architecture

The overall approach and architecture are shown in Figure 1. De novo code was developed for the purpose of this
task and used concepts from the original PatchTST implementation [40]. The transformer architecture was chosen as
the encoder for its ability to learn relationships across sequence data, due to its attention mechanism and parallelized
framework [12]. PatchTST performs better than the original transformer for time series tasks by patching channel
inputs into intervals of time, as previously described. Patches, or intervals, of time series data (vs single time points) are
more meaningful representations to encode because timepoints are meaningful in relation to nearby timepoints. We
patched channel data into 6 second segments to better identify specific sleep events; in comparison, previous encoders
capture 30 second segments for labeling sleep stages. Thus, our architecture learns the relationship among channel
patches, and its encodings can be adapted for downstream diagnostic and prediction tasks. Additionally, the encoder
included a key padding mask in the attention mechanism to focus on relevant parts of the input (for example, sleep
studies less than 8 hours would be padded to 8 hours, but the padded values would be ignored in attention). This allows
for translatability to varying length sleep studies and sleep studies without all 7 channels that the original model was
trained on. This differs from the original PatchTST architecture, which used far shorter patch and sequence lengths, a
different masking strategy, and no key padding mask in attention. For sleep stage classification of each 6 second patch,
a bidirectional gated recurrent unit (GRU) was used. Bidirectional GRUs do not suffer from the vanishing gradient
problem like traditional recurrent neural networks and are less complex than long short-term memory networks. Model
architecture and training were performed using PyTorch and Lightning. See supplementary methods and Supplementary
Figure 1 for training details.

2.5 Statistical Analysis and Evaluation

Model performance was evaluated with macro accuracy, sensitivity, specificity, F1 scores, and Cohen’s Kappa for
comparison to other models on the full training and validation, validation only, and testing only datasets. Comparisons
to other models are not direct, as training and validation sets differ. Sleep stage classification is inherently an imbalanced
classification problem, and metrics reported should account for this [51]. Therefore, we include area under the precision
recall curves (AUPRC) to examine precision and recall over multiple decision thresholds. Additionally, area under the
receiver operating characteristics curves (AUROC) and confusion matrices are reported for the validation and test sets.

3 Results

PFTSleep is a foundational transformer trained and tested with 587,944 hours of sleep study data. Demographics of the
studies, training, and validation sets are presented in Table 1. The median age for the training, validation, and testing
were 65, 66, and 68 years, respectively. The age range of the MESA dataset was 54-94 years, while it was 39-90 for
SHHS. Stage 1 sleep was the lowest proportion of sleep across all data sets. Wake and stage 1 sleep in MESA were
notably increased in comparison to the SHHS training and validation sets, while stage 3 had the opposite effect.

3

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 5, 2024. ; https://doi.org/10.1101/2024.08.02.24311417doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.02.24311417
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1: Model architecture overview. A patched (6 seconds) based self-supervised transformer model learns
representations of EEG, EOG(L), EMG, ECG, SpO2, abdomen RR, and thoracic RR signals. Following, probing heads
are trained to predict outcomes in sleep.

Figure 2: Reconstructed channels for 10 second patch of signal data after training foundational transformer model.
Recreated values are in black.

4

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 5, 2024. ; https://doi.org/10.1101/2024.08.02.24311417doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.02.24311417
http://creativecommons.org/licenses/by-nc/4.0/


n Median Age
(IQR)

Self-Reported
Gender,
% Female

Wake N1 N2 N3 REM

SHHS Visit 1 5793 63 (55-72) 52.4% 27.2% 3.7% 41.8% 13.3% 14.1%
SHHS Visit 2 2651 68 (61-77) 54.5% 30.4% 3.6% 40.2% 11.9% 13.9%
MESA 2055 68 (62-76) 53.6% 35.2% 8.5% 37.8% 7.2% 11.2%
SHHS Training Set 6741 65 (57-74) 53.2% 28.2% 3.7% 41.2% 12.9% 13.9%
SHHS Validation Set 1703 66 (57-74) 53.4% 28.2% 3.7% 41.5% 12.5% 14.1%

Table 1: Demographics and sleep stage proportions of SHHS visits 1 and 2, MESA, and SHHS training and validation
sets.

