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ABSTRACT 24 

BACKGROUND: Asthma is recognized as an inflammatory disease of the airways, but 25 

inflammation may also affect the parenchyma and pulmonary vasculature. Hyperpolarized 129Xe 26 

MRI and MR spectroscopy (MRS) provide a way to quantify the transfer of gas from the airways 27 

through the alveolar membrane and its binding to hemoglobin in the red blood cells (RBC) of the 28 

pulmonary microvasculature. The vast majority of 129Xe MRS studies have investigated 29 

interstitial lung disease and the ratio of 129Xe binding to the RBC and 129Xe present in the 30 

alveolar membrane, (RBC:membrane) which is a surrogate of oxygen gas-transfer to the blood. 31 

We wondered if 129Xe RBC:membrane would differ in asthma patients as compared to healthy 32 

volunteers because of recent work showing abnormally diminished pulmonary vascular small-33 

vessel structure in severe- asthma. 34 

RESEARCH QUESTION: Do 129Xe MRI gas-transfer measurements differ significantly in 35 

patients with moderate-severe asthma?  36 

STUDY DESIGN AND METHODS: In this retrospective study, healthy (NCT02484885) and 37 

asthma (NCT04651777; NCT02351141) participants were evaluated who provided written 38 

informed consent. 39 

RESULTS: Thirty-one participants with asthma (mean age=55 years ±18; 22 females) and 32 40 

healthy volunteers (mean age=31 years ±14; 12 females) with 129Xe MRS were evaluated. FEV1, 41 

VDP and DLCO/KCO were significantly different in asthma compared to healthy participants. 42 

Age-corrected 1RBC:membrane was significantly different in moderate-severe asthma 43 

(0.32±0.09) as compared to healthy participants (0.47±0.12, P=.01). RBC:membrane was 44 

significantly related to pulse-oximetry hemoglobin estimates (ρ=.29; P=.04) and DLCO (ρ=.71; 45 
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P<.001). Significant relationships between 129Xe RBC:membrane and age were observed in 46 

healthy (ρ=-.55; P=.002) and asthma participants (ρ=-0.49; P=.006), adjusted for sex. A 47 

significant ANCOVA model also revealed the influence of age (P=.002), sex (P<.001), 48 

hemoglobin (P=.003) and asthma status (P=.02) on RBC:membrane.  49 

INTERPRETATION: 129Xe RBC:membrane values were significantly different in moderate-50 

severe asthma compared to healthy volunteers and were explained by age, sex, hemoglobin, and 51 

asthma status.  52 
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INTRODUCTION 53 

Although asthma is recognized as an inflammatory airway disease, other lung compartments 54 

such as the parenchyma and pulmonary vasculature may be modified directly or indirectly, by 55 

inflammation.1-3 For example, evidence from cross-sectional and longitudinal studies in severe 56 

asthma suggested pulmonary vascular differences in the small vessel volume fraction.4,5 Reversal 57 

of these abnormalities was reported in asthma patients following biologic therapy, as evidenced 58 

by a redistribution of blood volume from larger to smaller vessels.5 It is possible that some of 59 

these abnormalities stem from inflammation and pulmonary vascular remodeling.2,3 60 

Hyperpolarized 129Xe MRI and MR spectroscopy (MRS) provide a way to quantify the transfer 61 

of gas from the airways through the alveolar membrane and its binding to hemoglobin in the red 62 

blood cells (RBC) of the pulmonary microvasculature. In these studies, the ratio of 129Xe binding 63 

to the RBC to 129Xe which has participated in transmembrane diffusion into the alveolar 64 

membrane, (RBC:membrane) is utilized as a surrogate of oxygen gas-transfer to the blood.6 65 

Recent work revealed the reproducibility and age-dependence of RBC:membrane values.7-10 The 66 

vast majority of such 129Xe “multi-compartment” studies have investigated interstitial lung 67 

disease,11-15 mainly because RBC:membrane is a sensitive marker of alveolar membrane 68 

thickening and fibrosis.16 In a small number of patients with asthma, a pilot study revealed both 69 

abnormally increased and abnormally decreased RBC:membrane values, without 70 

RBC:membrane post-bronchodilator response.17 71 

Because of these previous contradictory findings, our objective was to acquire and evaluate 129Xe 72 

