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Abstract 

Introduction: The analysis tools and statistical methods used in large neuroimaging 

research studies differ from those applied in clinical contexts, making it unclear 

whether these techniques can be translated to a memory clinic setting. The Oxford 

Brain Health Clinic (OBHC) was established in 2020 to bridge this gap between 

research studies and memory clinics.  

Methods: We optimised the UK Biobank imaging framework for the memory clinic 

setting by integrating enhanced quality control (QC) processes (MRIQC, QUAD, and 

DSE decomposition) and supplementary dementia-informed analyses (lobar 

volumes, NBM volumes, WMH classification, PSMD, cortical diffusion MRI metrics, 

and tract volumes) into the analysis pipeline. We explored associations between 

resultant imaging-derived phenotypes (IDPs) and clinical phenotypes in the OBHC 

patient population (N=213), applying hierarchical FDR correction to account for 

multiple testing.  

Results: 14-24% of scans were flagged by automated QC tools, but upon visual 

inspection, only 0-2.4% of outputs were excluded. The pipeline successfully 

generated 5683 IDPs aligned with UK Biobank and 110 IDPs targeted towards 

dementia-related changes. We replicated established associations and found novel 

associations between brain metrics and age, cognition, and dementia-related 

diagnoses.  

Conclusion: The imaging protocol is feasible, acceptable, and yields high-quality 

data that is usable for both clinical and research purposes. We validated the use of 

this methodology in a real-world memory clinic population, which demonstrates the 

potential of this enhanced pipeline to bridge the gap between big data studies and 

clinical settings.  
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Key Points 

1. The imaging methods, analysis techniques, and population characteristics in 

research studies often differ to those in traditional clinical settings.   

2. To bridge this gap, we optimised the UK Biobank imaging framework for memory 

clinic use by integrating enhanced quality control (QC) and supplementary 

analyses targeted towards dementia-related changes.  

3. We generated 5683 imaging-derived phenotypes (IDPs) aligned with UK Biobank 

and 110 supplementary dementia-informed IDPs that captured both established 

and novel associations between brain metrics and dementia-related clinical 

phenotypes, highlighting the value of integrating UK Biobank-aligned imaging and 

analyses in a real-world memory clinic population.  
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1 Introduction  

State-of-the-art neuroimaging is included in large population studies like UK Biobank 

to assess baseline ‘brain health’ and to predict the risk of diseases and disorders 

such as Alzheimer’s Disease (AD) (Harms et al., 2018; Miller et al., 2016). Major 

advances in image analysis methodology and statistical methods have been 

developed within the UK Biobank imaging substudy (Alfaro-Almagro et al., 2018, 

2021), meaning that well-powered conclusions can be drawn about the relationship 

between brain structure and function and a range of health and lifestyle factors. 

However, these advances widen the (already substantial) gap between 

neuroimaging methodology available in research settings and those available in 

clinical practice. 

Structural brain imaging is included in the diagnostic guidelines for dementia, 

typically as a computerised tomography (CT) scan used primarily for ruling out 

alternative causes of cognitive impairment (Jack et al., 2016; National Institute for 

Health and Care Excellence (NICE), 2018). Compared to CT, structural magnetic 

resonance imaging (MRI) offers higher resolution and contrast, with greater 

sensitivity to brain changes like atrophy and white matter hyperintensities, both of 

which are hallmarks of AD and other forms of dementia (Harper et al., 2015). There 

are automated analysis tools to quantify these structural changes, including 

commercial software (Pemberton et al., 2021), but standard radiology practice 

continues to rely on qualitative or semi-quantitative methods using visual rating 

scales (Fazekas et al., 1987; Harper et al., 2015; Scheltens et al., 1995).  Advanced 

MR imaging and analysis have also revealed differences in cerebral blood flow and 

structural and functional connectivity in patients with cognitive impairment (Liu et al., 

2023; Penalba-Sánchez et al., 2023; Teipel & Grothe, 2023; Xiao et al., 2023), but 

these methods are currently not recommended for memory clinic use since their 

diagnostic and prognostic value is less established (Egle et al., 2022; Haidar et al., 

2023; Vemuri et al., 2012). Thus, our understanding of the links between brain and 

phenotypic changes is constrained by the data currently available (i.e., cohort 

studies rather than real-world clinical populations). 
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Participants in cohort studies, however, tend to be younger and healthier than 

patients with memory problems, making it difficult to (i) draw conclusions about 

dementia-related changes and (ii) test the performance of analysis tools in brains 

representing more advanced disease stages. Dementia cohort studies have been 

established to address these limitations (e.g., ADNI - Petersen et al., 2010). 

However, these cohorts are often overused, which limits generalisability (Borchert et 

al., 2023), and use strict inclusion/exclusion criteria, making the data poorly 

representative of the overall memory clinic patient population (Langbaum et al., 

2023; Lim et al., 2023). Methodological differences further widen the gap between 

large cohorts and smaller clinical studies. For example, while smaller clinical studies 

can employ visual inspection to control the quality and accuracy of raw and 

processed MRI data, big data studies must rely on automated quality control (QC) 

tools. Moreover, differences in study design (e.g., data- vs hypothesis-driven) and 

statistical power also require distinct, context-dependent statistical approaches. 

To bridge the technological, methodological, and population differences between 

research studies and memory clinics, the Oxford Brain Health Clinic (OBHC) was 

established in August 2020 as a joint clinical-research service (O’Donoghue et al., 

2023). In South Oxfordshire, National Health Service (NHS) patients with memory 

concerns are referred by their GPs to an Oxford Health NHS Foundation Trust 

memory clinic and may subsequently be referred to the OBHC for high-quality 

multimodal assessments, including an MRI protocol aligned with UK Biobank 

(Griffanti et al., 2022). The results of these assessments are sent back to the 

referring memory clinic as a detailed report, which the psychiatrist takes into 

consideration during the follow-up diagnostic appointment with the patient.  

