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Abstract 24 

Cellular senescence increases with age and contributes to age-related declines and pathologies. 25 

We identified circulating biomarkers of senescence associated with diverse clinical traits in 26 

humans to facilitate future non-invasive assessment of individual senescence burden and efficacy 27 

testing of novel senotherapeutics. Using a novel nanoparticle-based proteomic workflow, we 28 

profiled the senescence-associated secretory phenotype (SASP) in monocytes and examined 29 

these proteins in plasma samples (N = 1060) from the Baltimore Longitudinal Study of Aging 30 

(BLSA). Machine learning models trained on monocyte SASP associated with several age-related 31 

phenotypes in a test cohort, including body fat composition, blood lipids, inflammation, and 32 

mobility-related traits, among others. Notably, a subset of SASP-based predictions, including a 33 

‘high impact’ SASP panel that predicts age- and obesity-related clinical traits, were validated in 34 

InCHIANTI, an independent aging cohort. These results demonstrate the clinical relevance of the 35 

circulating SASP and identify relevant biomarkers of senescence that could inform future clinical 36 

studies.   37 
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Introduction 38 

 39 

Cellular senescence, a hallmark of aging1, is a state of permanent cell-cycle arrest in response to 40 

a variety of sublethal stresses, such as DNA damage, oxidative stress, metabolic imbalance, and 41 

telomere erosion2. Despite being in replication arrest, senescent cells remain metabolically active 42 

and secrete a plethora of proteins and other biomolecules, including cytokines, chemokines, 43 

metalloproteases, and growth factors, collectively known as the senescence-associated secretory 44 

phenotype (SASP)3. With increasing age, senescent cells accumulate in various tissues1 and, at 45 

least partially via the SASP, contribute to diverse age-related pathologies, including cognitive 46 

decline4-7, cardiovascular disease8, and immune dysfunction9-11, among others12-14. Importantly, 47 

selective elimination of senescent cells and modulation of the SASP by senotherapeutic 48 

interventions are effective strategies to improve age-associated pathologies in preclinical 49 

models7,15,16. Thus, developing methods to identify and eliminate senescent cells in humans is a 50 

promising goal for improving healthspan. 51 

In recent years, senescence of immune cells, including monocytes, have been implicated 52 

as a potentially key driver of age-related pathologies. Senescence of immune cells increases with 53 

age and is thought to contribute to an age-related increase of sterile inflammation —54 

“inflammaging” — and higher susceptibility to infectious diseases17. Additionally, higher levels of 55 

senescence in the immune system drive systemic aging and propagate senescence in solid 56 

organs, such as the liver, kidney and lung18. There is emerging evidence that senescent 57 

monocytes accumulate in vivo in humans. These circulating immune cells form up to 10% of the 58 

total white blood cells and are involved in pathogen recognition via Toll-like receptors (TLRs) and 59 

regulation of inflammation. A proinflammatory phenotype of monocytes has been attributed to 60 

senescence in the elderly19. Notably, circulating monocytes express a senescence-like signature 61 

in vivo in subjects with severe COVID, and SASP from these monocytes was associated with 62 

increased severity of the infection, suggesting an important role of senescent monocytes in 63 

mediating systemic inflammation in COVID patients20. Moreover, monocytes are promising 64 

sources of biomarkers due to their abundance in blood. Despite their potential involvement in 65 

inflammaging and biomarker potential, the role of monocyte senescence-associated proteins in 66 

aging and their potential as clinical biomarkers are poorly characterized.  67 

Quantifying circulating biomarkers of senescence holds clinical potential for identifying 68 

outcomes tied to senescence, enabling non-invasive determination of individual senescence 69 

burden for risk stratification, and tracking the effectiveness of senotherapeutics in clinical 70 

trials21,22. In recent years, high-throughput proteomic studies have quantitatively profiled 71 
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senescence-associated proteins in circulation and demonstrated their associations with diverse 72 

aging-related outcomes in humans21-23, including mortality, multimorbidity, strength and mobility. 73 

These studies leveraged human cohorts, such as InCHIANTI (Invecchiare in Chianti), BLSA 74 

(Baltimore Longitudinal Study of Aging), GESTALT (Genetic and Epigenetic Signatures of 75 

Translational Aging Laboratory Testing), Lifestyle Interventions for Elders (LIFE), and others24-30. 76 

However, no biomarker studies to date have comprehensively characterized the monocyte-77 

specific SASP and evaluated its clinical utility as circulating biomarkers in humans. 78 

The primary goal of this study is to comprehensively profile the monocyte SASP in serum-79 

supplemented culture conditions and evaluate its clinical utility as a circulating biomarker in 80 

humans. We adopted a novel automated nanoparticle-based workflow previously leveraged for 81 

analysis of plasma31 that overcomes the challenges associated with mass spectrometry (MS)-82 

based profiling of serum-supplemented medium. Thus, we completed the first comprehensive MS 83 

analysis of SASP that is not confounded by serum-free culture conditions, which are widely used 84 

for MS-based quantification of SASP from cell-culture experiments32. Moreover, we evaluated the 85 

senescent monocyte signatures in the plasma proteome of the BSLA study. We identified 86 

signatures of SASP, including a high-impact panel, that predict age-related and obesity-87 

associated clinical traits in a test cohort. Remarkably, SASP-based clinical trait associations were 88 

replicated in InCHIANTI, an independent aging study.  89 

 90 

Results 91 

 92 

Optimization of senescence in monocytes and development of a biomarker discovery 93 

pipeline 94 

To develop a rigorously validated model of cellular senescence in monocytes (Fig. 1a), senescent 95 

THP-1 monocyte cells were generated with multiple protocols, and an optimal method was 96 

selected, based on the expression of a combination of senescence biomarkers and cell viability. 97 

Senescence was induced in THP-1 monocytes with varying doses of gamma irradiation (IR) and 98 

assessed at various time points after IR. To test viability and proliferation, THP-1 cells in complete 99 

medium were exposed to different doses of IR (5, 7.5 and 10 Gy) and cell viability measurements 100 

at 24-h intervals up to 13 days confirmed that these doses are not lethal (Fig. S1a). However, cell 101 

proliferation was inhibited after exposure to 7.5 and 10 Gy as seen by reduced incorporation of 102 

5-ethynyl-2'-deoxyuridine (Edu) in the treated cells (Fig. 2a-b; Fig S1g). Further, the expression 103 

levels of a panel of senescence marker mRNAs (GDF15 mRNA, CDKN2A (p16) mRNA and 104 

CDKN1A (p21) mRNA) and mRNAs encoding SASP factors (e.g., IL1A and IL6 mRNAs) were 105 
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significantly higher in IR-treated cells than proliferating controls (Fig. 2c; Fig. S1b-e). Elevated 106 

levels of SPiDER β-gal in IR-treated cells further confirmed the stable induction of senescence 7 107 

days after exposure to 7.5 Gy (Fig. 2d; Fig. S1f). Given the stable cell-cycle arrest, viability, and 108 

expression of senescence-associated mRNAs at this dose, we used 7.5 Gy IR radiation and 7 109 

days in culture in all later experiments. 110 

 111 

Identification of the monocyte SASP in standard culture conditions 112 

MS-based proteomic analysis is notoriously challenging in serum-supplemented cell-culture 113 

conditions due to the highly dynamic range of serum proteins33. In standard cell-culture conditions, 114 

fetal bovine serum (FBS) introduces a high concentration of exogenous proteins that hinder the 115 

detection of endogenously secreted proteins from cultured cells at lower levels. To overcome 116 

these challenges, we applied a novel proteomic platform that was previously used to analyze 117 

blood samples34-36. An automated robotic platform utilizes nanoparticle-based enrichment of 118 

protein coronas for a deep and unbiased identification of proteins in high-dynamic-range samples 119 

(ProteographTM XT Assay, Redwood City, CA) 31. Reasoning that serum-supplemented medium 120 

faces essentially the same challenges as serum itself, we applied this instrumentation in 121 

combination with a multi-species proteomic analysis (bovine + human) to comprehensively and 122 

quantitatively profile the monocyte SASP (Fig. 1b). Briefly, data independent acquisition (DIA) 123 

