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Abstract. Making accurate diagnosis of Alzheimer’s disease (AD) is crucial for 
effective treatment and management. Although deep learning has been applied to 
AD classification, it is typically performed at group level, the data used are not 
sufficiently heterogeneous and comprehensive, and decision confidence is not 
evaluated at individual (single patient) level. This paper proposed a more practi-
cal deep learning approach that not only detects AD stages of individuals, but 
also provides its corresponding confidence estimation. In particular, in addition 
to a convolutional neural network (CNN), we incorporated a softmax confidence 
metric based on the network’s output activity to evaluate its classification confi-
dence. Further, we applied this approach to a heterogeneous and comprehensive 
data that comprised cognitive and functional assessments, tau-PET and MRI neu-
roimaging, medical/family history, demographic, and APoE genotype. Im-
portantly, we utilised leave-one-out cross-validation to train the CNN and clas-
sify an individual’s healthy control, mild cognitive impairment or AD state, while 
concurrently estimating each output decision’s confidence. We showed that, over 
different confidence softmax temperature values, CNN could attain classification 
accuracies at 83-85% for the three classes while having robust confidence scores 
of 78-83%. Further improvement in confidence breakdown was achieved using 
the optimal temperature value in confidence evaluation, with higher confidence 
scores for correct than error decisions. Overall, the computed classification con-
fidence of an individual may aid clinicians and other stakeholders in understand-
ing the reliability of the model’s decision outcome and offer better trust. The 
implication of this work may extend to other classification applications, in which 
the confidence level of a single deep learning-based decision can be evaluated.  

Keywords: Dementia, Alzheimer’s disease, Classification, Decision Confi-
dence, Heterogeneous Data, Convolutional Neural Network, Tau-PET Brain Im-
aging, Leave-one-out Cross Validation.  
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1 Introduction 

Dementia, a prevalent and escalating global health concern, represents a complex spec-
trum of neurodegenerative disorders that profoundly impact cognitive functions, 
memory, and daily life activities [1][2]. Alzheimer’s disease (AD) represents the most 
common cause of dementia [2]. Accurate and early diagnosis of dementia or AD is 
pivotal for effective therapeutic interventions, management, and improved patient out-
comes [3]. However, existing methods for dementia/AD stage classification are often 
subjective and rely on clinical expertise, making them prone to errors and inconsisten-
cies [4]. The advent of machine learning, including deep learning, has ushered in un-
precedented opportunities to harness the potential of heterogeneous data sources, in-
cluding clinical assessments, neuroimaging, and genetic information, for enhancing the 
precision of dementia diagnosis and prognosis [4]-[9].  

Several machine learning studies have applied deep neural networks or deep learning 
to dementia diagnosis, due to their high performance [5]-[9]. Most deep learning ap-
proaches for dementia/AD (stage) classification have focused on using a single modal-
ity such as neuroimaging data due to earlier success in classifying imaging data, or 
together with few other non-imaging data types [4][7][8][9][10].  

Despite their success, these previous studies are limited in their ability to capture 
more complex and multifaceted nature of dementia/AD, which involves not only 
changes in brain structure and function, but also cognitive and functional abilities, and 
other biomarkers and risk factors [4][7][9]. Importantly, classification with deep learn-
ing is typically tested across groups rather than on individuals [4]-[9], even though 
classification of individuals, such as individual patients, is more practical (e.g. 
[11][12]).  

Machine learning also typically computes the confidence of classification outcomes 
via computing of statistical based confidence intervals over multiple samples [13]-[15], 
and hardly on individuals. In AD classification, confidence intervals have been used on 
top of classification or regression (e.g. [12]). Although uncertainty in deep neural net-
works, such as the various Bayesian and ensemble approaches, have been investigated 
[13]-[15], there is limited application to AD classification.  