Here, we tested the suitability of employing UK Biobank image acquisition and 

analysis pipelines in patients referred to the OBHC. We evaluated the feasibility and 

acceptability of the protocol in this ‘real-world’ population by assessing completion 

rates and data quality, including the use of automated quality control tools. Pipeline 

adaptations, previously described (Griffanti et al., 2022), were incorporated to 

overcome challenges associated with brain changes in older populations, and 

additional dementia-informed measures were added to the standard set of IDPs. 

Finally, the utility of the standard and dementia-informed IDPs was tested by 
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performing a set of well-established associations with age, cognition and diagnosis, 

including careful consideration of the most appropriate statistical adaptations (i.e., 

hierarchical false discovery rate procedure) for a clinical population.  

2 Methods 

2.1 OBHC Model and Patients  

In the UK, NHS patients over 65 with memory concerns are typically referred by their 

GP to psychiatry-based memory services. In Oxfordshire, these patients may be 

triaged by the memory clinic and referred to the Oxford Brain Health Clinic (OBHC) if 

they are able to travel and eligible for an MRI scan. The OBHC appointment involves 

several high-quality assessments as standard, including a detailed cognitive 

assessment and an MRI scan, and offers multiple avenues for optional research 

participation. Patients can consent to join the OBHC Research Database and can 

choose to complete a range of additional research assessments including: more time 

in the MRI scanner, a saliva sample for genotyping, and detailed questionnaires for 

both themselves and their relative. By reducing the barriers to research participation, 

this model makes the OBHC population highly representative of the ‘real-world’ local 

memory clinic population. The OBHC Research Database was reviewed and 

approved by the South Central – Oxford C research ethics committee (SC/19/0404). 

Please refer to O’Donoghue et al. (2023) for more details about the protocols and 

assessments.  

Assessment results are compiled into a report which is used by clinicians to support 

their diagnostic decision during the patient’s subsequent memory clinic visit. As of 

May 2023, 213 patients were MRI scanned as part of their NHS assessment at the 

OBHC and consented to the use of their data for research purposes.  

2.2 Joint Clinical-Research Neuroimaging Protocol 

The MRI scanning protocol used at the OBHC is available in Supplementary Table 1. 

This protocol is aligned with the UK Biobank brain imaging protocol (Miller et al., 

2016). It is restructured to prioritise the modalities with known clinical relevance 

(‘core clinical’ sequences: T1-weighted, T2 fluid attenuated inversion recovery - T2-
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FLAIR, and susceptibility-weighted - swMRI) whilst enabling consenting patients to 

stay in the scanner for additional research sequences (diffusion MRI - dMRI, arterial 

spin labelling - ASL, and resting-state functional MRI - rfMRI) (Griffanti et al., 2022). 

The core clinical MRI scans for all patients are transferred to the NHS clinical 

records system and reported by a neuroradiologist (PP), using a structured radiology 

report template (Griffanti et al., 2022). The resulting report is sent to the referring 

memory clinic. If the patient gives consent for their data to be used for research, then 

the image files from all completed scans are pseudonymised and forwarded to a 

secure research server. Full details of the MRI protocol and operating procedures 

are available online (O’Donoghue et al., 2022). 

2.3 Clinical Outcome Data 

Cognitive performance is measured during the OBHC appointment with 

Addenbrooke’s Cognitive Examination III (ACE-III), which assesses cognition across 

five domains of memory, attention, language, fluency, and visuospatial skills. Patient 

diagnoses are based on the OBHC assessments, clinician judgement, and any 

additional assessments completed during the subsequent memory clinic visit, on 

average 2.5 months after their OBHC appointment. These diagnoses are extracted 

from secondary care electronic healthcare records (EHRs). For this study, primary 

diagnoses were categorised as dementia (ICD10 codes F00, F01, F02, F03), mild 

cognitive impairment (MCI - F06.7), and no dementia-related diagnoses (F10, F31, 

F32, F41, and patients who attended their memory clinic appointment but did not 

receive a formal diagnosis). 

2.4 Pipeline Adaptations 

Scans were processed using a version of the UK Biobank image analysis pipeline 

(Alfaro-Almagro et al., 2018; Stephen Smith et al., 2022). Figure 1 shows a 

schematic overview of the adapted pipeline. The pipeline was adapted to include 

lesion-masking of the grey matter segmentations (SIENAX) and CSF-masking of the 

hippocampal segmentations (FIRST), as previously described (Griffanti et al., 2022), 

to obtain accurate segmentations in the presence of atrophy and high vascular 

pathology. Downstream adaptations were also applied to the parts of the pipeline 
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that rely on these corrected segmentations (ASL and VBM analyses). Additional 

IDPs were added to the pipeline to capture other putative dementia-related changes, 

as described below. 

 

Figure 1: Simplified overview of the UK Biobank image analysis pipeline (in grey) with adaptations and 
enhancements for OBHC use (in colour). See Alfaro-Almagro et al. (2018) for details of the UKB pipeline. swMRI, 
susceptibility-weighted MRI; T1, T1-weighted imaging; T2-FLAIR, T2-weighted fluid attenuated inversion recovery 
imaging; dMRI, diffusion-weighted MRI; ASL, arterial spin labelling; rfMRI, resting-state functional MRI; QSM, 
quantitative susceptibility mapping; ROI, region of interest; MRIQC, MRI Quality Control tool (see (Esteban et al., 
2017)); VBM, voxel-based morphometry; NBM, nucleus basalis of Meynert; WMH, white matter hyperintensity; 
QUAD, QUality Assessment of DMRI (see (Bastiani et al., 2019)); PSMD, peak width of skeletonised mean 
diffusivity; MD, mean diffusivity; MO, mode of anisotropy; DSE, D-var, S-var, E-var (see (Afyouni & Nichols, 
2018)); ICA, independent component analysis.  

