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Abstract 

Introduction: Tuberculosis remains a significant global health challenge, necessitating more efficient and 

accurate diagnostic methods. 

Methods: This study evaluates the performance of various convolutional neural network (CNN) architectures—

VGG16, VGG19, ResNet50, ResNet101, ResNet152, and Inception-ResNet-V2—in classifying chest X-ray (CXR) 

images as either normal or TB-positive. The dataset comprised 4,200 CXR images, with 700 labeled as TB-positive 

and 3,500 as normal. We also examined the impact of data augmentation on model performance and analyzed 

the training times and the number of parameters for each architecture. 

Results: Our results showed that VGG16 outperformed the other models across all evaluation metrics, achieving 

an accuracy of 99.4%, precision of 97.9%, recall of 98.6%, F1-score of 98.3%, and AUC-ROC of 98.25%. 

Surprisingly, data augmentation did not improve performance, suggesting that the original dataset’s diversity 

was sufficient. Furthermore, models with large numbers of parameters, such as ResNet152 and Inception-

ResNet-V2, required longer training times without yielding proportionally better performance. 

Discussion: These findings highlight the importance of selecting the appropriate model architecture based on 

task-specific requirements. While more complex models with larger parameter counts may seem advantageous, 

they do not necessarily offer superior performance and often come with increased computational costs. 

Conclusion: The study demonstrates the potential of simpler models such as VGG16 to effectively diagnose TB 

from CXR images, providing a balance between performance and computational efficiency. This insight can guide 

future research and practical implementations in medical image classification. 

 

Keywords 

Tuberculosis Detection, Chest X-ray Classification, Convolutional Neural Networks, Data Augmentation, 

Medical Image Analysis. 
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 INTRODUCTION 

Tuberculosis (TB) remains one of the leading infectious diseases worldwide, affecting an estimated one-third to 

one-fourth of the global population with the bacillus Mycobacterium tuberculosis, the causative agent of TB [1]. In 

2019, it was estimated that over 10 million individuals globally contracted TB, yet only 71% were detected, 

diagnosed, and reported through various countries’ national TB programs, leaving approximately 29% of cases 

unreported [2]. According to the World Health Organization’s (WHO) 2023 TB report, TB was identified as the 

second most common cause of death among infectious diseases [3]. Furthermore, the global incidence rate of TB 

remains alarmingly high at approximately 133 new cases per 100,000 people annually [3]. This situation 

underscores the need for prompt, effective, and affordable screening and treatment strategies to meet the WHO’s 

ambitious goals of reducing TB incidence by 80%, decreasing TB mortality by 90%, and eliminating catastrophic 

financial burdens on families affected by TB by 2030 [4]. 

The World Health Organization (WHO) advised member countries to proactively conduct TB screenings and 

detection, especially within the high-risk groups, taking into account their unique epidemic scenarios and financial 

levels [5]. While bacteriological tests, including sputum cultures, sputum smears, and molecular diagnostics, are 

considered the gold standard for identifying active TB cases, their applicability on a large scale, particularly among 

high-risk populations, is not feasible [6]. This limitation is due to the methods being resource-intensive, logistically 

challenging, and associated with prolonged turnaround times [7]. As a result, chest radiography has become the 

most prevalent method for early TB detection [8]. However, in countries with limited resources, which also bear 

the highest TB burden, the availability of chest radiography screenings remains inadequate, primarily due to a 

shortage of radiologists [6]. 