MS-based proteomics was conducted on the secretomes of senescent and non-senescent 124 

monocytes processed with the nanoparticle workflow (n=14), as well as matched samples 125 

processed with no nanoparticle separation (n=6) to compare with a standard workflow. Using the 126 

standard workflow, 3,935 proteins (24,875 peptides) were identified, and weak separation 127 

between senescent and non-senescent secretome was evident by principal component analysis 128 

due to interference from the supplemented bovine proteins (Fig. 3a). In contrast, the nanoparticle-129 

based workflow enabled the detection of 10,089 proteins (96,511 peptides) and identified 130 

differences in the two secretomes as evident in principal component analysis (Fig. 3b-c); these 131 

values represented a significant improvement over our reported secretome studies30. Additionally, 132 

even though protein expression was positively correlated on the peptide and protein level between 133 

neat and nanoparticle-processed samples (Fig. S2a,b), the reproducibility of protein 134 

measurements was improved after processing (Fig. S2c). Any peptides that matched bovine 135 

proteins, as well as those shared between human and bovine, were removed, and the remaining 136 

6,161 human proteins were compared between senescent and non-senescent secretomes. 137 

Senescent secretomes had 3,413 increased proteins and 180 decreased proteins, compared to 138 

controls (Fig. 3d). Gene Ontology analysis of the top 200 upregulated proteins indicated 139 
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enrichment of biological processes such as response to interferons, a known senescence-140 

associated pathway, and transmembrane transport (Fig. 3e). Furthermore, a comparison of the 141 

monocyte SASP with that of fibroblasts using the SASP Atlas (http://www.saspatlas.com/)30 142 

revealed 237 proteins, or 43% of the fibroblast SASP proteome, overlapped with the monocyte 143 

SASP proteome (Fig. 3f). Ontology analysis reveals that these proteins are involved in multiple 144 

biological processes, including cellular detoxification and regulation of apoptotic processes and 145 

oxidative stress–induced pathways (Fig. 3g). Interestingly, these pathways were also reported 146 

among the fibroblast core SASP30. Full proteomic replicate data, quantification, and statistics are 147 

available in Table S1.  148 

 149 

The senescent monocyte secretome is detectable in circulating plasma in BLSA 150 

The clinical associations of the monocyte SASP in circulation were examined in the BLSA. This 151 

longitudinal study used multiple biochemical and clinical assessments to examine the 152 

physiological and functional changes associated with healthy aging. BLSA participant 153 

characteristics are displayed in Table 1. This analysis utilized the plasma proteomic data from 154 

the BLSA that had been acquired using the 7K SOMAscan Assay (Somalogic Inc., Boulder, CO), 155 

which performs 7,288 protein measurements37,38. Among the SomaScan protein panel, 1550 156 

monocyte SASP proteins were measured in the BLSA (Fig. 4a, Table S2). To evaluate the age-157 

associated clinical relevance of the monocyte SASP, we used Spearman correlation to identify 158 

only the components of the monocyte SASP that were increasing in circulation across the lifespan 159 

in the BLSA. Of the monocyte SASP in circulating plasma, 308 proteins were upregulated and 160 

also positively associated with age (Table S2).  To evaluate clinical traits associated with SASP 161 

regardless of covariate such as age, we utilized the full SASP panel (1550 proteins) including 162 

covariates such as age, sex, and race in downstream clinical trait associations.  163 

 164 

Monocyte SASP signatures predict mobility and obesity-associated clinical outcomes 165 

To identify the most clinically relevant monocyte SASPs without model overfitting, elastic net 166 

modeling was performed for unbiased feature selection of proteins that associate with a diverse 167 

set of clinical outcomes, while controlling for age, sex, race, and kidney function as model 168 

covariates. Clinically relevant SASP factors were identified for a panel of clinical traits, including 169 

mobility, inflammation, body composition, and metabolism-related measurements in the BLSA 170 

(Fig. 4b). For each trait, a different subset and number of biologically relevant proteins were 171 

identified and subsequently referred to as elastic net-selected proteins (ENSPs) (Fig. 4c). One 172 

established metric for validating biomarker candidates for clinical traits is their out-of-sample 173 
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predictive accuracy. This was examined in a cohort of 1,330 subjects from the BLSA, split into a 174 

training dataset (80%) and test dataset (20%). Elastic net models that include ENSPs and 175 

covariates were trained using the training dataset and used to predict clinical traits in the testing 176 

dataset. These Elastic Net models showed significant correlation between observed and 177 

predicted values (FDR < 0.05) (Fig. 4b) for all clinical traits, and showed highest out-of-sample 178 

trait prediction potential for Triglycerides (cor. = 0.8447), HDL (cor. = 0.8343), waist size (cor. = 179 

0.7844), LDL (cor. = 0.7508), BMI (cor. = 0.6851), and 400-meter walking pace (cor. = 0.7085). 180 

(Fig. 4b), suggesting that these subsets of monocyte SASP are implicated in these clinical traits. 181 

Elastic net models also outperformed a model using covariates alone (e.g., age, sex, race and 182 

kidney function) in predicting obesity (Fig. 4d). After adjusting for covariates, the size of the 183 

regression coefficient for the SASP proteins in the elastic net model did not change substantially 184 

(Fig. S3a), suggesting that ENSPs are not simply demonstrating association with clinical traits 185 

due to their association with age and might have age-independent clinical implications.  186 

 187 

Association of SASP signatures with body fat depots and percentages 188 

Because ENSPs had strikingly high predictive potential of clinical traits related to BMI and waist 189 

size, we explored whether these associations were driven by fat in specific fat depots in the body. 190 

We examined senescence markers and their predictive potential using elastic net modeling of 191 

whole-body computed tomography (CT) and dual x-ray absorptiometry scans of the BLSA 192 

participants. These measurements were used to quantify body fat content at various regions 193 

across the body, including subcutaneous fat in the limbs and abdomen, visceral fat, and 194 

intramuscular fat depots. A significant out-of-sample predictive potential was found across all 195 

body fat measures (Fig. 5a), utilizing ENSPs that were selected for each trait (Fig. 5b). 196 

Correlations between ENSPs and body fat were relatively high across different fat depots, ranging 197 

from 0.5074 to 0.7473, with the highest correlation in trunk fat and the lowest in abdominal 198 

subcutaneous fat. Moreover, total-body fat percentage was most strongly associated with 199 

senescence signatures (Spearman Cor. = 0.7913) than any individual fat depot (Fig. 5a,d). 200 

Because fat percentage is adjusted for overall body size, these data suggest that overall 201 

proportion of body fat, rather than the size of any specific fat depot, is associated with a monocyte 202 

senescence-associated protein signature. ENSPs were also used to predict fat percent in an 203 

independent test cohort and outperformed a covariate-only (age, sex, race, eGFR) model when 204 

predicting fat percent-based obesity (Fig. 5c), suggesting that ENSPs have age and covariate 205 

independent predictive potential. 206 

 207 
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Validation of senescence signatures in an independent aging cohort  208 

We next sought to further validate the role of monocyte SASPs in multiple phenotypes. We 209 

performed a cross-validation analysis using plasma proteomic data from BLSA and InCHIANTI 210 

(demographics and clinical traits summarized in Table S3), a population-based study of older 211 

individuals living in the Chianti geographic area of Italy, which was assessed using the 1.3k 212 

SomaScan assay, an earlier version of the assay containing subset of the total protein 213 

measurements in BLSA. We identified 220 monocyte SASP candidates detected in both cohorts 214 

that were selected for further testing for clinical trait associations. ENSPs were identified for 215 

several clinical traits in both BLSA (Fig. S4a) and InCHIANTI (Fig. S4b). ENSPs identified in both 216 

cohorts were used to train linear models used for cross-validation. These linear models, when 217 

trained on the BLSA cohort, significantly predicted several clinical traits in InCHIANTI (Fig. S4c), 218 

and when trained on the InCHIANTI cohort, significantly predicted many clinical traits in the BLSA 219 

(Fig. S4d). These overlapping ENSP effectively cross-validated in both directions for several 220 

clinical traits including BMI, triglycerides, and walking pace, among others in BLSA and 221 

InCHIANTI (Fig. 6a), indicating a robust ability of these proteins to predict clinical traits. 222 

Additionally, a binomial model trained on overlapping ENSPs in BLSA predicted obesity in 223 

InCHIANTI better than an age and sex-only model (Fig. 6b). The cross-validation potential of 224 