Overall Performance Class Wise F1
Model Acc K MF1 Sens Spec Wake NI N2 N3 REM
PFTSleep (SHHS full) 87.70 0.83 80.80 82.30 96.70 93.30 48.60 87.80 82.70 91.50
PFTSleep (SHHS val) 85.77 0.80 0.79 80.25 96.22 92.50 45.87 85.90 78.61 90.09
L-SeqSleepNet [17] 87.60 0.83 80.30 79.40 96.50 92.40 48.60 88.20 83.90 88.50
SeqSleepNet [19] 87.20 0.82 80.20 78.70 96.30 91.80 49.10 88.20 83.50 88.20
SleepTransformer [22] 87.70 0.83 80.10 78.70 96.50 92.20 46.10 88.30 85.20 88.60
XSleepNet1 [27] 87.60 0.83 80.70 79.70 96.50 91.60 51.40 88.50 85.00 88.40
XSleepNet2 [27] 87.50 0.83 81.00 80.40 96.50 92.00 49.90 88.30 85.00 88.20
U-Sleep [23] - - 80.00 - - 93.00 51.00 87.00 76.00 92.00
Olesen et al. [25] 87.10 0.82 78.80 77.70 96.30 94.10 47.80 87.90 74.30 89.90
CNN [13] 86.80 0.81 78.50 - 95.00 - - - - -
FCNN+RNN [27] 86.70 0.81 79.50 78.10 96.20 91.10 48.70 88.00 82.60 87.10
IITNet [16] 86.70 0.81 79.80 - - - - - - -
AttnSleep [26] 84.20 0.78 75.30 - - 86.70 33.20 87.10 87.10 82.10

Table 2: Sleep stage evaluation metrics in comparison to state of the art models on SHHS, the full dataset, and the 20%
validation set. Table adapted from Phan et al. [17]. Note that SHHS sets may not be identical, and we compared to the
full SHHS dataset. Bold indicates best performance.

The best encoder model had the lowest validation MSE loss on epoch 28. While it is hard to assess whether an encoder
effectively captures signal data without testing encodings on downstream tasks, recreations of a 10 second sample of
signal data are shown in Figure 2. Recreated signals are smoothed out in comparison to the originals. For sleep stage
classification, numerous probing heads were explored, including multi-layer perceptron, transformer decoders, and
convolutional heads. It was found that a bidirectional GRU performed the best on the sleep stage classification task.

3.1 Sleep Stage Classification Results

Overall, the AUPRC scores for wake, N1, N2, N3, and REM sleep on the SHHS validation set (the 20% not used
in training) were 0.70, 0.40, 0.53, 0.75, and 0.82, respectively. Compared to the proportions of the classes in the
training dataset in Table 1, the model can effectively identify instances of the positive class better than a random
model. In comparison to other models, PFTSleep is state-of-the-art and performs consistently high across the 5 sleep
stages for the SHHS validation set and full SHHS dataset. Table 2 shows the performance of PFTSleep in relation to
other models trained on SHHS. We compared our model to the current longest context window, state-of-the-art model:
L-SeqSleepNet [17]. While L-SeqSleepNet did not report AUPRC scores, our model showed marked increases in
macro sensitivity (3.65% increase), and REM (3.39% increase) and wake (0.97% increase) F1 scores and was matched
across other macro evaluation scores. AUROC scores were 0.99, 0.95, 0.96, 0.98, and 0.99 for wake, N1, N2, N3, REM,
respectively and displayed in Table 3. Confusion matrices for the SHHS validation set are reported in Figure 3.

3.2 External Testing Results

The MESA dataset was evaluated using identical metrics and reported in Table 4. Overall, the AUPRC scores for MESA
were 0.56, 0.16, 0.40, 0.45, and 0.65 for wake, N1, N2, N3, REM, respectively. AUROC scores were 0.94, 0.77, 0.87,
0.91, and 0.96 and reported in Table 3 and Figure 3. Confusion matrices are illustrated in Figure 3.
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Average Class wise AUROC Class wise AUPRC
AUROC AUPRC Wake N1 N2 N3 REM Wake N1 N2 N3 REM

PFTSleep
(SHHS val) 0.97 0.66 0.99 0.95 0.96 0.98 0.99 0.82 0.40 0.53 0.75 0.82

PFTSleep
(MESA) 0.89 0.44 0.94 0.77 0.87 0.91 0.96 0.56 0.16 0.40 0.45 0.65

Table 3: AUROC and AUPRC scores for the SHHS validation set and MESA test sets.

Overall Performance Class Wise F1
Acc K MF1 Sens Spec Wake NI N2 N3 REM

PFTSleep 69.57 0.56 56.97 57.27 91.50 80.43 26.19 73.70 37.51 67.02
Table 4: Sleep stage evaluation metrics on the external testing set, MESA.