In recent years, significant advancements have been made in leveraging artificial intelligence, particularly through 

machine learning and deep learning techniques, for analyzing chest X-ray (CXR) images to differentiate between 

TB-positive and TB-negative images [9-15]. This innovation has enabled individuals without radiology expertise to 

conduct TB screening tests, presenting a significant shift in diagnostic approaches. These technologies have shown 

promising results, to the extent of outperforming radiologists in the interpretation of CXR images [14, 15]. In this 

research, we investigate the effectiveness of different convolutional neural network (CNN) architectures in 

classifying tuberculosis in CXR images. We compare and evaluate the performance of popular CNN models 

including ResNet, Inception, and VGG, and examine the impact of different hyperparameters on classification 

accuracy. To the best of our knowledge, this study is the first to utilize a larger and more diverse dataset and 

conduct a comprehensive comparison of the latest CNN architectures, including ResNet101, ResNet152, and 

Inception-V2, assessed across different parameters. The research aims to address the following questions 

1. How does the choice of CNN architecture affect the classification performance? 

2. What is the optimal hyperparameter configuration for each CNN architecture? 

3. Can transfer learning be leveraged to improve classification accuracy? 

4. How does incorporating data augmentation techniques impact the model’s performance compared to 

training solely on real images? 

The rest of the paper is organised as follows. In the next section, we present the literature review, which provides 

an overview of the current state of research in the field. This is followed by the methodology section, where we 

describe the deep learning models used in this research along with the techniques for improving training time such 

as transfer learning. We also describe the data and the data and analysis procedures used in our study such as data 

augmentation to mitigate against imbalance. Next, we present the results of our analysis, including any findings. 
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Finally, we discuss the implications of our results, conclude with a summary of our main findings, and suggest areas 

for future research. 

 RELATED WORK 

Research in the field of medical imaging, particularly in automating the screening and identification of TB from CXR 

images, has progressed significantly. Initial investigations explored traditional machine learning techniques, 

including support vector machines (SVM) [16, 17], decision trees [18, 19], random forests [20, 21], and XGBoost 

[22, 23], among others. However, recent advancements have shifted focus towards deep learning methods, such 

as Convolutional Neural Networks (CNNs), which have demonstrated promising results in image classification 

comparable to those of radiologists [13-15, 24]. Below, we review some of the recent studies that have utilised 

deep learning approaches for detecting (TB) in chest X-ray (CXR) images. 

 

Hooda et al. [13] proposed a 19-layer convolution Neural Network (CNN) architecture for detecting TB, consisting 

of 7 convolutional layers, 7 Relu layers, 3 fully connected layers, and 2 dropouts layers. The model was trained on a 

dataset of 800 CXR images, each resized to 224×224 pixels. Utilizing the Adam optimizer, the study achieved 

notable results, with an overall accuracy of 94.73% and a validation accuracy of 82.09%. Although these results are 

impressive, the authors identified potential areas for further improvements. They suggested investigating the 

impacts of data augmentation and transfer learning on the model’s performance, highlighting avenues for future 

research enhancements and potential increases in accuracy. 

 

Ojasvi et al. [25] developed a classification algorithm for CXR images of potential TB patients, aiming to improve 

upon existing models [26]. To mitigate against dataset imbalances and improve model reliability, they combined 

the NIH Chest X-ray Dataset, China-Shenzhen Chest X-ray Database, and Montgomery County Chest X-ray Database 

to train and fine-tune their model. By implementing coarse-to-fine transfer learning and extensive data 

augmentation techniques, they achieved a remarkable accuracy of 94.89% compared to the accuracy of 89.6% 

achieved by [26]. However, the study acknowledges the challenge of maintaining equivalent precision across CXR 

images obtained in varied settings as the model was specifically trained for the Chinese dataset. 

 

Panicker et al. [27], introduced a novel two-stage detection method for TB bacilli, utilising image binarisation and 

CNN classification to analyze microscopic sputum smear images. The method was evaluated on a diverse dataset of 

22 images, and the model demonstrated high effectiveness, achieving a recall rate of 97.13%, a precision of 78.4%, 

and an F-score of 86.76%. However, the study noted that the model’s ability to accurately detect overlapping 

bacilli was limited. In the same year, Stirenko et al. [28] explored the application of lung segmentation in CXR 

images and data augmentation to enhance TB detection from CXR images. Their study highlights the critical role of 

pre-processing, including lung segmentation and data augmentation, in addressing overfitting issues and improving 

the effectiveness of computer-aided diagnosis (CADx) systems in TB identification, particularly when working with 

limited datasets. 