ENSPs for a subset of clinical traits, such as BMI, blood pressure, triglycerides, and walking pace, 225 

in geographically and genetically distinct human cohorts demonstrates their robust clinical 226 

relevance. 227 

 228 

A select senescence panel robustly predicts aging- and obesity-related outcomes 229 

To explore whether a parsimonious subset of the total SASP would capture most of the 230 

association between SASP proteins and multiple clinical traits, we prioritized and selected a 231 

smaller set of proteins based on their associations with multiple traits and relative importance. 232 

Though a different subset of SASPs was selected for each trait, consistent with previous 233 

reports39,40, notable features (proteins) were selected via elastic net modeling in several traits of 234 

a fourteen-trait panel. Ranking the ENSPs by the number of features in which they were implicated 235 

revealed that NQO1 and IL1RN were selected for eight of the fourteen traits, LMAN2, IGF2R, 236 

KHSRP, and CCL18 were selected for seven of the fourteen traits. Twenty-one total ENSPs were 237 

identified in at least five of the sixteen traits, seven of which were also quantified in the InCHIANTI 238 

1.3k panel (Fig. 7a). Linear models of the high impact panel that were trained on 80% of the BLSA 239 

cohort significantly predicted many clinical traits of the remaining 20% test set (Fig. 7b). Similarly, 240 

high impact panel linear models show held-out predictive potential when trained on 80% of the 241 
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InCHIANTI cohort and tested in the remaining 20% (Fig. 7c). Next, the high impact panel 242 

expression levels were condensed into a single continuous variable using principal component 243 

analysis. In this way, principal component 1 was used to represent each individual’s senescence 244 

burden score. Ranking the BLSA and InCHIANTI cohorts by their compositive senescence burden 245 

and plotting linear trends of the clinical traits walking pace, HDL, BMI, and CRP reveals that 246 

increasing senescence burden score shows the expected association with trait trending in the 247 

direction of poorer health (positively associated with BMI and CRP, negatively associated with 248 

walking pace and HDL), in both BLSA (Fig. 7d) and InCHIANTI (Fig. S5b). This suggests that 249 

the high impact panel could potentially be used as a proxy metric of individual senescence burden 250 

in a clinical setting.  251 

 252 

Validation of age and covariate independent clinical relevance of senescence signatures 253 

To evaluate the contribution of covariates such as age to the predictive potential of elastic net 254 

models, we compared covariate-only models to combined ENSP + covariate models. To select 255 

senescence signatures that are implicated in clinical traits irrespective of age and other 256 

covariates, such as race, sex, and estimated glomerular filtration rate (eGFR, a common marker 257 

of kidney function), these metrics were included in the elastic net modeling performed thus far 258 

and therefore contributed to the predictive potential of these models. To determine if the ENSPs 259 

show age and covariate independent predictive potential, analysis of variance (ANOVA) testing 260 

was used to compare covariate-only models to those that include ENSPs. ANOVA testing 261 

revealed that including ENSPs in linear models significantly improved the accuracy of covariate-262 

only linear models (Table S4)  Additionally, including ENSPs in covariate-only linear models 263 

substantially increased correlation coefficients (Fig. S3a), and ENSP-only models produced 264 

similar correlation coefficients to ENSP with covariates models (Fig. S3a). Due to association with 265 

body fat, a similar analysis was conducted using whole-body fat percent as an additional covariate 266 

along with age, sex, race, and eGFR to determine if ENSPs show body-fat independent predictive 267 

potential. ANOVA testing again revealed that ENSPs added significant additional predictive 268 

accuracy to models using only body fat and other covariates (Table S4), and adding ENSPs to 269 

body fat percent with other covariate-only linear models again increased the correlation coefficient 270 

for many clinical traits, particularly triglycerides, HDL, LDL, CRP, and fasting glucose (Fig. S3b). 271 

Additionally, for each clinical trait, the predictive potential of ENSPs was compared with a 272 

randomly selected group of proteins of the same group size. Permutation tests (100,000 273 

repetitions per trait) revealed that ENSPs often demonstrated better out-of-sample trait prediction 274 

potential than randomly selected proteins (Fig S5a, Table S5). These results implicate 275 
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senescence-associated proteins in BMI and other clinical traits independently of the effects of 276 

aging and other covariates. 277 

 278 

Discussion 279 

 280 

This study applied a novel nanoparticle-based MS strategy to identify SASPs from monocytes in 281 

fully supplemented culture conditions and revealed circulating senescence signatures that predict 282 

aging-associated clinical traits in humans. MS-based proteomics allows a comprehensive 283 

unbiased characterization of the cell secretome. Yet, the large numbers of proteins, such as 284 

albumin in FBS, in most culture media are a major hurdle in MS-based analysis of SASP proteins. 285 

Our group and others addressed this issue by using serum-free media30,32,41-44. However, 286 

prolonged absence of serum profoundly alters cellular phenotypes, metabolism, and viability. We 287 

initially observed dramatic loss of viability and induction of differentiation under serum starvation 288 

in THP-1 cells (data not shown), necessitating a new approach compatible with serum 289 

supplementation. Serum starvation can also trigger inhibition of mTORC1, initiate autophagy45 290 

and reduce protein synthesis, which greatly alter the global proteome of the cells and degrade 291 

the reliability of markers from the secretome. Moreover, mTOR is a potent regulator of the SASP 292 

in cultured cells46,47. Application of the automated, nanoparticle-based workflow here enabled the 293 

comprehensive profiling of the SASP in THP-1 monocytes under fully supplemented culture 294 

conditions and free of the confounders of starvation.  295 

Our workflow adapted a recent technology that enables comprehensive proteomic 296 

analysis of the circulating proteome. This workflow leverages nanoparticles to aid in 297 

comprehensive detection of proteins in samples with a large dynamic range of protein 298 

concentrations31,35,36,48. In this approach, the protein mixture bound at the surface of nanoparticles 299 

in a protein sample, termed the ‘protein corona’, contains a reduced protein dynamic range and 300 

allows the detection and quantification of proteins that are normally undetectable in blood. The 301 

composition of the protein corona is reproducible and quantitative and, therefore, can be utilized 302 

for blood biomarker studies31,36,49,50. Because serum supplementation essentially produces the 303 

same dynamic range problem as conditioned medium, we reasoned that the same workflow would 304 

enable the comprehensive, quantitative, and unbiased profiling of the SASP under fully 305 

supplemented culture conditions. Indeed, we detected a dramatically increased number of human 306 

peptides in conditioned medium supplemented with FBS. 307 

Despite the differences in the workflow and cell types between this study and our 308 

published SASP Atlas30, which focused on senescence signatures in fibroblasts, there were 309 
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notable similarities in the composition of the SASPs. Here, we detected at least a threefold 310 

increase in the SASP proteins versus SASP Atlas proteins. This is likely due to a combination of 311 

factors, likely including the different MS instrumentation and the fact that SASP factor secretion 312 

is greater in serum-supplemented conditions. Nonetheless, more than 40% of the published 313 

irradiation-induced fibroblast SASP factors were also detected in the inducer-matched monocyte 314 

SASP from the current study. Among the key pathway similarities were cellular detoxification and 315 

regulation of apoptotic processes and oxidative stress–induced pathways. Furthermore, the 316 

current study identified other well-known signatures of senescent cells. Prominent among these 317 

were highly elevated interferon-related proteins (Fig. 3e) and, most significantly, MX1, ISG15 and 318 

IFITM3 (FDR < 1e-25). Among all SASP factors, MX1 exhibited the largest and most significant 319 

protein increase (55-fold change, FDR = 2.23e-14). Notably, multiple interferon-response 320 

associated proteins significantly elevated in the monocyte SASP (FDR < 0.05) are among the 321 

proteins increased with age in plasma of BLSA participants (FDR < 0.05), including IFI16, OAS1, 322 