2.4.1 Lobar volumes 

Predominance of atrophy in one or more lobes can guide differential diagnosis, for 

example distinguishing between Alzheimer’s disease, semantic dementia, and 

frontotemporal lobar degeneration (FTLD) (Rabinovici et al., 2007). Masks of the 

frontal, parietal, temporal, and occipital lobes (MNI structural atlas – see (Collins et 

al., 1995; Mazziotta et al., 2001)) were non-linearly registered to the T1-weighted 
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scan and applied to the corrected SIENAX grey matter (GM) segmentation to yield 

lobar GM volumes.  

2.4.2 WMH volumes  

The default UK Biobank pipeline calculates the periventricular, deep, and total white 

matter hyperintensity (WMH) volumes derived using BIANCA (Griffanti et al., 2016). 

Given the relevance of the spatial distributions of WMHs to underlying dementia-

related pathologies (Biesbroek et al., 2016, 2024; Veldsman et al., 2020), we 

additionally generated tract-wise WMH volumes by calculating the overlap of the 

WMH mask with 48 white matter (WM) tract masks registered to T1 space (Mori et 

al., 2008).  

2.4.3 Cholinergic analyses 

Given the relevance of the cholinergic systems in dementia (Bohnen et al., 2018), 

additional IDPs were added to measure the volumes of the left and right nucleus 

basalis of Meynert (NBM) in the basal forebrain. A widely used histologically-defined 

NBM mask (Zaborszky et al., 2008), non-linearly registered to T1 space, was 

masked with the GM partial volume estimate.  

2.4.4 Additional dMRI metrics 

The peak width of the skeletonised mean diffusivity (PSMD) is a robust marker of 

overall cerebrovascular pathology and holds biomarker potential in dementia (Low et 

al., 2020; Satizabal et al., 2020). It shows good correlations with cognition, 

explaining variability in cognition beyond traditional measures of cerebrovascular-

related WM changes such as WMH volume (Satizabal et al., 2020). PSMD was 

calculated as the width between the 5th and 95th percentiles of the skeletonised 

mean diffusivity maps, aligned with the protocol outlined by Baykara and colleagues 

(2016). 

Tractography-defined WM tract volumes have also been proposed as estimates of 

tract-specific atrophy with moderate subject-differentiating power (Besseling et al., 

2012; Groot et al., 2015). Following Warrington and colleagues (2020), we binarized 
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each tractography-defined tract, normalised for the number of valid streamlines and 

registered to dMRI space, at 0.005 and calculated its volume.   

Grey matter mean diffusivity (MD) metrics are also gaining popularity as potential 

biomarkers in dementia and cognitive decline (Douaud et al., 2011, 2022; Illán-Gala 

et al., 2019; Montal et al., 2021; Weston et al., 2020). The mode of anisotropy (MO) 

has demonstrated sensitivity to WM changes in MCI and early dementia (Douaud et 

al., 2011), although it seems potentially less informative in GM structures (Beer et al., 

2020; Douaud et al., 2013). Using the GM partial volume estimate (PVE) after lesion-

masking, weighted MD and MO were calculated within the corrected FIRST 

segmentations of the hippocampi and amygdala as well as 5 ROIs defined with the 

UKB GM atlas: parahippocampal gyrus, precuneus, superior frontal cortex, superior 

parietal cortex and supramarginal cortex. 

2.5 Integrated Quality Control 

Automated QC of the scans was integrated into the analysis pipeline where possible. 

Details of the image-quality metrics (IQMs) included in the different tools are 

summarised in Table 1. MRIQC (Esteban et al., 2017) was run for T1 and T2-FLAIR, 

EDDY QUAD (Bastiani et al., 2019) for dMRI, and both MRIQC and DSE 

decomposition (Afyouni & Nichols, 2018) for rfMRI. Given the importance of T1 as an 

anatomical reference for other modalities and all analyses, we do perform manual 

QC using static visual summaries (9 orthogonal slices, generated with the FSL 

command slicesdir) of T1 scans, brain extracted and registered to MNI space. FIRST 

outputs are overlaid on the CSF map (output of FAST), and structures with full 

overlap are identified as mislocalised subcortical segmentations and excluded from 

subsequent analyses. 

Scans with outliers (>1.5 IQR away from Q1/Q3) in at least one of the IQMs or visual 

inspection of the T1 summary were flagged for further inspection of the core pipeline 

outputs: corrected SIENAX and FIRST segmentations for T1, BIANCA 

segmentations for T2-FLAIR, tractography from dMRI, and preprocessed DSE 

decomposition for rfMRI. Low-quality raw or derived images were excluded from 

subsequent analysis.  
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Tool Image-Quality Metric (IQM) Categories 

MRIQC:  
T1 & T2-FLAIR 

Noise measures (CJV for T1, CNR, SNR within CSF, GM, and 
for T1 WM, QI2); information theory measures (EFC, FBER); 
bias field measures (INU_range for T1, INU_med); carotid 
vessels/fat hyperintensity (WM2MAX) 

MRIQC:  
rfMRI 

Noise measures (SNR, tSNR, GSR); information theory 
measures (EFC, FBER); global correlation (GCOR); outliers 
(AOR); quality (AQI)  

DSE 
Decomposition: 
rfMRI 

Global and whole % S-var and % D-var (pre- and post-FIX) 
 

EDDY QUAD: 
dMRI 

Head motion; susceptibility; outliers; noise measures 

Table 1: Automated quality control (QC) tools with categories of image-quality metrics (IQMs). For details about 
the individual measures please refer to Esteban et al. (2017) for MRIQC, Afyouni and Nichols (2018) for DSE and 
Bastiani et al. (2019) for EDDY QUAD. 