 

The study by Kazemzadeh et al. [15] developed a deep learning algorithm for detecting active pulmonary TB from 

CXR images. The algorithm was trained and validated on a dataset comprising 165,754 images from 22,284 

subjects from 10 different countries. The algorithm’s performance was compared to that of 14 radiologists on 

datasets from four countries, including a cohort from a South African mining population. It achieved an AUC-ROC 

of 0.89, with superior sensitivity (88% vs. 75%, p¡0.05) and comparable specificity (79% vs. 84%) to radiologists, 
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demonstrating its potential for TB screening in resource-limited settings. Another study by Nijiati et al. [29] ut

a 3D ResNet-50 CNN architecture to differentiate active from non-active pulmonary TB using CT images. This s

similar to that of Kazemzadeh et al. [15], reported high diagnostic accuracy and efficiency, outperfo

conventional radiological methods in terms of speed and precision. 

 

In their 2019 study, Meraj et al. [30] used CNN architectures such as VGG-16, VGG-19, ResNet50, and Goog

to automate the detection of TB manifestations in CXRs, utilizing two public TB image datasets [31]. Their fin

showed that the VGG-16 model outperformed other architectures in terms of accuracy and AUC-ROC. How

the study was limited by its reliance on small and unbalanced datasets, raising questions about the generaliza

of the results. In contrast, our research builds upon and extends the work of Meraj et al. [30] by incorpora

larger and more diverse dataset. We also explore the diagnostic capabilities of more advanced CNN architec

including ResNet101, ResNet152, and Inception-V2, to assess their effectiveness in TB detection. This app

aims to provide a more comprehensive understanding of how recent deep learning advancements ca

leveraged for more accurate TB diagnosis in varied clinical settings. 

MATERIALS AND METHODS 

In this section, we provide a comprehensive overview of the methodologies used in our study, includin

dataset and preprocessing, data normalization, data augmentation, the application of transfer learning met

the architecture of CNNs utilized, and the evaluation metrics adopted to assess the performance of the mode

 Implementation Overview 

The implementation framework illustrated in Figure 1 starts with the acquisition of a well-defined da

followed by comprehensive data pre-processing, which includes data augmentation, resizing, normalization

partitioning into training, validation, and test sets. Subsequently, we embark on the development of various

learning models. These models undergo extensive training and evaluation against different hyperparameter

evaluation metrics, to accurately predict and classify CXR images into positive or negative cases of TB. 

Layers 

Figure 1. The implementation flow of the deep learning classification methodology 
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Dataset 

The dataset utilized in this research comprises 4,200 CXR images sourced from a public Kaggle data repository. The 

dataset was compiled through a collaborative effort between researchers from Qatar University (Doha, Qatar), the 

University of Dhaka (Bangladesh), and collaborators from Malaysia. They worked closely with medical professionals 

from the Hamad Medical Corporation (Doha, Qatar) and various healthcare institutions in Bangladesh. The dataset 

consists of 700 CXRs images indicative of TB and 3,500 CXRs images classified as normal, with all images having a 

resolution of 512×512 pixels [32]. This composition provides a substantial foundation for evaluating the 

effectiveness of CNN models in the detection of TB from CXR images. Figure 2 presents some of the images from 

the dataset. 

 

 

 

 

 

 

Figure 2. The CXR sample images (a) a TB-Negative (b) TB-positive 

Pre-Processing 

To optimize the performance and efficiency of our models, we implemented key pre-processing techniques, 

specifically data normalization and augmentation, prior to training the models. 