In one study [16], the quantification of uncertainty in deep learning-based classifi-
cation for AD diagnosis was proposed. In this work, it presented a methodology for 
training the Monte Carlo dropout algorithm [17] by optimising its hyperparameters us-
ing Bayesian optimisation [18]. In this way, it improved the quantification of uncer-
tainty in model predictions by giving incorrect AD predictions a high predictive en-
tropy. However, this method was not straightforward, and it is unclear how it can be 
applied to individual AD diagnosis. Further, it was applied only to imaging data. A 
more recent study [19] made use of weight perturbation to estimate the variability of 
predictions by sampling different neural networks similar to the original one at each 
forward pass. Again, this is a rather cumbersome approach and was applied only to 
imaging data. Another study, though focused on AD prognosis and not diagnosis, made 
use of an ensemble-based model where calibrated predictions from multiple pairs (clas-
sifier, uncertainty method) are combined to predict whether a cognitive impaired patient 
will convert to AD [20]. The classifiers used include neural network models. However, 
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this study used five-fold cross-validation (i.e. group-based, unlike [12]), used not com-
prehensive (only demographic and neuropsychological) data, and did not break down 
the uncertainty/confidence into correct/error decisions.  

In this paper, we propose a deep learning-based approach to classifying an individ-
ual’s AD stage using leave-one-out cross validation [12] while applying to a heteroge-
neous and comprehensive AD data [21] that comprises tau-PET and MRI (regions-of-
interest) neuroimaging, medical/family history, cognitive and functional assessments, 
demographic, and (APoE) genotypes, to embrace the complex and multifaceted nature 
of AD. Inspired by cognitive neuroscience of decision-making and modelling parsi-
mony, we directly read out the decision confidence score from the network’s output 
neuronal activity in each classification, providing additional insights into the reliability 
of our classification. Decision confidence scores are further broken down based on cor-
rect and error decisions, and confidence-based temperature is varied to investigate op-
timality and the robustness of our results.  

2 Methodology 

2.1 Data Description 

The publicly available Alzheimer's Disease Neuroimaging Initiative (ADNI) database 
(adni.loni.usc.edu), particularly the ADNIMERGE-3 open repository, provided the da-
taset for this investigation. Only ADNI patients who had completed MRI and tau-PET 
scans (to identify tau deposition) are included in the study. The study measured tau 
protein deposition for brain imaging using the [18F]AV-1451 tracer. Tau protein, a key 
characteristic marker of AD pathology, is the precise target of this tracer.  

The tau and MRI imaging data was combined with baseline study measurements of 
neuropsychological, medical/family history, and sociodemographic characteristics. 
There were 224 features in the final dataset: 7 characteristics related to sociodemo-
graphic and medical history, 40 scores from cognitive and functional assessments 
(CFAs), and 177 features from neuroimaging data extracted from tau PET co-registered 
with MRI data in the form of regions of interest (ROIs) [21]. The data comes with three 
classes of clinical diagnosis: control normal (CN), AD, and mild cognitive impairment 
(MCI, which includes prodromal stage of AD).  

Sociodemographic data that was gathered included age, gender, years of schooling, 
number of copies of APoE ε4 gene variant (APoE4), and whether AD ran in the family 
on both the mother's and father's lines. It is established that the APoE4 variant is linked 
to a higher chance of AD, we encoded the APoE4 data as 0, 1, or 2 for easier subsequent 
analysis. CFAs were also included in the data, comprising Clinical Dementia Rating 
(CDR), Mini-Mental State Exam (MMSE), Alzheimer's Disease Assessment Scale 
(ADAS), Neuropsychological Inventory (NPI), Geriatric Depression Scale (GDS), 
Cognitive Battery Assessment, Modified Hachinski Ischemia Scale, Neuropsychologi-
cal Battery Test, logical memory immediate recall test (LMIT), and logical memory 
delayed recall test (LMDT). Other CFAs were excluded due to large proportion of miss-
ing data [21]. Further, we used individual subscales from the NPI and total scores as 
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well as individual question scores from the ADAS, providing a higher level of CFA 
granularity [21].  

Ultimately, the dataset contained information on 559 participants following the com-
bination and pre-processing of all the obtained data. Within this, 363 participants were 
clinically diagnosed as control normal (CN), 137 had MCI, and 59 had AD, and these 
AD stages were used as targets or class labels for model training. The dataset in this 
study was the same as in our previous study [21].  
 
2.2 Data Preparation and Preprocessing 

As MCI and AD classes were substantially smaller in size than CN, there could be bias 
in the models in terms of poorer model performance for the minority class, as the 
learning algorithm might be swayed by the majority class CN. To mitigate any imbal-
ances in the classes, the synthetic minority over-sampling technique (SMOTE) [22] was 
employed. SMOTE creates synthetic samples for minority classes by interpolating be-
tween existing ones while preserving the minority class’s characteristics, thereby bal-
ancing the class distribution. After applying SMOTE, all three classes were balanced, 
and we had a total of 1089 samples, i.e. 363 samples per class.  
 