IFIH1, IFNGR1, IF9, IRF4, OASL and related pro-inflammatory cytokines. Moreover, OASL was 323 

selected among other top proteins in our high impact senescence panel (Fig 7a) based on its 324 

association with multiple clinical traits and ranked highest in the panel in importance, based on 325 

the average magnitude of its association with each trait. Collectively, these results further 326 

reinforce the robustness of the type-1 interferon response in senescent phenotypes and highlight 327 

their potential as senescence-associated biomarkers in circulation. 328 

Our results are consistent with the premise that senescent cells, particularly senescent 329 

monocytes, may either contribute to or be driven by declines in diverse age-related and obesity-330 

related clinical outcomes, including loss of mobility, increased body fat (BMI, fat percentage, waist 331 

size), increased blood pressure, elevated triglycerides and lipids, elevated glucose and A1C, and 332 

inflammation (CRP and IL6). These findings are also consistent with previous studies in multiple 333 

aging cohorts identifying senescence markers that are associated with diverse clinical traits of 334 

aging, such as frailty and cognitive decline. For example, SASP proteins, such as ICAM1, MMP7 335 

and Activin A, have been associated with a decline in physical activity in participants of the LIFE 336 

study28. In addition, plasma levels of 13 core SASP proteins, including CTSB, a component of the 337 

monocyte SASP, are associated with all-cause mortality and multimorbidity in the BLSA25. Few 338 

of the published SASP-derived protein associations were observed in the present study, 339 

highlighting the heterogeneity in senescent cell phenotypes based on cell-type. For example, 340 

GDF15 is notably missing from the monocyte SASP, while the most important SASP proteins 341 

(based on the number of associations, Fig 7a) identified in the present study are not among 342 

circulating senescence factors currently described22. These results are in line with the expected 343 
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heterogeneity of senescent cells based on cell type, and that diverse SASP emerging from 344 

different senescent cell populations might drive different phenotypes. These results further 345 

suggest the importance of developing type-specific (senotype-specific) senescence biomarker 346 

signatures for drawing connections between senotype and phenotype in future studies. 347 

One of the striking findings of this study are the robust associations between the monocyte 348 

SASP and obesity-related outcomes, such as BMI and body fat, which were among the strongest 349 

associations observed. Of note, elastic net models based on monocyte SASP predicted out-of-350 

sample waist size, triglycerides, fat mass in multiple compartments, BMI, fasting glucose, A1C, 351 

and blood pressure. An exploratory analysis of body-fat depots in the BLSA revealed that fat 352 

deposits in different locations, including thigh, arms, abdomen, and different types, including 353 

visceral, subcutaneous, and intramuscular, were all strongly predicted by a monocyte SASP 354 

elastic net model (Spearman correlation ranging from = 0.5074 to 0.7473, Fig 5a). However, body 355 

fat percentage, a measure of body fat corrected to overall body size, was most strongly predicted 356 

(cor=0.7913), suggesting that fat proportion, rather than overall mass, is likely associated with 357 

senescence. The associations of monocyte SASP and body fat and related outcomes is notably 358 

independent of age and other covariates (Fig S3a, Table S4). These results suggest a potential 359 

link between monocyte senescence and obesity. While the direction of causality cannot be 360 

definitively determined in the present study, there is ample evidence to support obesity as a driver 361 

of cellular senescence. Culture conditions that mimic aspects of obesity, such as high free-fatty 362 

acids or glucose, can drive cells into senescence in vitro 51-53. Senescent cells accumulate in 363 

obesity and high-fat diet, particularly in adipose tissue54,55. Furthermore, the transplantation of 364 

senescent preadipocytes into mice fed high fat diet exacerbates declines in walking speed and 365 

endurance when compared with normal diet56. Obesity drives senescence in glial cells in mouse 366 

brains and their removal resulting in restored neurogenesis57. Thus, evidence strongly points to 367 

obesity as a disease-associated senescence inducer that can be decoupled from aging. 368 

Additionally, results from the CALERIE trial demonstrate the reduction of senescence biomarkers 369 

in individuals over 1-2 years of calorie restriction, further suggesting a link between senescence 370 

burden and diet, body composition and metabolism58. We speculate that at least some of the 371 

clinical traits described in this study can be attributed to obesity-associated senescent cells. 372 

Indeed, we observe that monocyte SASP-based elastic net models predict key obesity-associated 373 

clinical outcomes related to metabolism (fasting glucose, A1C), lipids (triglycerides, cholesterol), 374 

and blood pressure. Collectively these findings suggest the importance of considering obesity as 375 

a contributor to senescence and senescence-associated outcomes in humans. Importantly, these 376 

associations suggest that obese individuals may be among those that benefit most from 377 
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senotherapeutic interventions, and we propose that this population should be considered for 378 

inclusion in future trials of senolytics and senomorphics.  379 

Given the known age-associations of senescent cells and many SASPs, one of the 380 

potential concerns of the present study, and all studies of senescence, are the potential 381 

contribution of covariates such as aging to the associations with age-related clinical outcomes, 382 

and whether they can be separated from age-related processes. In this study, we were indeed 383 

able to show that predictive models based on SASP added value to models that include covariates 384 

(age, sex, race, and eGFR) and were clinically meaningful in predicting outcomes such as obesity. 385 

Further, to mitigate the risk of overfitting our models, which are based on large numbers of 386 

features, elastic net modeling was leveraged in this study. To further test the strength of the 387 

model, we were able to show that our elastic net model selected on monocyte SASP far 388 

outperformed linear models based using the same number of randomly selected proteins across 389 

the 7k SomaScan assay (Fig S5a). To ensure the robustness of the findings, we report 390 

associations are based on prediction out-of-sample clinical outcomes (independent of the training 391 

set), including a subset of the clinical associations that replicated across BLSA and InCHIANTI 392 

(Fig 6a).  393 

One of the clinically meaningful findings of his study was that, despite the large number of 394 

total SASP proteins identified, a relatively small panel of these also robustly predicted a set of 395 

age- and obesity-associated clinical outcomes, including inflammation (IL6, CRP), lipids (HDL, 396 

LDL), glucose (A1c, fasting glucose), blood pressure, walking speed and pace, and BMI. Notably, 397 

even though a fraction of this panel was measured in both BLSA and InCHIANTI for replication, 398 

multiple predictions were replicated across aging studies, supporting the robustness of using 399 

selected high impact proteins, for clinical associations. A defined panel of proteins may be 400 

clinically advantageous in that the full panel, or selected proteins, can be more readily tested and 401 

applied in multiple studies without building new models or making costly measurements of large 402 

numbers of proteins. In future studies, it will be of interest to further validate this panel in diverse 403 

human cohorts and test their utility to predict a range of aging- and obesity-related outcomes. 404 

Several proteins in the panel are consistent with senescence biology and have known 405 

associations with outcomes with elevated senescent cell burden. Notably, the cytokine CCL18 406 

(also known as PARC) previously showed the strongest association with mortality among 28 407 

SASPs in a study of 1923 individuals over the age of 6559, and has been associated with disease-408 

progression or negative outcomes in a range of diseases including cancer 60, atherosclerosis 61, 409 

and lung disease 62.  Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a senescence-410 

associated protein that, when targeted with a senolytic vaccine, results in the reduction of 411 
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senescence burden and improvements in aging and obesity-related outcomes in mice, including  412 

improved glucose homeostasis on high fat diet, and reduced aortic plaque size in APOE KO 413 

mice63. LGALS3BP is a previously reported core SASP30, is associated with diverse 414 

malignancies64 and sepsis65. In future studies, it will be valuable to validate the associations of 415 

the set of proteins in the high impact senescence panel with elevated senescence burden and 416 

evaluate their potential roles as either drivers or biomarkers of disease outcomes. 417 

This study has several limitations. SASP factors in plasma can be contributed by a variety 418 

of cells and tissues in the body. Thus, it is not possible to track the originating tissues of SASPs 419 

in circulation or to verify whether circulating proteins were released by senescent cells or other 420 

secreting cells with common secretory factors, such as activated immune cells. Senescence 421 

signatures are numerous and heterogeneous by cell type3, and examining clinical associations of 422 

senescence signatures from a variety of tissue types is warranted. Studying the SASP from 423 

specific cell types can help dissect the role of individual cells in the progression of age-associated 424 

clinical traits. In future studies, it may be of interest to identify tissue-specific (senotype-specific) 425 

senescent signatures and examine their clinical associations in human cohorts. These studies 426 

may shed light on the contributing tissue and senotype-specific senescent cell populations on 427 

aging- and obesity-related outcomes and identify more sensitive and specific biomarkers. One 428 

limitation of the cross-study validation performed is the difference in the proteomic panels applied 429 

in each study, where the BLSA was performed on the newer generation of the SomaScan panel 430 

versus the InCHIANTI study. While this affected the strength of the predictions, multiple outcomes 431 

remained significant with smaller panels, highlighting some of the more robust associations. It will 432 

be valuable going forward to test the cross-study validations both in studies that utilize the 433 

complete proteomic assay, and in studies that utilize different proteomic platforms such as UK 434 