 

Data Normalization: In the pre-processing stage of image analysis, normalization is a critical step to standardize 

the input data, facilitating the model’s learning process. This study applies normalization to CXR images, which 

initially possess pixel intensity values in the range of 0 to 255, common for grayscale images [33]. The goal of 

normalization is to adjust these intensity values to a standardized scale that improves computational efficiency and 

model convergence during training. The normalization process is mathematically represented as follows: 

�� � � �  ����

����  �  ����

 

where: 

• I represent the original pixel intensity of the image, 

• Imin and Imax are the minimum and maximum possible intensity values in the original image, respectively, 

• I
� 

is the normalized pixel intensity. 

For grayscale images, Imin = 0 and Imax = 255. This equation effectively rescales the pixel intensity values to the range 

[0,1], making the input data more suitable for processing by the neural network layers. This normalization 

technique is advantageous because it ensures that each input parameter (pixel, in this case) contributes equally to 

the analysis, preventing features with initially larger ranges from dominating the learning process [34]. It also helps 

to stabilize the gradient descent optimization algorithm by maintaining a consistent scale for all gradients [35]. 

(a) (b) 
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Data Augmentation: Data Augmentation represents a powerful regularization strategy designed to artificially 

increase the dataset through label-preserving transformations, thereby incorporating more invariant examples into 

the training set [36]. This approach, characterized by its computational efficiency, has been previously used to 

reduce overfitting when training CNNs, such as in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC), 

where it contributed to achieving state-of-the-art results [37]. This method enhances the robustness and 

generalizability of deep learning models by exposing them to a wider array of variations, simulating real-world 

variability. In our study, to address the imbalance between TB-positive and TB-negative images and to introduce 

different variations, we randomly augmented 30% of the TB-positive images and 5% of TB-negative images. The 

data augmentation techniques applied included random rotation within a range of 0 to 60 degrees, random width 

and height shifts of up to 0.2 times the image size, and random zooming of up to 0.2 times the original size, 

alongside horizontal and vertical flipping. To manage the newly created pixels from such transformations, a “fill 

mode” strategy was employed, ensuring integrity and consistency in the augmented images. These augmentations 

were performed using Keras’s ImageDataGenerator, a comprehensive data augmentation suite [38]. Figure 3 

shows a sample of real images and their corresponding augmented outputs. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Sample of real and corresponding augmented images 

Transfer Learning 

Transfer Learning is a machine learning technique where a model developed for a specific task is repurposed as the 

starting point for a model on a second, related task [39]. This technique leverages the knowledge gained during the 

initial training phase in one domain to enhance learning in another, potentially unrelated domain. It operates 

under the principle that information learned in one context can be exploited to accelerate or improve the 

optimization process in another, essentially allowing for the transfer of learned features and patterns across 

different but related problems [39]. This approach is particularly beneficial in situations where the dataset for the 

second task is too small to train a deep learning model from scratch or when computational resources are limited, 

offering a pathway to achieve high model performance with relatively less data and training time. 

In this study, we propose an implementation that capitalizes on the transfer learning paradigm by utilizing pre-

trained models such as Inception-v3, ResNet (50, 101, 152), and VGG (16, 19), which were initially trained on the 

ImageNet dataset [37]. This adaptation involves fine-tuning and customizing the models’ last layers to suit our 
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classification task, effectively tailoring the robust, pre-learned representations of the ImageNet dataset to 

recognize and interpret the specific patterns and anomalies associated with TB in CXR images. 

 

CNN Architectures 

In the next subsections, we provide a brief description of the VGG and ResNet families of CNN architectures as well 

as the Inception ResNet architecture that are considered in this study. 

 

VGGNet: Introduced by Simonyan and Zisserman from the University of Oxford’s Visual Geometry Group in 2014, 

the VGGNet architecture marked a significant milestone in the field of deep learning [43]. Known for its 

outstanding performance in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) of that year, VGGNet 

is characterized by its use of 3×3 filters in all convolutional layers, simulating the effects of larger receptive fields. 

This architecture is available in two variants, VGG16 and VGG19, differing in depth and the number of layers, with 

VGG19 being the deeper model. 