2.3 Model Description 

For classification, we used the convolutional neural network (CNN) given its known 
superior performance in AD classification (e.g. [6]). CNN was used due to its superior 
performance as compared to traditional machine learning methods [4]-[10], yet not 
overly complicated (e.g. compared to recurrent neural networks) for applications. Fol-
lowing data balancing, the CNN model architecture is defined using the Keras Sequen-
tial API. The architecture consisted of three dense layers: the first two layers have rec-
tified linear unit (ReLU) activation functions for introducing nonlinearity, while sig-
moidal function was used in the third, output layer.  

Following these layers, and inspired by neuroscience [23] and model parsimony, a 
custom layer (called ConfidenceSoftmax) with softmax function and temperature scal-
ing was implemented to the output and computed the confidence score for each model 
prediction. The softmax function 𝜎 for prediction of class 𝑖 is described by  

 𝜎(𝒛)! =
"!	#$

∑ "!	#%&
%'(

 (1) 

where 𝛽 = 1/𝑇, the reciprocal of the temperature 𝑇, and the summation is over the 
three output neuronal activities 𝑧$ for class 𝑗 = 1,2,3. As 𝑇 approaches 0, the function 
becomes highly confident (i.e., the predicted probabilities become more extreme). 
Conversely, as 𝑇 is large, the predicted probabilities become more uniform and thus 
has low confidence. 𝑇 values from 0.1 to 10 were explored. Fine-tuning of 𝑇 involves 
selecting a value that optimally balances the confidence and accuracy of the model's 
predictions using the validation dataset.  
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The input layer had 223 neurons, which equate to the number of input variables (i.e. 
number of columns from the dataset sans participant identification number). The sec-
ond layer, i.e. the first hidden layer, and the next hidden layer each had 64 neurons. 
These neuron numbers were tuned to maximise classification performance. Then, the 
following layer, the output layer, had 3 neurons for the 3-class (CN, MCI and AD) 
classification, which were then connected to the confidence evaluation layer. A sche-
matic of the neural network architecture is shown in Fig. 1A.  

 
 

 
Fig. 1. Overall modelling and process. (A) Schematic diagram of the convolutional 
neural network model architecture.  (B) Summary of the overall process.  
 
 
2.4 Model Training, Testing and Evaluation 

To test for an individual (single sample), the model was trained and evaluated using 
leave-one-out cross-validation (LOOCV) [24][12]. Within each iteration of LOOCV, 
the entire dataset was split into training and testing datasets, with a single data point 
held out for testing. A neural network model with a specified temperature (e.g., of 1.5 
value) was created for model training using 50 epochs and 32 batch size. Each epoch 
represents one complete pass through the entire training dataset. A validation set was 
used to monitor the model's performance and prevent overfitting. The validation loss 
and accuracy were recorded at each epoch. After initial training, temperature scaling 
was applied to the logits (output before the softmax layer) to fine-tune the confidence 
of predictions.  
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Within each training iteration, the Adam optimiser was used, a popular optimizer 
known for its efficiency in updating weights during the training process [25]. The stand-
ard sparse categorical cross-entropy loss function was used to measure the discrepancy 
between the predicted class probabilities and the true labels. This loss function is well-
suited for multi-class classification tasks with integer-encoded labels. The model 
exhibited signs of overfitting during the initial epochs, indicated by a significant gap 
between training and validation loss. This was addressed by implementing dropout 
layers and early stopping to halt training when validation loss did not improve over 
several epochs.  

The trained model then made predictions on the single held-out test sample in the 
testing dataset. Classification accuracy was calculated, and the results included pre-
dicted class, true class, accuracy, and confidence score for each iteration. To evaluate 
the classification performance, the average accuracy, F1 score, precision and recall 
were used. Stability of the network’s final outputs (e.g. accuracy and confidence) was 
also checked by repeating the whole process 5 times. A summary of the overall process 
is illustrated in Fig. 1B.  