2.6 Statistics 

Numeric variables, including all IDPs, ACE-III scores, and age, were normalised to 

unit variance using quantile normalisation (Peterson & Cavanaugh, 2020), 

implemented with the R package bestNormalise (Ryan A. Peterson, 2021). Due to 

sample size limiting the degrees of freedom compared to UKB, we compromised on 

the number of covariates and included only age, sex, and head size. We investigated 

the extent to which IDPs predict age and cognition by performing linear regression 

with each IDP and covariates (Equations 1-2). We included total cognitive score as a 

covariate in the linear regression with age (Equation 1) to highlight age-related 

changes that are not purely related to cognitive impairment in this memory clinic 

population where cognition may be expected to account for a large share of the 

observed variance. Associations with diagnoses were assessed with ordinal 

regression (Equation 3). We additionally investigated associations of clinical 

phenotypes with T2*, QSM, and tractography IDPs when controlling for ROI/tract 

volumes. 
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Age = β1IDP + β2Sex + β3Headsize + β4ACE (1) 

ACE = β1IDP + β2Age + β3Sex + β4Headsize (2) 

Diagnosis = β1IDP + β2Age + β3Sex + β4Headsize (3) 

In order to control for multiple testing across modalities while enabling interpretation 

within modality, we used a hierarchical false discovery rate procedure (Yekutieli, 

2008). This guarantees that the false discovery rate (FDR, the expected proportion 

of false positives among detections) is controlled within each modality. The method 

proceeds by computing omnibus p-values for each modality with a Simes test, and 

then the modalities that are significant at the 5% FDR level have their IDPs tested 

with FDR that uses a more stringent threshold according to the number of significant 

omnibus p-values.  

3 Results  

3.1 Demographics 

See Table 2 for OBHC patient demographics. Figure 2 illustrates the prevalence 

of diagnoses that were obtained subsequently, grouped into three diagnostic 

categories (dementia, MCI, and no dementia-related diagnosis) along with the 

distributions of ACE-III cognitive scores for these diagnostic groups. 
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Characteristic Overall Stratified by diagnostic category 

Sample Size N=213 Dementia 
(N=111) 

MCI (N=56) No DRD 
(N=45) 

Age (years) – mean ± 
SD 
(range) 

78.0 ± 6.2 
(65-101) 

79.8 ± 6.5 
(65-101) 

76.8 ± 5.5 
(66-88) 

74.9 ± 4.7 
(65-85) 

Sex - % F (M/F) 47.4% 
(112/101) 

45.9% 
(60/51) 

53.6% 
(26/30) 

44.4% 
(25/20) 

 

ACE-III Total Score –  
mean ± SD (range) 

73.9 ± 17.4 
(9-99) 

63.5 ± 17.3 
(9-98) 

80.3 ± 8.8 
(55-97) 

89.5 ± 6.9 
(70-99)       

Years FT education – 
mean ± SD (range) [N] 

13.1 ± 3.5  
(3-21) 
[N=192] 

12.9 ± 3.6  
(3-21) 
[N=99] 

12.7 ± 3.5  
(4-21)  
[N=52]  

14.1 ± 3.3 
(9-21) 
[N=40]  

Clinical Frailty Score – 
mean ± SD (range) 

2.9 ± 1.4 
(1-7) 

3.2 ± 1.5 
(1-7) 

2.7 ± 1.2 (1-
6) 

2.4 ± 1.1 (1-
6) 

ApoE - % with at least 
1 E4 allele [N/total 
genotyped] 

41.4% 
[55/133] 

49.2% 
[31/63] 

37.5% 
[12/32] 

31.6% 
[12/38] 

Table 2: Demographics of MRI-scanned OBHC patient population: overall and stratified by the subsequent 
diagnostic category. 1 patient missing a diagnosis was excluded from stratified results. DRD, dementia-related 
diagnosis; ACE-III, Addenbrooke’s Cognitive Examination III; ApoE, Apolipoprotein E. 

 

Figure 2: Subsequent diagnoses of OBHC patients and distribution of cognitive scores across the diagnostic 
groups. Dashed lines on density plot are the group means. F00, Alzheimer’s dementia; F01, vascular dementia; 
F02, Dementia in other diseases classified elsewhere; F03, unspecified dementia; F06.7, mild cognitive 
impairment; F31, bipolar disorder; F10, alcohol-related disorders; F41, other anxiety disorders; F32, depressive 
episode. DRD, dementia-related diagnosis. ACE-III, Addenbrooke’s Cognitive Examination III.  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.08.02.24311402doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.02.24311402
http://creativecommons.org/licenses/by/4.0/


3.2 Feasibility and acceptability 

As of May 2023, 244 patients attended the OBHC, 93.4% (N=228) of whom 

consented to join the OBHC Research Database. 93.4% of these patients 

(N=213) were able to complete at least one of the UKB-aligned MRI sequences 

(excluded patients had MRI contraindications (N=4), incompatible body 

habitus/kyphosis (N=4), claustrophobia (N=3), or discomfort/anxiety (N=4)). 211 

patients completed all core clinical sequences (swMRI, T1, T2-FLAIR; 16 minutes 

and 29 seconds), with 2 scans terminated prematurely due to patient discomfort. 

Of the 165 patients (67.6%) that initially consented to the additional MRI research 

sequences, 127 were still able and willing to stay in the scanner when asked after 

the clinical sequences. 120 patients (56.3% of those who started the scanning 

protocol) completed all sequences (37 minutes and 46 seconds total).  

Figure 3 summarises the available MRI data. The high rates of willing consent and 

completion indicate that the protocol is feasible and acceptable. Integrating this 

research-quality scanning protocol into clinical workflows via the OBHC also yielded 

high rates of MRI scans suitable for detailed radiology reporting for clinical purposes. 

From the 213 patients that started the MRI session, the neuroradiologist completed 

212 full structured radiology reports and 1 partial report due to scan termination. One 

additional scan was noted as poor quality, but this did not impede reporting.  