Biobank, to better understand the predictors that are most robust to differences in proteomic 435 

methods. Finally, longitudinal proteomic measurements will be useful in future studies for 436 

evaluating whether SASP protein trajectories can be more sensitive in predicting clinical 437 

outcomes. 438 

In summary, we showed that SASP factors from monocytes have a high association with 439 

aging-associated clinical traits and can serve as biomarkers to predict biological aging. Using 440 

nanoparticle-based enrichment coupled with MS enabled comprehensive characterization of the 441 

secretome from senescent monocytes in culture in serum-supplemented culture conditions. Our 442 

results highlight a novel approach to study the cellular secretome under physiological conditions. 443 

Moreover, this study sheds light on clinical associations of circulating monocyte SASPs in human 444 
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longitudinal studies and identifies possible biomarkers of senescence that could potentially inform 445 

future senotherapeutic trials in obese and aged individuals. 446 

 447 

Methods 448 

Cell culture and senescence induction 449 

THP-1 human monocytes (ATCC, Manassas, VA; #TIB-202) were cultured in RPMI 1640 medium 450 

(Thermo Fisher Scientific Inc., Waltham, MA; #11875119) supplemented with 10% FBS (Thermo 451 

Fisher Scientific; #26140079) and 1% pen strep (Thermo Fisher Scientific; # 15070063) in a 20% 452 

O2, 5% CO2 incubator. To determine the optimum conditions for induction of senescence in 453 

monocytes, proliferating THP-1 cells were exposed to different doses of ionizing (γ) radiation (IR; 454 

5, 7.5, and 10 Gy) using the Gammacell 40 Exactor, a Cesium-137 based irradiator (Nordion Inc., 455 

Canada); thereafter, cell viability and senescence markers were assessed over different 456 

timepoints. Cell viability was measured using the CellTiter-Glo® Luminescent Cell Viability Assay 457 

(Promega Corporation, Madison, WI; #G7570) as per the manufacturer’s instructions. IR radiation 458 

of 7.5 Gy and culture up to 7 days were optimum for senescence induction and were used for all 459 

further experiments. Proliferating cells were used as non-senescent controls for all experiments. 460 

 461 

EdU incorporation assay 462 

Cell proliferation was assessed using the Click-iT™ Plus EdU Cell Proliferation Kit (Thermo Fisher 463 

Scientific; #C10640), following the manufacturer’s instructions. Briefly, 20,000 cells per well were 464 

seeded in 100 μL of medium in 96-well plates. At 6 days after irradiation, cells were incubated 465 

with 20 μM 5-ethynyl-2'-deoxyuridine (EdU) overnight at 37°C. Next day, cells were fixed using 466 

3.7% formaldehyde for 15 min, followed by permeabilization with 0.5% Triton X-100 for 20 min. 467 

Cells were then incubated with Alexa Fluor picolyl azide and Hoechst 33342 dye for 30 min each. 468 

The resulting images were captured by a fluorescence microscope (BZ-X Analyzer, Keyence 469 

Corporation, Itasca, IL). The percentage of cells that showed EdU incorporation corresponded to 470 

the percentage proliferating cells. 471 

 472 

Quantitative PCR (qPCR) analysis 473 

Total RNA was isolated using a Direct-zol RNA Miniprep Kit (Zymo Research, Irvine, CA; 474 

#R2052), and 500 ng of total RNA was reverse transcribed using Maxima reverse transcriptase 475 

(Thermo Fisher Scientific; # EP0741) and random hexamers. For reverse transcription followed 476 

by quantitative RT-qPCR analysis, 0.1 µl cDNA was employed with 250 nM of gene-specific 477 
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primers (Table S6) and KAPA SYBR® FAST qPCR Kits (KAPA Biosystems Inc., Wilmington, MA; 478 

#) on the QuantStudio 3 Realtime PCR system (Thermo Fisher Scientific). Relative RNA levels 479 

were calculated after normalizing to ACTB mRNA encoding the housekeeping protein β-actin 480 

using the 2−ΔΔCt method. QPCR experiments were performed with seven biological replicates of 481 

IR-treated and proliferating controls. Statistical analysis was performed using GraphPad Prism 482 

v10. Results are presented as the mean ± SD. Comparisons between the two groups were made 483 

using students t-test. Statistical significance was considered at p < 0.05. 484 

 485 

Senescence-associated β-galactosidase (SA-β-gal) assay 486 

Senescence-associated β-galactosidase (SA-β-gal) activity was assessed using the Cellular 487 

Senescence Plate Assay Kit - SPiDER-βGal (Dojindo Molecular Technologies Inc., Rockville, MD; 488 

#SG05), following the manufacturer’s instructions. Briefly, 150,000 cells were seeded in 2 mL of 489 

medium in 6-well plates. On the 7th day after IR, cells were lysed and incubated with SPiDER β-490 

gal for 1 h at 37°C, and SPiDER β-gal fluorescence intensity was measured at 535 nm excitation 491 

and 580 nm emission using a microplate reader. 492 

 493 

Sample preparation for mass spectrometry 494 

SASPs from senescent and proliferating THP-1 monocytes were collected, based on a modified 495 

version of the protocol from Neri et al.32, adjusting the protocol so that complete medium 496 

(supplemented with 10% FBS) was used in place of serum-free medium because of the 497 

downstream processing of samples with the Proteograph workflow. Briefly, THP-1 cells were 498 

grown in T75 flasks to sub-confluence prior to induction of senescence. For senescent samples, 499 

cells were shifted to fresh complete medium 7 days after irradiation, and conditioned medium 500 

containing SASP was collected after 48 h. Conditioned media from proliferating cells were 501 

similarly collected after 48-h incubation in fresh complete medium. Conditioned medium was then 502 

centrifuged at 10,000 x g for 15 min to pellet down cell debris and concentrated using 3 kDa 503 

molecular mass cut-off filters. One milliliter of each conditioned medium sample was then 504 

aliquoted into tubes for downstream preparation, for a total of 14 samples (seven senescent and 505 

seven non-senescent).  506 

The conditioned medium samples were processed as described34 on the SP100 507 

Automation Instrument coupled with Proteograph XT Assay Kits (Seer, Inc). Briefly, samples were 508 

incubated with two chemically distinct nanoparticle suspensions supplied in the assay kits. 509 

Nanoparticle-bound proteins were captured by incubation and a series of gentle washes. The 510 

resulting protein coronas were reduced, alkylated, and digested with Trypsin/Lys-C to generate 511 
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peptides for MS analysis. The peptide mixture was desalted using solid phase-extraction. All steps 512 

in the preparation of peptides were conducted automatically by the SP100, which produces two 513 

peptide fractions per sample, one fraction for each nanoparticle suspension.  514 

In addition to the preparation of 14 nanoparticle-processed samples, six matched neat 515 

samples were prepared (three senescent and three non-senescent). Neat samples were 516 

processed in parallel with the other samples, except no nanoparticles were added and no protein 517 

corona was captured. Essentially, neat samples are equivalent to a standard digestion protocol 518 

and are used for comparison against standard methods. After processing of samples with the 519 

Proteograph XT workflow, 34 peptide samples were generated for downstream MS analysis: 28 520 

experimental samples (14 replicates with two nanoparticle fractions each) and six matched neat 521 

samples.  522 

 523 

Liquid chromatography–mass spectrometry  524 

All samples were analyzed using a Vanquish Neo UHPLC system coupled to an Orbitrap Astral 525 

mass spectrometer (Thermo Fisher Scientific) with a NanoSpray Flex source (Thermo Fisher 526 

Scientific). Peptides (400 ng of each sample) were loaded on Acclaim PepMap 100 C18 (0.3 mm 527 

ID x 5 mm) trap column and then separated on a 50-cm μPAC analytical column (PharmaFluidics, 528 

Belgium) at a flow rate of 1.0 µL/min using a gradient of 4–35% solvent B (0.1% formic acid in 529 

acetonitrile) mixed into solvent A (0.1% formic acid in water) over 20.8 min and a total run time of 530 