 

In our research, we utilized both the VGG16 and VGG19 architectures to train models on datasets consisting of 

solely real CXR images, and a combination of augmented and real images. This approach aimed to assess the 

impact of incorporating augmented images on the performance of these two architectures. Images were resized to 

256×256 pixels before being input into the networks. We extended the architectures by adding a flattening layer, 

followed by a dense layer of 512 neurons with a relu activation function and a dropout layer with a dropout rate of 

0.2 to mitigate overfitting. A softmax activation function was used in the output layer for binary classification. We 

employed the Adam optimizer with the binary crossentropy loss function for optimisation. The training was 

conducted over 15 epochs with a batch size of 32 for both models. This rigorous approach ensured both 

architectures could classify between TB-positive and TB-negative CXR images accurately. 

 

ResNet: [41] introduced the deep residual network (ResNet) architecture in their 2016 seminal paper. This 

architecture greatly improved the performance of deep neural networks and went on to win the COCO object 

detection challenge and the 2015 ImageNet Large Scale Visual Recognition Challenge (ILSVRC). To date, several 

variants of the ResNet architecture exist, including ResNet50, ResNet101, and ResNet152, which vary in depth and 

number of layers. ResNet architectures are very deep models [41, 44]. The core idea behind ResNet is the use of 

residual connections, also known as shortcuts, which bypass one or more layers. By resolving the vanishing 

gradient issue, these shortcuts maintain the gradient flow across the network and facilitate the training of much 

deeper networks [41]. 

 

The CXR images in this study were classified using the ResNet50, ResNet101, and ResNet152 architectures. We 

added three more layers to the ResNet50 model, two, each with 256 units and one with 512 units, using batch 

normalization and ReLU activation in each layer. To reduce overfitting, dropout layers were added with dropout 

rates of 0.3, 0.25, and 0.2 respectively. The binary cross-entropy loss function was used to compile the model, 

while the Adam optimizer was used to optimise the model at a learning rate of 0.001. Two units with a softmax 

activation function made up the output layer, which classified the images as either TB-positive or TB-negative. 

Training for this model involved 16 batch sizes and 100 epochs. 

 

ResNet101 was trained using the same settings as ResNet50, as preliminary training showed that the same 

parameter values used for ResNet50, also yielded optimal results for the ResNet101 architecture. For ResNet152, a 
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selective fine-tuning approach was adopted where, only the last 10 layers of the network were trainable, 

enhancing the model’s focus on more feature-specific adjustments in the later stages of the network. This model 

shared the augmentation layers of ResNet50 but was trained for only 50 epochs, incorporating a learning rate 

scheduler, ReduceLROnPlateau, which adjusted the rate based on the validation loss with a factor of 0.1, patience 

of 5, and a minimum learning rate of 1×10
−6

, thereby optimizing the training dynamics. The details of the models’ 

configuration are shown in Table 1. 

Table 1: Training Hyperparameters Of ResNet Models 

Hyperparameter ResNet50 ResNet101 ResNet152 

Number of Layers 53 (50 base + 3 extra) 104 (101 base + 3 extra) 155 (152 base + 3 extra) 

Units per Layer 256, 256, 512 256, 256, 512 256, 256, 512 

Activation ReLU ReLU ReLU 

Batch Normalization Yes Yes Yes 

Dropout Rate 0.3, 0.25, 0.2 0.3, 0.25, 0.2 0.3, 0.25, 0.2 

Optimizer Adam Adam Adam 

Learning Rate 0.001 0.001 Variable (ReduceLROnPlateau) 

Loss Function Binary Crossentropy Binary Crossentropy Binary Crossentropy 

Training Epochs 100 100 50 

Batch Size 16 16 16 

 

Inception-ResNet: The Inception networks, introduced by Szegedy et al. [45], have greatly advanced the field of 

CNN as they have achieved state-of-the-art performance in a number of computer vision problems [45-47]. The 

original Inception V1, also known as GoogleNet, was first introduced in 2014 and won the ILSVRC of that year. The 

architecture introduced a novel approach, of using multiple convolutional filter sizes in parallel, allowing the 

network to capture various spatial features of different scales with improved utilization of computing resources 

[45]. 