 
Figure 3: Available MRI data with the number of IDPs generated from each modality. One scan was 
unsuccessfully archived from the scanner and excluded from subsequent analyses. * For 19 swMRI scans with 
incomplete data (uncombined channel images unavailable), the scanner-reconstructed swMRI images were used 
as inputs for the core swMRI pipeline, but the QSM pipeline was skipped since it relies on phase images prior to 
high-pass filtering. See Supplementary Figure 1 for the equivalence of the T2* IDPs generated from the 
uncombined and scanner-combined images.  
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3.3 Quality Control  

Enhanced QC of the T1-weighted, T2-FLAIR, dMRI, and rfMRI scans flagged 14-

24% of scans for further inspection (Table 3). See Supplementary Table 2 for counts 

of IQMs flagged for each modality. Visual inspection of core outputs from T1, T2-

FLAIR, and dMRI revealed that 0-2.4% of segmentations were low quality and 

subsequently excluded. Visual inspection of DSE plots revealed that although 

residual noise was high (S-var > 75% at timepoints) in 97.1% (33/34) of processed 

rfMRI data, no scans were deemed unusable based on this criterion. See 

Supplementary Table 3 for full visual QC results. 

Modality % flagged (N/total) % excluded (N/total) 

T1 14.6% (31/212) 1.4% (3/212) all IDPs 

2.4% (5/212) one or more IDPs  

T2-FLAIR 16.7% (35/210) 1.0% (2/210)  

dMRI 19.0% (24/126) 0% (0/126) 

rfMRI Pre-FIX: 24.2% (29/120) 

Post-FIX: 10.0% (12/120) 

0% (0/120) 

Table 3: Quality control results. 

3.4 Associations with age 

Using covariates of sex, head size, and total cognitive score (ACE-III), IDPs from 5 

out of the 6 MRI modalities were significantly associated with age (Figure 4-Figure 

5). The strongest negative associations were observed with volumetric measures 

derived from the T1-weighted scans (p=240), with the strongest associations being 

with the total grey matter volume (SIENAX) and some cerebellar volumes (VBM). 

Periventricular, deep, and total white matter hyperintensity (WMH) volumes all 

positively associated with age. Mean T2* in the right amygdala was negatively 

associated with age, while no other swMRI-derived metrics survived correction for 

multiple testing. The fractional anisotropy (FA) of 14 tracts negatively associated with 

age, while mean diffusivity (MD) from 24 tracts positively associated with age. The 

NODDI-derived metrics ICVF and ISOVF negatively and positively associated with 
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age, respectively, in many tracts. 32 ASL-derived measures associated with age 

(negative associations with cerebral blood flow and positive associations with arrival 

time). No rfMRI-derived IDPs were significantly associated with age. A similar pattern 

was found across all IDPs when not covarying for total cognitive score 

(Supplementary Figures 2-3). 

Regarding the additional dementia-informed IDPs, all 4 lobar grey matter (GM) 

volumes negatively associated with age, with the strongest being with the temporal 

GM volume. Volumes of the bilateral nuclei basalis of Meynert also negatively 

associated with age. WMH volumes within 30 tracts were positively associated with 

age, with the most significant being the WMH volume in the right superior corona 

radiata. The peak width of the skeletonised MD (PSMD) positively associated with 

age, as did 6 cortical MD IDPs. See Supplementary Table 4 for the full list of 

associations that were significant following multiple testing correction. 

 
Figure 4: FDR-corrected p-values, hierarchical by modality, for associations between IDPs and age. Each dot 
represents one IDP, grouped by analysis tool/method and colour-coded by scan modality if significant. SIENAX, 
Structural Image Evaluation using Normalization of Atrophy (cross-sectionally); FIRST, FMRIB’s Integrated 
Registration and Segmentation Tool; VBM, voxel-based morphometry; BIANCA, Brain Intensity AbNormality 
Classification Algorithm; FA, fractional anisotropy; MD, mean diffusivity; MO, mode of anisotropy; OD, orientation 
dispersion index; ICVF, intra-cellular volume fraction; ISOVF, isotropic volume fraction; CBF, cerebral blood flow; 
NBM, nucleus basalis of Meynert; WMH, white matter hyperintensity; PSMD, peak width of skeletonised mean 
diffusivity.  
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Figure 5: Beta coefficients for associations between IDPs and age. All numeric variables are unit standardised, 
meaning that 1 standard deviation (SD) increase in an IDP value is associated with a β SD difference in age. 
Coloured dots indicate associations significant at the 5% FDR level, hierarchical by modality. SIENAX, Structural 
Image Evaluation using Normalization of Atrophy (cross-sectionally); FIRST, FMRIB’s Integrated Registration and 
Segmentation Tool; VBM, voxel-based morphometry; BIANCA, Brain Intensity AbNormality Classification 
Algorithm; FA, fractional anisotropy; MD, mean diffusivity; MO, mode of anisotropy; OD, orientation dispersion 
index; ICVF, intra-cellular volume fraction; ISOVF, isotropic volume fraction; CBF, cerebral blood flow; NBM, 
nucleus basalis of Meynert; WMH, white matter hyperintensity; PSMD, peak width of skeletonised mean 
diffusivity. 

When controlling for ROI/tract volumes, no swMRI-derived IDPs and fewer 

tractography-based IDPs survived hierarchical FDR correction (Supplementary 

Figures 4-5).  

3.5 Associations with cognition 

IDPs from 4 out of the 6 MRI modalities were significantly associated with ACE-III 

total scores, after controlling for age, sex, and head size (Figure 6-Figure 7). 

Regarding the core UK Biobank-aligned IDPs, most of the significant associations 

were with volumetric measures derived from the T1-weighted scans (p=160), with 

the strongest positive associations being with volumes of the posterior left middle 

temporal gyrus (VBM) and the peripheral GM (SIENAX). Periventricular and total 
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white matter hyperintensity (WMH) volumes negatively associated with ACE-III total 

scores. Of the core dMRI-derived IDPs, most significant ones relate to the 

parahippocampal cinguli. Mean diffusivity (MD) metrics in the parahippocampal 

cinguli were most strongly negatively associated with cognition, while most other 

significant associations, such as with FA, MO, and ICVF, are positive. 11 node 

amplitude IDPs from rfMRI were positively associated with cognition, primarily 

relating to the salience, frontoparietal, and language networks.  