MRS gas-exchange measurements in patients with moderate-severe asthma and compare these 73 

directly with healthy volunteers. We also aimed to measure the quantitative relationships of 74 
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RBC:membrane measurements with age, sex, asthma severity, diffusing-capacity of the lung for 75 

carbon-monoxide and hemoglobin values.   76 

 77 

METHODS 78 

Study participants and Design 79 

We retrospectively evaluated 31 participants with asthma and 32 healthy volunteers who 80 

provided written informed consent (NCT02484885; NCT04651777; NCT02351141) to 81 

pulmonary function tests and MRI. Inclusion criteria for participants with asthma consisted of 82 

male and female non-smokers, 18-75 years of age and documented diagnosis of asthma and 83 

treated with low-to-high dose ICS/LABA. Healthy volunteers were males and females 18-85 84 

years of age, with ≤1 pack year smoking history and no previous diagnosis or history of chronic 85 

respiratory disease.  86 

Pulmonary Function Tests 87 

Spirometry and DLCO measurements were undertaken according to American Thoracic Society 88 

guidelines using a MedGraphic Elite Series system (MedGraphics; St. Paul, MN). Participants 89 

with asthma withheld short-acting β-agonists for 6 hours, and long-acting β-agonists for 12 hours 90 

prior to study visits,18 and completed the Asthma Control Questionnaire (ACQ-6),19 Asthma 91 

Quality-of-Life Questionnaire (AQLQ),20 and St. George’s Respiratory Questionnaire (SGRQ).21  92 

MRI Acquisition and Analysis 93 

129Xe gas was polarized to 30% to 55% (XeniSpin 9820; Polarean, Durham, NC, USA). 94 

Anatomic (1H) MRI, functional (129Xe) MRI and MRS were acquired at 3.0 Tesla (Discovery 95 

MR750; GE Healthcare, Milwaukee, WI, USA), as previously described.22 Spectroscopic 96 

measurements were reported as normalized ratios (RBC:membrane, Membrane:gas, RBC:gas) 97 
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using the area-under-the-curve values from the corresponding RBC, membrane and gas 98 

resonance peaks. 99 

Statistical Analysis 100 

SPSS Statistics version 29.0 (IBM) was used for analysis. Normality was assessed with Shapiro-101 

Wilk tests, and non-parametric tests were used for non-normal data. Differences between 102 

participant groups were assessed with independent samples t-tests or Mann-Whitney U-tests. 103 

Analysis of covariance (ANCOVA) was used to generate significant models explaining 104 

RBC:membrane values. Results were considered statistically significant if the probability of a 105 

Type I error was less than 5% (P<.05). 106 

 107 

RESULTS 108 

Table 1 shows demographic, pulmonary function, and imaging measurements for 31 participants 109 

with asthma (mean age, 56 years ±17; 21 females) and 32 healthy participants (mean age, 31 110 

years ±14; 12 females). The two groups were significantly different for age (P<.001), BMI 111 

(P=.009), FEV1 (P=.001), FEV1/FVC (P=.004), DLCO (P=.01), KCO (P=.003) and VDP 112 

(P<.001). Mean 129Xe RBC:membrane was significantly different when age-adjusted in 113 

moderate-severe asthma (0.32±0.09) as compared to the healthy volunteers (0.47±0.12; P=.01).  114 

Figure 1 (top panel) shows box and whisker plots with males (blue) and females (red) identified 115 

the mean RBC:membrane significant difference (P=.01) in patients with moderate-severe 116 

asthma. The middle panel shows significant sex-dependent linear relationships for 117 

RBC:membrane with age in healthy (ρ=-.55, P=.002, Y=-0.0035x+0.5776) and asthma (ρ=-.49, 118 