24 min. The MS data were acquired in data-independent acquisition (DIA) mode with a normalized 531 

HCD-collision energy of 25% and a default charge state of +2. MS1 spectra were acquired in the 532 

Orbitrap every 0.6 s at a resolving power of 240,000 at m/z 200 over m/z 380–980. The MS1 533 

normalized AGC target was 500% (5x106 charges) with a MaxIT of 5 ms. For MS/MS experiments, 534 

the DIA experiment was set to have a 3 m/z isolation window making 199 DIA scan events across 535 

the precursor isolation windows spanned 380–980. MS2 scans were collected from 150-2000 536 

m/z. DIA MS2 scans were acquired in Astral analyzer with a normalized AGC target of 500% 537 

(5x104 charges) to better control the ion population using MaxIT that was set to 5 ms. Window 538 

placement optimization was turned on. A source voltage of 1500 V and an ion transfer tube 539 

temperature of 280 °C were used for all experiments.  540 

 541 

Protein identification and quantitative analysis pipeline 542 

Data were analyzed using the ProteographTM Analysis Suite (PAS) and the DIA-NN v1.8.1 543 

algorithm to perform the peptide identification and quantification using an in silico-predicted 544 

library, based on a combined database containing both Uniprot human and bovine proteomes 545 
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(4/2022 builds, 105,533 entries including isoform and TrEMBL). Match between runs was 546 

enabled. Otherwise, all DIA-NN settings were set to default. FDR was set to 1% for filtering 547 

identifications at the peptide and protein group levels. Peptide quantification was performed using 548 

a max representation approach, where the single quantification value for a particular peptide 549 

represents the quantitation value of the nanoparticle most frequently measured across all 550 

samples, and standard peptide-to-protein rollup was used on selected peptide values. 551 

Furthermore, to specifically identify the monocyte SASP and eliminate proteins originating from 552 

the FBS and unambiguously remove non-human peptides, all the peptides that mapped to the 553 

bovine proteome, or both human and bovine proteins, were removed from further analysis. Scaled 554 

intensities of human-unique peptides were aggregated to generate protein intensities using the 555 

MaxLFQ algorithm, implemented in the R/Bioconductor package iq (version 1.9.12) 66. Differential 556 

analysis was conducted on the protein intensities between PRO and SEN samples using the 557 

R/Bioconductor package limma (version 3.58.1) 67. Multiple testing was corrected using the 558 

Benjamini-Hochberg procedure. 559 

 560 

Pathway analysis 561 

Gene Ontology analysis was performed using ClusterProfiler version 4.6.0 68,69 in Rstudio to 562 

identify the biological processes and molecular functions enriched among the differentially 563 

expressed proteins. A background list of all proteins was utilized in each analysis. In Fig. 3e, the 564 

background list of proteins included all human proteins identified by MS. In Fig. 3g, the 565 

background list consisted of all proteins identified in both the fibroblast and monocyte secretomes. 566 

In Fig. 4c, the background list of proteins included all proteins that overlapped between the 567 

SomaScan 7K assay and the monocyte secretome proteins. All pathways depicted in main figures 568 

were statistically significant after background correction and multiple-testing correction, with 569 

adjusted p < 0.05, calculated by the Benjamini-Hochberg Procedure. Analysis was conducted 570 

using R version 4.2.0 (R Development Core Team, Vienna, Austria) and RStudio 2023.06.0-421 571 

(RStudio, Boston, MA). 572 

 573 

Clinical data 574 

We used clinical data from the BLSA and InCHIANTI cohorts to determine the association of 575 

senescence markers with physiological markers of health and aging. The BLSA study is a 576 

population‐based study that started in 1958 to evaluate the contributors of healthy aging in 577 

subjects recruited from the DC/Baltimore metropolitan area that are 20 years old and older 70-72. 578 

It involves a data collection of clinical parameters, such as waist circumference, BMI and blood 579 
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pressure that are assessed during a standard medical exam. Blood tests were performed at a 580 

Clinical Laboratory Improvement Amendments certified clinical laboratory at Medstar Harbor 581 

Hospital, Baltimore, MD. Total cholesterol was measured using alkaline phosphatase, HDL and 582 

LDL with dextran magnetic beads, triglycerides with colorimetric methods, glucose with glucose 583 

oxidase using the Vitros system (Ortho Clinical Diagnostics, Raritan, NJ). Serum inflammatory 584 

markers IL6 (R&D System, Minneapolis, MN) and CRP (Alpco, Salem, NH) were measured with 585 

enzyme‐linked immunosorbent assay (ELISA). HbA1C levels were measured using liquid 586 

chromatography by an automated DiaSTAT analyzer (Bio‐Rad, Oakland, CA). Grip strength was 587 

measured three times on each of the right and left hand and the highest average grip strength 588 

was reported. Usual gait speed was measured in two trials of a 6‐m walk and the faster time 589 

between the two trials is used for analysis. Body fat measurements were made using CT/dual x-590 

ray absorptiometry scans. The BLSA protocol (03AG0325) was approved by the institutional 591 

review board of the National Institute of Environmental Health Science, part of the National 592 

Institutes of Health. To avoid possible confounding effects of medication use, patients taking 593 

diabetes or hypertension medication had their A1C or blood pressure values excluded from 594 

statistical analysis. 595 

The InCHIANTI is a similar population-based study of aging conducted in the Chianti 596 

region of Tuscany, Italy previously described in more detail 73. Residents from the population 597 

registry of Greve in Chianti (a rural area) and Bagno a Ripoli (near Florence) ranging in age from 598 

21 to 102 years participated in the study. The study (exemption #11976) protocol was approved 599 

by Medstar Research Institute (Baltimore, Maryland), the Italian National Institute of Research 600 

and Care of Aging Institutional Review, and the Internal Review Board of the National Institute for 601 

Environmental Health Sciences (NIEHS). All participants provided written informed consent. 602 

 603 

SOMAscan assay 604 

The BLSA plasma proteomic study involved profiling for 7,596 SOMAmers using the 7K 605 

SOMAscan Assay, whereas the InCHIANTI involved profiling for 1322 SOMAmers using the 1.3K 606 

SOMAscan Assay at the Trans‐NIH Center for Human Immunology and Autoimmunity, and 607 

Inflammation (CHI), National Institute of Allergy and Infectious Disease, National Institutes of 608 

Health (Bethesda, MD). Proteomic assessment and data normalization for each of the assays 609 

were conducted as reported37,74. Plasma protein concentrations were directly proportional to the 610 

abundance of the SOMAmer reagents that were reported in relative fluorescence units. The 611 

reliability and variability of the SomaScan assay measurements has been previously rigorously 612 

evaluated and applied in the BLSA 37,75.  613 
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Elastic-net modeling 614 

To avoid overfitting of simple linear models, Elastic-net modeling, a penalized linear regression 615 

machine learning technique, was used for feature selection of the most biologically relevant 616 

proteins. Elastic-net modeling was used due to its ability to perform unbiased feature selection, 617 

and because it can cope with high collinearity of features. Elastic Net contains two tuning 618 

parameters, alpha and lambda, that determine the nature of feature selection used. The value for 619 

alpha can range from 0 (Ridge regression with no feature elimination) to 1 (Lasso regression 620 

which selects the smallest number of features). An alpha of 1 was used to apply the strictest level 621 

of feature selection and reveal the smallest number of highly relevant features. The lambda 622 

parameter determines the strength of the penalty, with a higher penalty eliminating more features. 623 

The package glmnet76 (version 4.1-6) randomly selected subsets of the dataset for cross-624 

validation to find the lambda value with the smallest mean squared error. Due to its feature tuning 625 

method, this package produces slightly variable results. To account for this and to reduce 626 

variability, the package was run 100 times for each trait, and the most accurate penalty term was 627 

found across all runs.  628 

 629 

Data Availability 630 

All raw mass spectrometry data files and associated quantitative and statistical reports, metadata, 631 

and supplemental data are available on MassIVE (dataset identifier: MSV000095315). FTP 632 

download link: ftp://massive.ucsd.edu/v08/MSV000095315/.  633 

 634 

Code Availability 635 

R scripts for the core elastic net analysis described are available at 636 

https://github.com/geroproteomics/EN_Repeat/blob/main/EN_Repeat.  637 
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FIGURE LEGENDS 851 