Regarding the additional dementia-informed IDPs, all 4 lobar grey matter (GM) 

volumes positively associated with ACE-III, with the strongest being with the 

temporal GM volume. WMH volumes within 20 tracts were negatively associated 

with ACE-III, with the most significant being the WMH volume in the splenium of the 

corpus collosum. PSMD negatively associated with cognition and was the second-

most significant dMRI-derived metric overall. Cortical MD metrics, including in the 

bilateral supramarginal gyri, hippocampi, amygdalae, and parahippocampal cinguli, 

were negatively associated with cognitive scores, while MO in the bilateral 

supramarginal gyri positively associated with cognition. See Supplementary Table 5 

for the full list of significant associations. 

When controlling for ROI/tract volumes, no swMRI-derived IDPs and fewer 

tractography-based IDPs survived hierarchical FDR correction (Supplementary 

Figures 6-7).  
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Figure 6: FDR-corrected p-values, hierarchical by modality, for associations between IDPs and ACE-III total 
cognitive scores. Each dot represents one IDP, grouped by analysis tool/method and colour-coded by scan 
modality if significant. SIENAX, Structural Image Evaluation using Normalization of Atrophy (cross-sectionally); 
FIRST, FMRIB’s Integrated Registration and Segmentation Tool; VBM, voxel-based morphometry; BIANCA, Brain 
Intensity AbNormality Classification Algorithm; FA, fractional anisotropy; MD, mean diffusivity; MO, mode of 
anisotropy; OD, orientation dispersion index; ICVF, intra-cellular volume fraction; ISOVF, isotropic volume 
fraction; CBF, cerebral blood flow; NBM, nucleus basalis of Meynert; WMH, white matter hyperintensity; PSMD, 
peak width of skeletonised mean diffusivity.  
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Figure 7: Beta coefficients for associations between IDPs and ACE-III total cognitive scores. All numeric variables 
are unit standardised, meaning that 1 standard deviation (SD) increase in an IDP value is associated with a β SD 
difference in ACE-III total cognitive score. Coloured dots indicate associations significant at the 5% FDR level, 
hierarchical by modality. SIENAX, Structural Image Evaluation using Normalization of Atrophy (cross-sectionally); 
FIRST, FMRIB’s Integrated Registration and Segmentation Tool; VBM, voxel-based morphometry; BIANCA, Brain 
Intensity AbNormality Classification Algorithm; FA, fractional anisotropy; MD, mean diffusivity; MO, mode of 
anisotropy; OD, orientation dispersion index; ICVF, intra-cellular volume fraction; ISOVF, isotropic volume 
fraction; CBF, cerebral blood flow; NBM, nucleus basalis of Meynert; WMH, white matter hyperintensity; PSMD, 
peak width of skeletonised mean diffusivity.  

3.6 Associations with diagnoses 

A similar pattern of associations is observed between IDPs and diagnostic groups 

(dementia, MCI, no dementia-related diagnosis; Figure 8-Figure 9). This is likely 

because the results of cognitive assessment play an important role in dementia 

diagnosis. See Supplementary Table 6 for the full list of significant associations. 
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Figure 8: FDR-corrected p-values, hierarchical by modality, for associations between IDPs and diagnostic groups. 
Each dot represents one IDP, grouped by analysis tool/method and colour-coded by scan modality if significant. 
DRD, dementia-related diagnosis; SIENAX, Structural Image Evaluation using Normalization of Atrophy (cross-
sectionally); FIRST, FMRIB’s Integrated Registration and Segmentation Tool; VBM, voxel-based morphometry; 
BIANCA, Brain Intensity AbNormality Classification Algorithm; FA, fractional anisotropy; MD, mean diffusivity; 
MO, mode of anisotropy; OD, orientation dispersion index; ICVF, intra-cellular volume fraction; ISOVF, isotropic 
volume fraction; CBF, cerebral blood flow; NBM, nucleus basalis of Meynert; WMH, white matter hyperintensity; 
PSMD, peak width of skeletonised mean diffusivity. 
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Figure 9: Beta coefficients for associations between IDPs and diagnostic groups. All numeric variables are unit 
standardised, meaning that for a 1 standard deviation (SD) increase in an IDP value, the log-odds of receiving a 
dementia-related diagnosis increases (or decreases if negative) by the β coefficient. Coloured dots indicate 
associations significant at the 5% FDR level, hierarchical by modality. DRD, dementia-related diagnosis; SIENAX, 
Structural Image Evaluation using Normalization of Atrophy (cross-sectionally); FIRST, FMRIB’s Integrated 
Registration and Segmentation Tool; VBM, voxel-based morphometry; BIANCA, Brain Intensity AbNormality 
Classification Algorithm; FA, fractional anisotropy; MD, mean diffusivity; MO, mode of anisotropy; OD, orientation 
dispersion index; ICVF, intra-cellular volume fraction; ISOVF, isotropic volume fraction; CBF, cerebral blood flow; 
NBM, nucleus basalis of Meynert; WMH, white matter hyperintensity; PSMD, peak width of skeletonised mean 
diffusivity.  

4 Discussion  

In this study, we have optimised a well-established imaging framework for a typical 

NHS memory clinic population by integrating enhanced quality control processes and 

dementia-specific analyses. Our detailed QC revealed that the imaging protocol is 

feasible, acceptable, and yields high-quality data that is usable for both clinical and 

research purposes. We found that this enhanced pipeline can generate reliable UKB-

aligned IDPs and dementia-informed supplementary IDPs. We replicated established 

associations from earlier work and found novel associations between brain metrics 

and age, cognition, and diagnosed dementia. Together, these findings validate the 
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use of this enhanced methodology in this real-world population and demonstrate its 

potential to bridge the gap between big data studies and clinical settings.  