 

In this study, we used Inception-ResNet V2 architecture, a hybrid model that combines the benefits of both the 

Inception and residual networks. This hybrid approach enables the architecture to learn more complex features 

with improved training stability and faster convergence [45]. The Inception-ResNet V2 also leverages residual 

connections to skip certain layers during training, which helps it improve gradient flow, accelerate training times, 

and reduce the likelihood of vanishing gradient problems in deep networks [48]. We selected Inception-ResNet V2 

due to its demonstrated state-of-the-art results in several medical imaging tasks [47]. 

 

For our implementation, the Inception-ResNet V2 architecture was initialized with weights pre-trained on the 

ImageNet dataset. Similar to our approach with the ResNet152 model, all layers except the last ten were frozen to 

retain the pre-trained features from ImageNet. The last ten layers were set to be trainable, enabling the model to 

learn specific features from the CXR images. We added three new layers: two with 256 units each and one with 

512 units, all using ReLU activations and Batch Normalization. Each of these layers was followed by Dropout layers 

with rates of 0.4, 0.35, and 0.3, respectively, to introduce non-linearity and reduce overfitting. The final output 

layer consisted of two units with a softmax activation function for binary classification. The model was then 

compiled using binary cross-entropy as the loss function and the Adam optimizer with a learning rate of 0.0001. 

Training was conducted for 50 epochs with a batch size of 16. 

Evaluation Metrics 

The performance of the CNN architectures in classifying CXR images into TB-positive and TB-negative categories 

was assessed using several standard performance metrics including: accuracy, precision, recall, F1-score, and the 
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Area Under the Receiver Operating Characteristic curve (AUC-ROC). Each metric provides unique insights into the 

model’s classification abilities, considering both the true and false predictions. 

 Accuracy: This metric measures the proportion of true positive and true negative results among the total number 

of cases examined: 

�����	�
 �  ��  �� 
��  ��  ��  �� 

   

where: 

• TP (True Positives): The number of TB-positive images that are correctly identified as TB-positive by the model 

• TN (True Negatives): The number of TB-negative images that are correctly identified as TB-negative by the model 

• FP (False Positives): The number of TB-negative images that are incorrectly identified as TB-positive by the 

model 

• FN (False Negatives): The number of TB-positive images that are incorrectly identified as TB-negative by the 

model. 

 

Precision: Also known as positive predictive value, precision is the ratio of correctly identified TB cases to all cases 

that were diagnosed as TB by the model. It measures the model’s accuracy in diagnosing a patient with TB when 

the model predicts the disease. High precision indicates a low rate of false TB diagnoses. Mathematically, it is 

defined as: 

��������� �  ��
��  �� 

Recall: Recall, or sensitivity, is especially critical in medical diagnostics as it quantifies the model’s ability to 

correctly identify all actual TB cases. It represents the proportion of actual TB cases that were correctly identified 

by the model and aims to minimize the risk of missing a true TB case. It is computed as: 

���	�� �  ��
��  �� 

F1-Score: The F1-score is the harmonic mean of precision and recall, providing a single measure that balances both 

the false positives and false negatives. In TB diagnosis, it is particularly useful because it creates a balance between 

precision (minimizing false TB diagnoses) and recall (minimizing missed TB diagnoses), which is crucial for medical 

screening tests. It is defined as: 

�� � 2 � ��������� � ���	��
���������  ���	��  

AUC-ROC: The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) measures a model’s ability to 

discern between positive and negative classes. In the context of our problem, that specifically refers to 

distinguishing between TB-positive and TB-negative CXR images. The AUC-ROC curve is a plot of the true positive 

rate (TPR) against the false positive rate (FPR) at various threshold settings. The AUC-ROC provides an aggregated 

measure of the model’s performance across all classification thresholds, with a value of 1 representing a perfect 

model and a value of 0.5 representing a model with no discriminatory power. The approximate area under the 

receiver operating characteristic curve (AUC-ROC) is calculated by using the following formula: 