P=.006, Y=-0.0022x+0.4484) participants. A significant ANCOVA model revealed the 119 

significant influence of age (P=.005), sex (P<.001), hemoglobin (P=.008), and asthma status 120 
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(P=.02) on RBC:membrane values. As shown in Figure 2, significant relationships for 121 

RBC:membrane with hemoglobin (ρ=.29, P=.04) and DLCO (ρ=.71, P<.001) were also observed. 122 

 123 

DISCUSSION 124 

129Xe MRI offers novel insights into airway, terminal airway and gas-transfer function in patients 125 

with asthma because of its modest Ostwald solubility in biologic membranes, including the 126 

alveolar and RBC membranes. Once inhaled, 129Xe gas rapidly flows through airways and to 127 

terminal airways throughout the lung to provide reproducible measurements of airways 128 

dysfunction. 129Xe also participates in alveolar transmembrane diffusion and binds to 129 

microvascular RBC, displacing molecular oxygen on hemoglobin-bound heme. Because the 130 

129Xe gas, alveolar membrane and RBC signals resonate at different frequencies, their individual 131 

resonance peaks may be quantified directly using the area-under-the-curve (AUC) and 132 

normalized to one another. The ratio of the RBC signal peak AUC to the alveolar membrane 133 

signal peak AUC results in RBC:membrane, which has been proposed as a voxel-specific 134 

surrogate of gas-transfer. 135 

We recently discovered that bulk blood volume in the large- (BV10) and small-vessels (BV5)
4 136 

differed in severe asthma, compared to healthy volunteers, which was consistent with the notion 137 

of pulmonary vascular pruning in severe asthma,4 hypoxic vasoconstriction and/or vascular wall 138 

structural remodeling.2 It is impossible to undertake serial histology to determine the temporal 139 

dynamics of these processes, but 129Xe MRI makes this possible non-invasively, in vivo, with 140 

high spatial-temporal resolution, without radiation, and with obvious advantages over histology.  141 

To better understand the potential influence of pulmonary vascular abnormalities on gas-142 

exchange in patients with moderate-severe asthma, here we evaluated a small group of patients 143 

and healthy volunteers using 129Xe MR RBC:membrane and pulmonary function tests. We 144 
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observed: 1) mean 129Xe RBC:membrane was significantly different in asthma compared to the 145 

healthy volunteers (P=.01), 2) RBC:membrane values were both sex- and age-dependent in 146 

healthy (P=.002) and asthma participants (P=.006) participants, and, 3) in a significant model, 147 

age (P=.005), sex (P<.001), hemoglobin (P=.008), and asthma status (P=.02) influenced 148 

RBC:membrane values.  149 

The difference between asthma and healthy volunteer RBC:membrane values, even after age-150 

correction, was unexpected.  The fact that Membrane:gas did not differ but there was a trend 151 

towards diminished RBC:gas values in asthma participants, suggests RBC pulmonary vascular 152 

differences may be responsible for the abnormal RBC:membrane values in asthma. This 153 

hypothesis is supported by the finding of abnormally diminished small vessel blood distribution 154 

(coined pruning) observed in the Severe Asthma Research Program.4,5 Lending support to the 155 

finding of lower RBC:membrane in asthma participants, a significant ANCOVA model also 156 

revealed the contributions of sex, age, hemoglobin and asthma to RBC:membrane.  157 

Similar to previous work, we observed an age-related decrease in the RBC:Membrane ratio.8-10 158 

In addition, the finding of moderate relationships for all participants between RBC:membrane 159 

and both DLCO and hemoglobin is consistent with our understanding of gas-exchange and the 160 

role of hemoglobin and heme binding by 129Xe atoms.  161 

In conclusion, we report significantly different 129Xe RBC:membrane values in moderate-severe 162 

asthma participants as compared to healthy volunteers, which may be related to pulmonary 163 

vascular remodeling in these patients.   164 
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TABLES: 228 