 
2.5 Software and Hardware 

The model architecture was defined using the Keras Sequential API. The computations 
were performed using Python within the Google Colab environment, and executed on 
a machine with a base speed of 2.40 GHz, equipped with an Intel(R) HD Graphics 520 
GPU. Code repository is available at https://github.com/Afolabialausa/Alzheimer-s-
Disease-Classification-.git The original ADNI dataset was not included as part of this 
repository. Requests to access the original datasets should be directed to ADNI 
(http://adni.loni.usc.edu/).  

3 Results 

3.1 Model accuracy and confidence for individual prediction 

We began our investigation by first setting the temperature of the confidence softmax 
function to be 1.0. We found the average accuracy of the 3-class classification to be 
0.8421. For completeness, we also evaluated the F1 score, precision and recall and they 
were 0.8423, 0.8425 and 0.8421, respectively. Although the classification accuracies 
seemed relatively high and consistent, the standard deviation e.g. for the average accu-
racy was 0.3647, which was expected given the conservative LOOCV approach ap-
plied, i.e. there is relatively higher variation for testing single individual sample or par-
ticipant. In comparison, the average confidence score was 0.8066, which was reasona-
ble for high average accuracy. Yet, the standard deviation of the confidence score was 
0.1681, which was smaller than that of the average accuracy of 0.3647.  

Next, we delved deeper into the comparison between the classification performance 
and confidence score. Fig. 2 shows a confusion matrix for the 3-class classification. 
Consistent with the high average accuracy, we could observe that the diagonal values 
of correctly predicted classes were high (CN: 303 cases; MCI: 285 cases; and AD: 329 
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cases). The off-diagonal misclassification cases were high only for CN-MCI cases, 
which was not surprising given the mixed types of cases for MCI (some might not lead 
to AD [4]). For the CN-AD off-diagonal cases, there were only a handful of misclassi-
fied cases. By aggregating the CN, MCI and AD classes, we also computed similar 
confidence scores for the true positive (TP), true negative (TN), false positive (FP), and 
false negative (FN) cases. We found the confidence scores for TP, TN, FP and FN to 
be 0.6723, 0.7511, 0.6538 and 0.7796, respectively. Ideally, we would prefer the cor-
rectly classified (TP and TN) cases to have higher confidence scores than that of incor-
rectly classified (FP and FN) cases. However, we found the confidence scores of the 
FP and FN cases to be similar to those of TP and TN. This suggested overconfidence 
of errors in the model.  
 
 

 
Fig. 2. Confusion matrix for the 3-class classification of the class-balanced data using 
temperature of 1.0. CN: control normal; MCI: mild cognitive impairment; AD: Alz-
heimer’s disease. Colour bar: case number.  

 
To resolve this overconfidence issue, we next investigated the temperature values of 

the confidence function from 0.5 (more conservative) to 2.5 (more exploratory) by re-
peating the above analytical process. Table 1 gives a summary of the results. First, we 
observed that the model’s classification accuracy (average accuracy, F1 score, precision 
and recall) performances were robust across temperature values. Second, we observed 
that the average confidence scores were also similar across temperature values. These 
provides reassurance to the model’s function. Importantly, we found that the confidence 
scores for the TP, TN, FP and FN cases could vary substantially as we vary the temper-
ature values. A low temperature of 0.5 led to overconfidence (>0.7) in all four cases, 
while a high temperature of 2.5 led to underconfidence (<0.7). The optimal temperature 
for our study was found to have a value of 2.0, as the TP and TN cases had higher 
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confidence scores than those of the FP and FN cases. Further, the standard deviation of 
the confidence score was also noticeably lower than with other temperature values.  

 

Table 1. Summary of model performance and confidence over different confidence temperatures. 
SD: standard deviation. Bold: optimal set of confidence scores. Shaded: for confidence.  