 852 

Fig. 1 | Workflow for identification of SASP signatures from the aging plasma proteome. a, 853 

An in vitro model of senescent monocytes was developed by exposing THP-1 cells to IR and 854 

measuring senescence markers. Further quantitative mass spectrometry proteomics was 855 

performed on the secretome of these cells using the automated nanoparticle processing and 856 

digestion platform, Proteograph. Age association of the differentially secreted proteins was 857 

evaluated using proteomic and phenotypic data from the BLSA and InCHIANTI aging cohorts. b, 858 

The analysis pipeline used DIA-NN to identify monocyte secretome followed by filtering out the 859 

bovine and shared peptides. Peptide quantities from each nanoparticle was rolled up to proteins 860 

to determine the differentially expressed proteins. 861 

 862 

Fig. 2 | Establishing an IR-induced model of senescence in THP-1 monocytes. a, 863 

Representative fluorescence microscopy images from Edu incorporation assay and, b, 864 

corresponding quantification bar plots indicating reduced cellular incorporation of Edu by THP-1 865 

cells 7 days after IR exposure. c, Bar plots showing increased expression of known senescence 866 

markers and, d, elevated SPiDER β-gal confirming induction of senescence in IR treated THP-1 867 

cells. * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001. 868 

 869 

Fig. 3 | Monocyte SASP is Associated with Age in the BLSA. a, Principal Component 870 

Analysis (PCA) of Neat samples (protein level). b, PCA of 6 NP samples (protein level). c, PCA 871 

of 14 NP samples (protein levels). For all PCA, only proteins present in all samples were used. 872 

d, Monocyte SASP were identified using nanoparticle processing on the Proteograph. e, The 873 

top 200 differentially expressed proteins were used for ontology analysis (p-value < 0.05, q-874 

value <0.1,Biological Process). f, Overlap between monocyte and fibroblast SASP. g,  Ontology 875 

analysis of overlapping SASP proteins between monocytes and fibroblasts. 876 

 877 

Fig. 4 | Elastic Net Modeling Using SASP of Clinical Traits in the BLSA. a, 1550 Monocyte 878 

SASP are detected in the BLSA 7k SomaScan. b, Elastic Net models were trained on 80% of the 879 

BLSA cohort and used to predict clinical traits of the remaining 20%. Spearman correlations are 880 

shown between the predicted and observed values in the test set for each clinical trait. c, Elastic 881 

Net modeling was used for feature selection, and the number of Elastic Net Selected Proteins 882 

(ENSPs) implicated in each clinical trait are shown. c, ROC plot comparing the predictive potential 883 

(80% train, 20% test) of ENSPs positively associated with BMI to predict obesity with control-only 884 
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models, showing that ENSPs seem to provide additional predictive potential beyond age and 885 

other controls alone.  886 

 887 

Fig. 5 | Modeling of the fat content in BLSA using SASP candidates. a, Elastic Net models 888 

were trained on 80% of the BLSA cohort and used to predict clinical traits of the remaining 20%. 889 

Spearman correlations are shown between the predicted and observed values of the test set for 890 

each clinical trait. b, Elastic Net modeling was used for feature selection, and the number of 891 

Elastic Net Selected Proteins (ENSPs) implicated in each clinical trait are shown. c, ROC plot 892 

comparing the predictive potential (80% train, 20% test) of ENSPs positively associated with BMI 893 

to predict obesity with control-only models, showing that ENSPs seem to provide additional 894 

predictive potential beyond age and other controls alone. d, The correlation between observed 895 

waist size and that predicted by Elastic Net Modeling (80% train, 20% test).  896 

 897 

Fig. 6 | SASP-based associations show robust replication in the InCHIANTI aging study. a, 898 

220 monocyte SASP were detected in both the BLSA (7k SomaScan) and InCHIANTI (1.3k 899 

SomaScan). Elastic Net modeling was used for feature selection in both Inchianti and BLSA, and 900 

linear models were constructed using only proteins selected in both studies for each trait. 901 

Spearman’s correlation of predicted values of linear models trained on the BLSA and observed 902 

values in InCHIANTI are shown on the x-axis, and Spearman’s correlation of predicted values of 903 

linear models trained on InCHIANTI and observed values in the BLSA are shown on the y-axis b, 904 

Binomial models were trained either using controls (age, sex) or controls + ENSPs in BLSA, then 905 

used to predict obesity in Inchianti.  906 

 907 

Fig. 7 | A high-impact SASP panel robustly predicts multiple clinical traits a, For a 14-trait 908 

panel, proteins were ranked by the number of features for which they were selected via Elastic 909 

Net in the BLSA, and the most frequently selected proteins are shown with their cross-trait 910 

importance on the x-axis. Only proteins that were positively associated with negative traits such 911 

as BMI and CRP, and those that were inversely associated with positive traits such as mobility 912 

were selected. Stars indicate those that were also detected in InCHIANTI. b, Linear models were 913 

trained on 80% of the BLSA cohort and used to predict clinical traits in the remaining 20%. 914 

Spearman’s correlation between the predicted and observed test values are shown. c, Linear 915 

models were trained on 80% of the InCHIANTI cohort and used to predict clinical traits in the 916 

remaining 20%. Spearman’s correlation between the predicted and observed test values are 917 

shown. d, Principal Component Analysis was used to condense the high-impact panel into a 918 
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composite senescence burden score in the BLSA. Principal Component 1 was used to represent 919 

an eigengene for the high impact panel. With the BLSA cohort ranked from low to moderate to 920 

high senescence burden, linear trait trends reveal that positive traits HDL and Walking Pace show 921 

a negative trend, while negative traits BMI and CRP show a positive trend. 922 

 923 

 924 
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All 20 to 40 40 to 60 60 to 70 80+ N 

Count 1330 70 256 736 268   
age 67.8 (14.1) 33 (4.6) 51.7 (6) 70.8 (5.4) 84 (3.2)   

Female Percent 52.3 54.3 56.6 51.6 49.3   
eGFR 81.4 (17.7) 106.2 (12.4) 94.4 (13.2) 77.1 (14.5) 67.2 (12.8) 1062 
BMI 26.9 (4.6) 25.1 (4.8) 27.1 (4.8) 27.5 (4.8) 25.6 (3.3) 1323 

Waist_Size 88.5 (13.1) 82.1 (12.1) 86.2 (12.7) 90.1 (13.5) 88.1 (11.5) 1283 
LDL 106.4 (31.9) 95.2 (28.1) 111.3 (31.2) 106.5 (33) 103.3 (29) 1054 

Triglycerides 99.7 (50.5) 88.6 (43.5) 98.6 (52.6) 102.5 (50.5) 96.1 (49.4) 1056 
CRP 2.6 (4.4) 1.5 (2.1) 2 (3.1) 2.8 (4.3) 3.1 (6.2) 998 
IL6 4.2 (3.5) 3.7 (3.5) 3.6 (2.5) 4.3 (3.5) 4.7 (4.6) 996 

Fasting_Glucose 96.6 (13.6) 90.1 (6.9) 95.1 (11.5) 98.7 (15.4) 95 (10.9) 996 
De_Fat_Trunk 13291.6 

(6209.7) 
10026.7 
(5926.6) 

13010.6 
(6411) 

14333.8 
(6189.1) 

11502.7 
(5143.4) 

1022 

De_Fat_Body 26497.1 
(10343.6) 

21591.9 
(10713.4) 

26346.4 
(10389) 

28237.5 
(10484.9) 

22828.3 
(7788.7) 

1022 

De_Fat_Arms 2589.9 
(1078.8) 

2069.5 
(1025.4) 

2582.5 
(1110.2) 

2752.1 
(1097.8) 

2264.5 
(826.3) 

1022 

De_Fat_Legs 9724.2 
(4091.7) 

8729.7 
(4340.5) 

9880.8 
(3818.4) 

10222.8 
(4344.1) 

8217.9 
(2916.6) 

1022 

CT_Abd_SubFat 27620.3 
(12738.4) 

25676.1 
(18611.6) 

27001.3 
(12284.8) 

29057 
(13029.9) 

23814.1 
(9508.3) 

711 

CT_Abd_ViscFat 9922.2 
(5654.7) 