��� � � ����� � ������
� � �����  ���	���

2
�

�
�
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where i is the current data point or threshold, FPRi and TPRi are the false positive and true positive rates at the i-th 

threshold, respectively, and n is the number of data points or thresholds used to calculate the AUC-ROC. Each term 

in the sum represents the area of a trapezoid where (FPRi − FPRi−1) is the base of the trapezoid and (TPRi + TPRi−1)/2 

is the average height of the trapezoid. The formula calculates the AUC-ROC by summing the areas of trapezoids 

formed by connecting consecutive points on the AUC-ROC curve. 

Computational Environment 

The implementation and findings of this study were based on utilizing the Keras 3.3.3 and TensorFlow 2.16.1 

frameworks. The experiments were conducted on a single GPU MSI GL75 Leopard 10SFR laptop with 32GB of RAM 

and an 8GB NVIDIA GEFORCE RTX 2070 GDDR6 card. The system operated using the CUDA 12.1 and cuDNN SDK 

8.7.0 platforms to ensure efficient GPU acceleration and deep learning model training. 

RESULTS 

The study aimed to analyze and compare the performance of various CNN architectures, including VGG16, VGG19, 

ResNet50, ResNet101, ResNet152, and Inception-ResNet-V2, in classifying CXR images as either TB-positive or TB-

negative. Additionally, we also investigated whether data augmentation could further improve the classification 

performance of these models by comparing the performance of models trained on only real images versus those 

trained on a combination of real and augmented data. We went further to examine the training time and the 

number of parameters for each architecture to understand the computational efficiency and resource demands for 

each model. This analysis is important for practical implementation, particularly in resource-constrained settings 

where training time and computational costs are significant considerations. By evaluating these parameters, we 

aimed to identify models that not only perform well but also offer a balanced trade-off between accuracy and 

efficiency, making them suitable for real-world applications in diverse healthcare environments. 

 

Table 2 presents the models’ performance evaluated across accuracy, precision, recall, and F-score for models 

trained on real images and those trained on a combination of real and augmented data. Figure 4 shows the 

performance of these models when evaluated using the AUC-ROC score metric. It is observed that the VGG16 

outperformed all other architectures across all metrics, with an accuracy of 99.4%, precision of 97.9%, recall of 

98.6%, F1-Score of 98.3%, and AUC of 98.25%. Its performance was superior consistently irrespective of whether 

the models were trained with or without data augmentation. 

 

Table 2: Evaluation of CNN architectures across key evaluation metrics: This table summarizes the performance of various CNN architectures 

according to precision, recall, and F1-Score. Models marked with an asterisk (*) were trained using a combination of real and augmented 

data, showcasing the impact of data augmentation on model performance. 

Architecture Accuracy Precision Recall F1-Score 

VGG16 99.4 97.9 98.6 98.3 

VGG16
* 99.3 96.6 99.3 97.9 

VGG19 99.2 96.6 98.6 97.6 

VGG19
* 99.2 96.6 98.6 97.6 

ResNet50 96.1 81.3 96.9 88.4 

ResNet50
* 89.0 97.5 30.0 45.9 

ResNet101 96.9 94.8 84.6 89.3 

ResNet101
* 97.3 92.1 90.0 91.1 

ResNet152 97.9 93.6 93.6 93.6 

ResNet152
* 97.5 87.6 96.6 92.1 

Inception ResNet-v2 99.0 95.9 98.6 97.2 

Inception ResNet-v2
* 99.2 97.2 97.9 97.5 
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Surprisingly, increasing the dataset size through data augmentation did not correspond with an increase in the 

performance of the models across all architectures, as seen in Table 2. This was also observed in other models such 

as Resnet50, where when augmented data was included, the AUC-ROC score dropped significantly from 85.65% to 

63.75% as shown in Figure 4. 