Confidence temperature 0.5 1.0 1.5 2.0 2.5 
Average accuracy 0.8448 0.8421 0.8320 0.8466 0.8476 

SD accuracy 0.3621 0.3647 0.3739 0.3603 0.3594 

F1 score 0.8449 0.8423 0.8314 0.8467 0.8472 

Precision 0.8456 0.8425 0.8314 0.8469 0.8470 

Recall 0.8448 0.8421 0.8320 0.8466 0.8476 

Average confidence 0.8152 0.8066 0.7888 0.8188 0.8163 

SD confidence 0.1628 0.1681 0.1678 0.1578 0.1613 

TP confidence 0.8024 0.6723 0.9401 0.8415 0.6889 

TN confidence 0.8152 0.7511 0.5369 0.7839 0.6621 

FP confidence 0.8084 0.6538 0.6690 0.6946 0.6871 

FN confidence 0.7288 0.7796 0.7783 0.7238 0.6297 

 

4 Discussion 

In this study, we have implemented a deep learning based approach on a heterogeneous 
and comprehensive AD dataset for individualised AD stage classification and confi-
dence estimation. Using the leave-one-out cross validation approach and a softmax 
function, we could evaluate the confidence for every model output, i.e. the model’s 
decision, of an individual. Our results showed that the model attained high classifica-
tion accuracy for the three classes of CN, MCI and AD, despite high heterogeneity in 
the data. We showed that varying the confidence’s softmax temperature parameter did 
not affect the average confidence scores. However, to be more in line with the cognitive 
(neuro)science of decision-making [23][26] and hence gain better user’s trust, the right 
temperature was required to attaining higher confidence scores for correctly classified 
(TP and TN) cases than that of incorrectly classified (FP and FN) cases. In this specific 
dataset and model, the confidence temperature was found to be at 2.0. Overall, temper-
ature scaling effectively calibrates the model’s confidence, impacting its performance 
and reliability.  

While previous approaches have made significant strides in using deep learning for 
dementia diagnosis [4]-[10], they often focused on single data types, lacked individual 
prediction confidence, and provided group-level confidence intervals. The proposed 
approach overcome these limitations by introducing a neuro-inspired deep learning 
model that simultaneously classifies dementia stages and reports confidence levels for 
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each prediction, evaluated within a LOOCV framework for individual case handling. 
This enhances the model’s practical utility and reliability in real-world clinical settings.  

While our deep learning approach shows promise for individualised AD stage clas-
sification and confidence estimation, the current study has some notable limitations. 
First, the deep network achieves a lower 3-class classification accuracy (83-85%) than 
that of our previous study (88-90%) using graph neural network, another form of deep 
learning, on the same dataset [21]. A direction to improve the classification accuracy 
could be to perform feature selection prior to classification [12][21][27]. Feature selec-
tion may also enhance the TP/TN-vs-FP/FN confidence score difference. However, we 
could not directly compare the results in this previous study [21] as the cross-validation 
approach was different. In particular, in the current study, LOOCV was used, which is 
a highly conservative approach with expected lower classification accuracy. Future 
work will more directly compare our current model with other classification models 
endowed with confidence or uncertainty evaluation [13][14][15].  

Future work should also investigate whether the model in the current study can be 
generalised to other dementia or AD datasets, including well curated open datasets or 
more messy clinical datasets [4][28]. In particular, the data used in the current study 
had large number of features with respect to the number of samples, which may poten-
tially lead to model overfitting. Datasets with smaller number of features or larger sam-
ple sizes should be explored.  

Although we have advanced a step towards better interpretability and trust in the 
model, further steps are needed for facilitating clinical decision-making and engender-
ing trust among healthcare practitioners [29]. Future work can perhaps address this by 
involving clinicians’ insights and opinions as part of the model development – humans-
in-the-loop approach [28][30]. Further, LOOCV may be prone to overfitting while be-
ing computationally expensive, and future work can evaluate how real-time clinical 
decisions can be better achieved using this approach. Addressing these limitations 
requires ongoing efforts to refine preprocessing techniques, explore alternative 
validation approaches, and enhance the interpretability of confidence measures. 
Ensuring the model's robustness and applicability in real-world clinical settings will 
depend on overcoming these challenges and validating the approach across diverse and 
representative datasets.  

In conclusion, we have demonstrated the feasibility of using confidence evaluation 
in deep network model for detecting AD stage of an individual. The use of confidence 
score for individual diagnosis offers clinicians and other stakeholders valuable insights 
into the reliability of the model predictions, thereby aiding in informed decision-mak-
ing, while enhancing transparency and trust in the diagnostic process. Accurate 
classification with associated confidence scores in clinical decision support systems can 
also inform and reduce the likelihood of misdiagnosis. This is crucial for timely and 
appropriate management treatment and intervention and hence improve patient 
outcomes.  
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