Table 1. Demographic and Clinical Characteristics 229 

Parameter Mean (SD) Healthy (n=32) Asthma (n=31) P 

Age years 31 (14) 56 (17) <.001 
BMI kg/m2 25 (4) 29 (7) .009 
Female n (%) 12 (38) 21 (68)  
GINA-4 n (%) – 25 (81)  
GINA-5 n (%) – 6 (19)  
Pack-years    
Mean 0 (0) 7 (14) <.001 
Median [IQR] 0 [0–0] 0 [0–7]  

Duration of asthma years    
Mean 0 (0) 28 (20) <.001 
Median [IQR] 0 [0–0] 26 [10–39]  

SpHb g/dL 15.3 (1.4) 14.8 (1.6) .2 
SpO2 % 98 (1) 97 (2) .01 
FEV1 %pred 92 (13) 79 (17) .001 
FVC %pred 97 (14) 91 (12) .09 
FEV1/FVC %pred 95 (8) 85 (13) .004 
DLCO mL/min/mmHg 34 (9) 23 (9) .003 
DLCO %pred 121 (19) 96 (28) .01 
VA (L) 5.8 (1.4) 5.1 (1.6) .2 
VA %pred 103 (14) 96 (18) .3 
KCO mL/min/mmHg/L 5.8 (0.9) 4.6 (1.3) .004 
KCO %pred 119 (18) 99 (17) .003 
ACQ-6 – 1.5 (1.0)  
AQLQ – 5.3 (1.0)  
SGRQ – 37 (21)  
VDP % 1 (1) 8 (8) <.001 
129Xe RBC:Membrane 0.47 (0.12) 0.32 (0.09) .01* 

129Xe Membrane:Gas 0.99 (0.26) 0.89 (0.36) .5* 

129Xe RBC:Gas 0.47 (0.19) 0.30 (0.16) .08* 

n=11 for Asthma DLCO, VA, KCO; n=12 for Healthy VDP; n=23 for Asthma SpHb; n=26 for 230 
Healthy SpHb; n=27 for Asthma SGRQ; n=28 for Healthy DLCO, VA, KCO. 231 
P=Significance values for independent samples t-test; P*=Significance values for ANCOVA 232 
adjusted for age. BMI=body mass index; GINA=Global Initiative for Asthma; IQR=interquartile 233 
range; SpHb=continuous total hemoglobin; SpO2=peripheral capillary oxygen saturation; 234 
FEV1=forced expiratory volume in 1 second; %pred=percent of predicted value; FVC=forced 235 
vital capacity; DLCO=diffusing capacity of the lungs for carbon monoxide; VA=alveolar volume; 236 
KCO=transfer coefficient of the lung for carbon monoxide; ACQ-6=Asthma Control 237 
Questionnaire; AQLQ=Asthma Quality-of-Life Questionnaire. 238 

  239 
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FIGURES: 240 

Figure 1. 129Xe MRI RBC:membrane in Asthma and relationships with age & sex 241 
Box and whisker plots show there was significantly different RBC:Membrane (P=.01), but not 242 
Membrane:Gas (P=.5) or RBC:Gas (P=.08) in healthy and asthma participants. Box represents 243 
mean, whiskers represent min–max range. Significant relationship with age for RBC:membrane 244 
for healthy (ρ=-.55, P=.002, Y=-0.0035x+0.5776) and asthma participants for RBC:Membrane 245 
(ρ=-.49, P=.006, Y=-0.0022x+0.4484). P=Significance values for ANCOVA adjusted for sex. 246 
ANCOVA model shows significant effects on RBC:membrane of age (P=.005), sex (P<.001), 247 
hemoglobin (P=.008), and asthma status (P=.02). The model's explanatory power is high 248 
(R²=.964; F=297.747; P<.001). BD=bronchodilator; RBC=red blood cell. 249 
 250 
Figure 2. RBC:membrane Relationships. 251 
Significant relationships for RBC:membrane with pulse-oximetry measured hemoglobin (ρ=.29, 252 
P=.04, y=4.00x+13.48) and DLCO (ρ=.71, P<.001, y=56.06x+6.50). P=Significance values. 253 
RBC=red blood cell; DLCO=diffusing capacity of the lungs for carbon monoxide. 254 
 255 
 256 
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