The Oxford Brain Health Clinic (OBHC) model of integrated, tiered research 

opportunities (O’Donoghue et al., 2023) continues to yield high rates of consent for 

research participation (93.4%) and additional scanner time (67.6%). Completion 

rates likewise remain high, with 99.1% and 72.7% of consenting patients completing 

the clinical and research sequences, respectively. All but one of the 213 scans were 

usable for radiologist reporting and therefore provided usable, structured data to the 

memory clinic.  

One strength of this study is the seamless integration of rigorous QC measures into 

the UKB pipeline, creating a comprehensive framework for analysing real-world 

datasets. Automated QC tools (MRIQC, QUAD, and DSE decomposition) were used 

to flag T1-weighted, T2-FLAIR, dMRI, and rfMRI scans for visual inspection. We 

performed detailed QC at the level of individual IQMs, inspecting any scans that 

were outliers for at least one of these metrics. This process revealed that most of the 

raw data and pipeline outputs were useable. Although we accept that our outlier 

flagging approach might be overly sensitive, the percentage of flagged and excluded 

scans or IDPs in our study (Table 3) is consistent with other studies including 

automated QC and visual inspection. For example, in a sample of 4282 scans by 

Alfaro-Almagro and colleagues (2018), 17.5% of T1-weighted scans were flagged for 

inspection and 1.7% were excluded. Hence, this work supports the clinical 

application of automated QC tools as part of a staged QC approach. In clinical 

settings, we cannot afford to blindly exclude data based solely on fixed criteria or 

metrics, and we have demonstrated that this approach is useful to reduce the burden 

of visual inspection.   

The analysis pipeline generates IDPs that are aligned with UK Biobank, while being 

suitable and relevant to a memory clinic population. In addition to incorporating 

previously described modifications to account for the high degree of atrophy and 

vascular burden (Griffanti et al., 2022), we added additional IDPs to capture other 

previously reported dementia-related changes. Many of these additional analyses 

are computationally light, ensuring that they won’t significantly increase the 
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computational load beyond the existing UKB pipeline. The code is openly available 

on Gitlab (https://git.fmrib.ox.ac.uk/open-science/analysis/brain-health-clinic-mri).   

We were then able to validate our obtained IDPs by replicating associations with 

well-known brain health changes in this real-world memory clinic population, 

carefully controlling multiple testing within each modality with a hierarchical FDR 

procedure. As anticipated, associations with age, cognition, and diagnoses were 

mainly with volumetric IDPs, particularly corresponding to temporal lobe structures. 

Associations with periventricular and total WMH volumes were stronger than with 

deep WMH volumes, in keeping with research studies in older adults (Bolandzadeh 

et al., 2012; Griffanti et al., 2018). Some of the strongest dMRI-derived associations 

were with the bilateral parahippocampal cinguli, which have previously been widely 

implicated in dementia and cognitive decline (Bozzali et al., 2011; Hirschfeld et al., 

2023). In addition to the tensor-based metrics (e.g., MD), NODDI-derived metrics 

(i.e., ICVF and ISOVF) also show significant associations with clinical phenotypes, 

consistent with the global findings of McCracken and colleagues (2022). From rfMRI, 

associations with node amplitudes were most consistent. Using the same node 

labels as Lee and colleagues (2023), left fronto-parietal and language node 

amplitudes were positively associated with cognition meanwhile higher node 

amplitudes in the default mode, salience, and attention networks were associated 

with lower odds of receiving a dementia-related diagnosis. 

The dementia-informed IDPs may capture additional variability in this memory clinic 

population. Lobar grey matter volumes have well-established relevance to cognitive 

status and prognosis, with the smaller temporal lobe volumes particularly associated 

with cognitive decline and dementia (Harper et al., 2017; Rabinovici et al., 2007; 

Visser et al., 2002; Woodworth et al., 2022). We, too, found the strongest 

associations with the temporal lobe (age: β=-0.56, corrected p=1.42 x 10-8; ACE-III: 

β=0.65, corrected p=4.21 x 10-11; diagnosis: OR=0.147, corrected p=7.56 x 10-10), 

although all 4 lobes were significantly associated. In our analyses, many tract-

specific WMH volumes associated with clinical phenotypes to a similar or greater 

extent than total WMH volume or even the periventricular-deep subclassification, 

supporting the literature on the relevance of WMH regional distributions (Biesbroek 

et al., 2016, 2024; Veldsman et al., 2020). The peak width of the skeletonised mean 
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diffusivity (PSMD) was strongly associated with age, cognition and diagnoses, with 

effect sizes similar to those reported by Satizabal and colleagues (Satizabal et al., 

2020). Our findings extend the evidence supporting the use of this simple summary 

measure of small vessel disease to a memory clinic setting (Baykara et al., 2016; 

Deary et al., 2019).  

In keeping with the literature on cortical mean diffusivity (MD) (Douaud et al., 2011, 

2022; Illán-Gala et al., 2019; Montal et al., 2021; Weston et al., 2020), we also 

observed associations with age (p=6), cognition (p=8), and diagnosis (p=4), 

supporting the potential of MD to detect microstructural cortical changes in a memory 

clinic population. Although cortical mode of anisotropy (MO) is less common, we 

observed significant associations with MO in the bilateral supramarginal gyri 

(cognition and diagnosis) and right amygdala (diagnosis), supporting the ability of 

this measure to also detect dementia-related changes. Some tract volumes were 

significantly associated with cognition (left corticospinal tract and major fornix) and 

diagnoses (left corticospinal tract, major fornix, and left medial lemniscus), but the 

directionality of these associations was inconsistent. Like many dMRI-derived 

measures, changes in tract volumes are less specific, being influenced by both 

atrophy and microstructural changes, but nevertheless they can highlight tract-

specific atrophy patterns or flag poorer-quality reconstructions (Groot et al., 2015). 