 

Figure 4. The models’ area under a curve scores 

Training Time 

We also tracked each model’s training time with a combination of data augmentation and real images versus 

training with only real images, as shown in Figure 5. As expected, training with data augmentation requires more 

time due to the increased size of the dataset. For example, training the ResNet152 with data augmentation took 

356.6 minutes whereas training without augmentation took 345.7 minutes. This observation highlights the trade-

off between longer training times and the potential benefits of data augmentation. However, data augmentation 

did not improve performance in our case, indicating that the additional training time did not translate into better 

model generalization. 
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Figure 5. Training time for the models 

 

 

Model Parameters 

In addition to our analysis, We provide a detailed breakdown of the parameter count for each model used in our 

study, as shown in Figure 6. The number of parameters in a model reflects its complexity and capacity to learn 

from data. Consequently, it has a direct impact on both training time and the computational resources required, 

influencing the model’s overall efficiency and scalability. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Parameters of each model 

DISCUSSION 

The findings from this study provide significant insights into the performance and efficiency of several CNN 

architectures in the classification of CXR images for TB detection. The architectures evaluated included VGG16, 

VGG19, ResNet50, ResNet101, ResNet152, and Inception-ResNet-V2. Of these, the VGG16 consistently achieved 

the highest performance across all metrics such as: accuracy, precision, recall, and F1-score. This consistent 

performance suggests that VGG16 effectively captures the necessary features for distinguishing between TB-

positive and TB-negative CXR images, even with fewer parameters compared to the deeper models. 

 

The findings also highlight the fact that, while data augmentation is often used to improve the performance of CNN 

models by expanding the dataset and introducing variability, it does not necessarily lead to performance 
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improvements if the base dataset already provides sufficient diversity for training. In our study, the original dataset 

appeared robust enough, and the addition of augmented data did not enhance model performance. This suggests 

that the benefits of data augmentation are context-dependent and may not always be necessary or effective when 

the existing dataset is already well-suited for the task. 

 

It is commonly observed in several studies that models with a higher number of parameters, such as ResNet152 

and InceptionResNet-V2, are capable of capturing more deep patterns in the data [41, 45]. However, this comes at 

the cost of requiring more computational resources and longer training times. Interestingly, in our study, despite 

having fewer parameters, VGG16 outperformed the more complex models. This suggests that for our specific task 

of classifying CXR images into TB-positive and Tb-negative categories, VGG16 efficiently captured the relevant 

features without necessitating excessive complexity. This finding highlights the importance of selecting the 

appropriate model architecture based on the specific characteristics and requirements of the task at hand, rather 

than simply opting for the model with the most parameters. This result also aligns with the principle that simpler 

models can often perform competitively when they are well-matched to the data and the problem domain [43]. 

 

CONCLUSION 

This study presents a comprehensive evaluation of several CNN architectures - VGG16, VGG19, ResNet50, 

ResNet101, ResNet152, and Inception-ResNet-V2 — in classifying CXR images as either TB-positive or TB-negative. 

The findings showed that the VGG16 architecture consistently outperformed the other models across all the 

evaluation metrics, achieving superior performance despite having fewer parameters compared to the more 

complex architectures such as ResNet152 and InceptionResNet-V2. 

 

Our results also showed limited benefits of data augmentation in this context, suggesting that the original dataset 

provided sufficient diversity for effective training. This highlights the importance of context in the application of 

data augmentation techniques. Furthermore, the study demonstrated the significant trade-offs between model 

complexity, training time, and performance. Models with more parameters, such as ResNet152 and Inception-

ResNet-V2, required longer training times and more computational resources without corresponding 

improvements in classification performance across all the evaluation metrics. This result continues to emphasize 

the need for careful selection of model architecture based on the specific characteristics and requirements of the 

task at hand. Overall, our research contributes to the growing body of evidence supporting the effectiveness of 

deep learning models in medical image classification and provides insights into optimizing these models for TB 

detection in CXR images. 
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