5408.9 
(3678.7) 

7888.2 
(4615.1) 

10761.3 
(5847.2) 

10559.9 
(5447.7) 

711 

CT_Abd_ViscSubProp 0.4 (0.2) 0.2 (0.1) 0.3 (0.2) 0.4 (0.2) 0.5 (0.3) 653 
CT_Thigh_SubFat 8389.1 

(4539.1) 
8094.1 

(5255.4) 
8510.6 

(4324.1) 
8846.6 

(4737.3) 
6832.2 

(3458.5) 
900 

CT_Thigh_IMFat 1220.5 
(509.8) 

895.9 (489.6) 1174.8 
(549.8) 

1256.4 
(489.2) 

1306.5 
(465.6) 

898 

Fat_Percent 35.3 (9.4) 29.5 (10.1) 34.3 (9.3) 37 (9.2) 33.6 (8.5) 1022 
BP_Sys 122.9 (18.9) 110.5 (12.6) 118.1 (15.7) 124.2 (18.7) 130.4 (21.7) 902 
BP_Dias 66 (9.4) 62.1 (7.1) 68.1 (9.3) 65.9 (9.6) 64.8 (8.6) 884 

A1C 5.8 (0.6) 5.3 (0.4) 5.6 (0.6) 5.9 (0.7) 5.8 (0.3) 965 
Chair_Stands_Pace_5 0.6 (0.2) 0.7 (0.2) 0.7 (0.2) 0.5 (0.2) 0.5 (0.2) 975 

Chair_Stands_Pace_10 0.5 (0.2) 0.7 (0.2) 0.6 (0.2) 0.5 (0.2) 0.5 (0.1) 972 
Usual_Gait_Speed 1.2 (0.2) 1.3 (0.2) 1.3 (0.2) 1.2 (0.2) 1.1 (0.2) 977 
Rapid_Gait_Speed 1.8 (0.4) 2.1 (0.3) 2 (0.3) 1.8 (0.4) 1.6 (0.3) 978 

Walk_Pace_400_Meter 1.6 (0.3) 1.8 (0.2) 1.7 (0.2) 1.6 (0.2) 1.3 (0.2) 929 

HDL 61.4 (17.3) 60.1 (15.5) 60.8 (18.1) 61.3 (16.8) 63.1 (18.5) 1056 

 926 

Table 1. Demographic and clinical traits in the Baltimore Longitudinal Study of Aging. Data 927 
reported as mean (standard deviation). 928 

 929 
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Fig. 1 | Workflow for identification of SASP signatures from the aging plasma proteome. a, An in

vitro model of senescent monocytes was developed by exposing THP-1 cells to IR and measuring

senescence markers. Further quantitative mass spectrometry proteomics was performed on the

secretome of these cells using the automated nanoparticle processing and digestion platform,

Proteograph. Age association of the differentially secreted proteins was evaluated using proteomic and

phenotypic data from the BLSA and InCHIANTI aging cohorts. b, The analysis pipeline used DIA-NN to

identify monocyte secretome followed by filtering out the bovine and shared peptides. Peptide quantities

from each nanoparticle was rolled up to proteins to determine the differentially expressed proteins.
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a b

c d

Fig. 2 | Establishing an IR-induced model of senescence in THP-1 monocytes. a, Representative

fluorescence microscopy images from Edu incorporation assay and, b, corresponding quantification

bar plots indicating reduced cellular incorporation of Edu by THP-1 cells 7 days after IR exposure. c,

Bar plots showing increased expression of known senescence markers and, d, elevated SPiDER β-

gal confirming induction of senescence in IR treated THP-1 cells. * p-value < 0.05, ** p-value < 0.01,

*** p-value < 0.001.
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Fig. 3 | Monocyte SASP is Associated with Age in the BLSA. a, Principal Component Analysis 

(PCA) of Neat samples (protein level). b, PCA of 6 NP samples (protein level). c, PCA of 14 NP 

samples (protein levels). For all PCA, only proteins present in all samples were used. d, Monocyte 

SASP were identified using nanoparticle processing on the Proteograph. e, The top 200 differentially 

expressed proteins were used for ontology analysis (p-value < 0.05, q-value <0.1,Biological Process). 

f, Overlap between monocyte and fibroblast SASP. g, Ontology analysis of overlapping SASP 

proteins between monocytes and fibroblasts.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 3, 2024. ; https://doi.org/10.1101/2024.08.01.24311368doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.01.24311368
http://creativecommons.org/licenses/by/4.0/


Elastic Net Modeling Selected Proteins ENSPs Prediction of Obesity

Controls: Age, Sex, Race, eGFR

Train set 80% 

Test set 20%

Total N = 1060

Train set: 80%

Test set: N = 20% 

Obesity = BMI >=30

b

c
d

a

1554 Possible Features

N
u
m

b
e

r 
o

f 
p

ro
te

in
s

Controls
ENSPs + Controls

Correlation (Observed vs Predicted Values)

Fig. 4 | Elastic Net Modeling Using SASP of Clinical Traits in the BLSA. a, 1550 Monocyte

SASP are detected in the BLSA 7k SomaScan. b, Elastic Net models were trained on 80% of the

BLSA cohort and used to predict clinical traits of the remaining 20%. Spearman correlations are

shown between the predicted and observed values in the test set for each clinical trait. c, Elastic

Net modeling was used for feature selection, and the number of Elastic Net Selected Proteins

(ENSPs) implicated in each clinical trait are shown. c, ROC plot comparing the predictive

potential (80% train, 20% test) of ENSPs positively associated with BMI to predict obesity with

control-only models, showing that ENSPs seem to provide additional predictive potential beyond

age and other controls alone.
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Fig. 5 | Modeling of the fat content in BLSA using SASP candidates. a, Elastic Net 

models were trained on 80% of the BLSA cohort and used to predict clinical traits of the 

remaining 20%. Spearman correlations are shown between the predicted and observed 

values of the test set for each clinical trait. b, Elastic Net modeling was used for feature 

selection, and the number of Elastic Net Selected Proteins (ENSPs) implicated in each 

clinical trait are shown. c, ROC plot comparing the predictive potential (80% train, 20% 

test) of ENSPs positively associated with BMI to predict obesity with control-only models, 

showing that ENSPs seem to provide additional predictive potential beyond age and 

other controls alone. d, The correlation between observed waist size and that predicted 

by Elastic Net Modeling (80% train, 20% test).
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Fig. 6 | SASP-based associations show robust replication in the InCHIANTI aging study. a,

220 monocyte SASP were detected in both the BLSA (7k SomaScan) and InCHIANTI (1.3k

SomaScan). Elastic Net modeling was used for feature selection in both Inchianti and BLSA, and

linear models were constructed using only proteins selected in both studies for each trait.

Spearman’s correlation of predicted values of linear models trained on the BLSA and observed

values in InCHIANTI are shown on the x-axis, and Spearman’s correlation of predicted values of

linear models trained on InCHIANTI and observed values in the BLSA are shown on the y-axis b,

Binomial models were trained either using controls (age, sex) or controls + ENSPs in BLSA, then

used to predict obesity in Inchianti.
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Fig. 7 | A high-impact SASP panel robustly predicts multiple clinical traits a, For a 14-trait panel,

proteins were ranked by the number of features for which they were selected via Elastic Net in the

BLSA, and the most frequently selected proteins are shown with their cross-trait importance on the x-

axis. Only proteins that were positively associated with negative traits such as BMI and CRP, and

those that were inversely associated with positive traits such as mobility were selected. Stars indicate

those that were also detected in InCHIANTI. b, Linear models were trained on 80% of the BLSA cohort

and used to predict clinical traits in the remaining 20%. Spearman’s correlation between the predicted

and observed test values are shown. c, Linear models were trained on 80% of the InCHIANTI cohort

and used to predict clinical traits in the remaining 20%. Spearman’s correlation between the predicted

and observed test values are shown. d, Principal Component Analysis was used to condense the high-

impact panel into a composite senescence burden score in the BLSA. Principal Component 1 was

used to represent an eigengene for the high impact panel. With the BLSA cohort ranked from low to

moderate to high senescence burden, linear trait trends reveal that positive traits HDL and Walking

Pace show a negative trend, while negative traits BMI and CRP show a positive trend.
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