Figure 3: Multi class precision recall (PR) curve (first column), row normalized confusion matrix (2nd column), and
multi class receiver operating characteristic (ROC) curve (third column) for sleep stage classification on 20% SHHS
validation set (first row) and MESA (second row). Acronyms: FPR = false positive rate, PPV = positive predictive
value, TPR = true positive rate. Confusion matrices keys: 0 = wake, 1 = N1, 2 = N2, 3 = N3, 4 = REM sleep.
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4 Discussion and Conclusion

We present a novel foundational transformer, PFTSleep, that predicts sleep stages with state-of-the-art performance. It
is the first PSG based model to input an entire night’s sleep - 8 hours of sleep signal data including brain, movement,
cardiac, oxygen, and respiratory channels. The supervised probing head can effectively predict sleep stages for the
entire night from the encodings of the foundational transformer with a single step. Performance was state-of-the-art
for the SHHS validation set. While performance decreased on the MESA dataset, we hypothesize that age differences
particularly in N3 (deep sleep) could be a contributing factor, and additional training data could improve performance.

To date, only one sleep stage classification model has used a transformer architecture, SleepTransformer, but the input
is a time-frequency image of a 30 second segment of EEG, EOG, and/or EMG signal data, and its primary purpose is
to predict sleep stages [22]. For a single 8-hour sleep study, this would require 960 inference steps, in addition to the
preprocessing required to generate spectrogram images for each channel used in the model. PFTSleep can annotate a
full sleep study with one inference step and minimal preprocessing (resampling, instance normalization, and patching).
Another study, SleepFM [43], built a novel foundational convolutional encoder and showed good performance on sleep
stage classification and sleep disordered breathing across multiple brain, cardiac, and respiratory channels. Again, the
input to the model was 30 seconds worth of sleep data, potentially limiting the model’s ability to capture specific sleep
dynamics throughout the night. Their encoder learned relationships via a contrastive loss function among 30 second
embeddings of brain, cardiac, and respiratory channels. During training, brain, cardiac, and respiratory channels were
separated into their own respective encoders and embeddings are compared pairwise and via a leave one out method.
They assessed the model on an internal test set and external test set of 100 samples from the Physionet Computing in
Cardiology 2018 challenge [52]. They did not validate their model on a larger, NSRR dataset for comparison. Finally,
Ogg et al. built a foundational convolutional transformer using EEG signals and a sequence length of about 1 hour,
demonstrating the utility of self-supervised models over fully supervised models and the encoder’s ability to translate to
downstream tasks, such as sleep stage and brain age prediction. Again, this model only used EEG data and did not
model the entire night’s sleep [44]. While they did utilize NSRR sleep studies, evaluation metrics were not reported for
specific tasks, limiting comparison.

PFTSleep addresses several limitations in these studies, notably the ability to encode a full night of sleep that effectively
learns relationships among and within channels throughout the night. Additionally, patching channels into 6 second
segments could capture more specific sleep events in comparison to encoders that model 30 second segments (which is
traditionally used for labeling sleep stages). Clinically, PFTSleep could assist with annotations of sleep studies, with
only a single forward pass through the model (as opposed to other models, which require inputting each 30 second
sleep epoch). The GRU head also can be fine-tuned to an individual laboratory’s PSG data or outcomes of interest to
the laboratory beyond sleep staging. From an industry perspective, a foundational model integrated into consumer
wearables like PFTSleep could better evaluate and standardize sleep health metrics across different wearables, allowing
for more transparency into how the metrics were developed and their use in research.

Our work has limitations. First, the foundational transformer encoder was trained via masked autoregression, a common
training technique in imaging and more recently in time series. Evaluating the performance of masked autoregressive
training is difficult, without further training on multiple downstream tasks. Visualizing recreated encodings should be
interpreted cautiously as they are recreated through a single linear layer. Second, we trained on datasets that were at
home sleep studies and did not use clinical PSG data. The NSRR has many clinical PSG datasets that can be further used
for training the foundational transformer model and the GRU head. We are actively working on expanding the dataset
size and testing on specific populations to ensure the model is robust. Third, we did not train and test additional heads
for downstream tasks other than sleep stage classification, but this model has the potential to enable alternative tasks in
sleep. Future studies could include training heads for other sleep outcomes including cardiovascular risk prediction or
daytime sleepiness, among others. Finally, the novel architecture we utilized does not allow for explainability. However,
recent advancements in time series explainable AI [53] and attention-based relevance propagation for transformers [54]
could provide valuable insights into the specific characteristics of PSG signal data that are related to the outcome.

In summary, we developed and validated a novel foundational transformer that utilizes full night, multichannel data
to accurately classify sleep stages. We envision this approach could unlock the potential of full night sleep data for a
variety of biomedical research and clinical applications.
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