Consistent with the literature on the cholinergic systems in dementia (Bohnen et al., 

2018; Lagarde et al., 2024; Schumacher et al., 2022), we found that volumes of the 

Nucleus basalis of Meynert (NBM) bilaterally correlated with dementia diagnosis and 

age. The left NBM volume also associated with cognition. These associations were 

not as strong as with many other volumetric IDPs, but they may nevertheless hold 

value for differential diagnosis and prognosis.  

In this work, we present a pragmatic statistical approach to enable data-driven 

exploratory research in the clinical setting. Large sample sizes may be needed to 

reliably detect associations in the style of big data analyses (Marek et al., 2022), but 

without proper adjustments these sample sizes also inflate the risks of spurious 

associations. Indeed, moderate sample sizes may also be sufficient to detect 

associations with larger true effect sizes (Spisak et al., 2023). As opposed to big data 

studies which may include hundreds of covariates (Alfaro-Almagro et al., 2021), here 
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we employ a core set of covariates more in line with clinical settings. We utilise 

hierarchical FDR-correction by first correcting for comparisons across MRI modalities 

and then within modality using the Benjamini-Hochberg procedure applied to those 

that survive the Simes test (Benjamini & Hochberg, 1995; Yekutieli, 2008). With 

hierarchical FDR control, we mitigate the risks associated with non-independent 

analyses in small sample sizes (Nichols & Poline, 2009; Vul et al., 2009; Yarkoni, 

2009). This novel application in a memory clinic setting enables data-driven 

exploration of high-dimensional neuroimaging data without relying on the select few 

large cohort studies.  

A number of methodological limitations need to be considered when interpreting this 

study. Although this enhanced pipeline includes integrated QC for some modalities 

(T1, T2-FLAIR, dMRI, and rfMRI), more work is needed to develop appropriate QC 

metrics and tools for swMRI, QSM, and ASL. For the modalities with integrated QC, 

it is important to note that the IQMs are no-reference measures (i.e., without a 

ground truth). Flagging outliers was used as common criterion across IQMs across 

modalities, but this may not be necessarily the best method to detect quality 

deviations. Automated classifiers using IQMs as features do exist, but they are 

mostly for T1-weighted scans, and classification accuracy varies substantially on 

clinical datasets (Bhalerao et al., 2024). When using traditional cut-offs for DSE 

plots, our rfMRI QC reveals that some further optimisation may be required for this 

memory clinic population, but it remains unclear whether different thresholds may be 

more appropriate for this population, as no dataset was deemed unusable after 

further visual inspection. This work concentrated on volumetric analyses, but 

additional automated QC (e.g., Qoala-T - Klapwijk et al., 2019) and optimisation of 

Freesurfer surface-based outputs may also be warranted, especially in this clinical 

population with substantial WMHs (Oi et al., 2023).  

In addition, although our selection of dementia-informed IDPs is non-exhaustive, 

they demonstrate that the UKB IDPs may underrepresent the full picture when there 

is a clear clinical question. Compared to big data studies, the sample size here 

affects our ability to accurately detect associations. However, in this study we 

demonstrate the utility of using hierarchical FDR for detecting both known and novel 

associations in the presence of limited data. Future work could expand on the set of 
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essential covariates used here and include analyses with greater sensitivity to non-

linear associations. Nevertheless, the findings here serve to demonstrate the 

possibilities enabled by integrating UK Biobank-aligned imaging and analyses, 

enriched for sensitivity to dementia-related changes, directly into clinical settings. 

Further work will aim to address the extent to which these IDPs capture unique 

variability and inform differential diagnosis and precision phenotyping in a memory 

clinic setting.  

This enriched and integrated quality control-analysis pipeline for memory clinics 

offers possibilities in both clinical and research spheres. In clinical practice, the 

combination of established and novel quantitative measures has the potential to 

significantly improve the accuracy of differential diagnoses and predicted responses 

to treatment. In contrast to UK Biobank where participants are mostly healthy, this 

study better describes the brain alterations associated with dementia in a sample of 

memory clinic attendees. Moreover, because the metrics here are aligned with UK 

Biobank, any important advancements can be easily re-integrated with the larger 

field of brain imaging research, thereby facilitating further work in personalised 

medicine, normative modelling. Wider use of this analysis-QC pipeline in memory 

clinic settings also enables unique research opportunities in real-world clinical 

populations. We currently present a rich dataset of deeply-phenotyped, unselected 

memory clinic patients, but this dementia-enhanced analysis pipeline is also well-

suited to wider use and offers a framework to plug-in and pilot additional analyses 

suited to similar clinical applications.  

5 Data and code availability 

The complete OBHC MRI protocol and scanning procedure is available through the 

WIN MR Protocols Database 

at: https://open.win.ox.ac.uk/protocols/stable/6974395a-3745–4861-b8cc-

1887e787d1c4 (O’Donoghue et al., 2022b). 

The UKB-dementia pipeline presented here and used for this analysis is openly 

available (https://git.fmrib.ox.ac.uk/open-science/analysis/brain-health-clinic-mri)  

along with the original UK Biobank brain MRI analysis pipeline 

(https://git.fmrib.ox.ac.uk/falmagro/uk_biobank_pipeline_v_1.5/-/tree/master). 
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Additional scripts used for OBHC analyses are also available 

(https://git.fmrib.ox.ac.uk/gillisc/01_bhc_imaging.git). Interactive versions of the 

figures are available (https://users.ox.ac.uk/~scat8503/).  

The MRI data presented in this paper will be available via the Dementias Platform 

UK (https://portal.dementiasplatform.uk/CohortDirectory/Item?fingerPrintID=BHC), 

and access will be granted through an application process, reviewed by the OBHC 

Data Access Group. The OBHC Data Access Group will start accepting applications 

to access OBHC data upon publication of the present work. Data will continue to be 

released in batches as the OBHC progresses in order to minimise the risk of 

participant identification. 
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