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Infectious diseases thrive in war-torn societies. The recent sharp increase in

human conflict and war thus requires the development of disease mitigation

tools that account for the specifics of war, such as scarcity of important public

health resources. Differential equation-based compartmental models consti-

tute the standard tool for forecasting disease dynamics and evaluating inter-

vention strategies. We developed a compartmental disease model that consid-

ers key social, war, and disease mechanisms, such as gender homophily and the

replacement of soldiers. This model enables the identification of optimal allo-

cation strategies that, given limited resources required for treating infected

individuals, minimize disease burden, assessed by total mortality and final

epidemic size. A comprehensive model analysis reveals that the level of re-

source scarcity fundamentally affects the optimal allocation. Desynchroniza-

tion of the epidemic peaks among several population subgroups emerges as

a desirable principle since it reduces disease spread between different sub-

groups. Further, the level of preferential mixing among people of the same
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gender, gender homophily, proves to strongly affect disease dynamics and opti-

mal treatment allocation strategies, highlighting the importance of accurately

accounting for heterogeneous mixing patterns. Altogether, the findings help

answer a timely question: how can infectious diseases be best controlled in so-

cieties at war? The developed model can be easily extended to specific diseases,

countries, and interventions.

Significance statement

Societies at war are particularly affected by infectious disease outbreaks, necessitating the de-

velopment of mathematical models tailored to the intricacies of war and disease dynamics as

valuable tools for policy-makers. The frequently limited availability of public health resources,

such as drugs or medical personnel, yields a fundamental optimal allocation problem. This

study frames this problem in a generic, modifiable context and proposes model-informed solu-

tions by identifying allocation strategies that minimize disease burden, measured by total deaths

or infections. The desynchronization of epidemic peaks among a heterogeneous population

emerges as a general disease mitigation strategy. Moreover, the level of contact heterogeneity

proves to substantially affect disease spread and optimal control.

Introduction

In recent years, humankind has faced a surge in deadly infectious disease outbreaks, prompt-

ing remarkable global responses (1). Governments and international communities have shown

unprecedented unity in implementing containment measures and managing these crises (2, 3).

At the same time, armed conflict and war have also increased at an alarming rate (4). Disease

control efforts become much more difficult when a country is engulfed in war or geopoliti-

cal conflict for a variety of reasons. Infectious diseases spread more rapidly, e.g., due to the
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large-scale movement of people, overcrowding in civilian shelters, poor sanitation, and gener-

ally deteriorating healthcare infrastructure, leading, among others, to interruptions in disease

surveillance and control programs (5, 6).

One notable example is the 1918 influenza pandemic, which peaked in the final year of

World War I. It infected an estimated one-third of the world population, with a global estimated

death toll between 50 to 100 million people (7). The widespread movement of troops and dis-

placed populations during World War I facilitated virus spread across national borders and even

continents, often surpassing the capacity of local and national healthcare systems (8). A similar

situation arose in Ukraine as a result of the ongoing war with Russia: SARS-CoV-2 and HIV-1

transmissions increased, particularly in areas where the healthcare infrastructure was severely

compromised (9, 10). Even more recently, outbreaks of several different infectious diseases

have been reported at camps for internally displaced people in Gaza, as well as among Israeli

soldiers returning home from war (11). Other notable case studies include malaria outbreaks

during social strife in Tajikistan in the mid 1990s (12), ongoing Ebola and pneumonic plague

outbreaks in the war-torn Democratic Republic of Congo (13–15), a tularemia outbreak due

to unsanitary environmental conditions following the Kosovo war in 1999-2000 (16), as well

as several polio and yellow fever outbreaks in multiple African countries affected by war and

forced migration (6).

Mathematical models have been an essential tool in the study of infectious diseases, pro-

viding critical insights into their spread and control. Among these, compartmental models,

such as the classical SIR (Susceptible-Infected-Recovered) model, developed by Kermack and

McKendrick nearly a hundred years ago, have proven historically effective (17).

Several mathematical models and innovative frameworks have been employed to better un-

derstand and mitigate the effects of conflict on disease transmission and control in regions af-

fected by civil unrest and violence. For example, an extended SIR model that accounted for
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contaminated environments and hospital escapes due to violence revealed that ongoing conflict

significantly worsened the tenth Ebola outbreak (2018-2020) in the Democratic Republic of the

Congo (18). A recently developed framework conceptualized twelve impacts of war on social

and environmental determinants of health and public health (19). Conflict-induced changes

in human behavior and mobility can fundamentally affect the way infectious diseases spread

throughout society at war. Therefore, interventions that proved effective or even optimal in tra-

ditional models may fall short when implemented during a conflict. This underscores the need

for policymakers to develop comprehensive strategies that address the complexities of war-

affected regions, ensuring that public health interventions remain robust and adaptable amid

extraordinary challenges. Effective responses must encompass both targeted disease-specific

interventions and broader health initiatives. However, there is a significant gap in generaliz-

ing these ideas to enable policymakers to optimally allocate public health resources, which are

frequently severely limited, to mitigate infectious disease outbreaks in war-torn societies.

This manuscript partially fills this gap by answering the question: how should limited re-

sources (e.g., drugs or healthcare personnel) required to treat people infected with a generic

infectious disease be optimally allocated in a society at war? A standard, compartmental SIRD

(Susceptible-Infected-Recovered-Deceased) model describes the spread of the disease (20) and

enables us to derive general principles of optimal resource allocation. Standard SIR models

make the default assumption that all individuals mix homogeneously. To capture the effect of

war on contact structures and subsequent disease spread, the population is stratified by gender

and location. A proportion of men, which are continuously replaced, fight at the war front where

they may face higher disease transmission and case fatality rates (21, 22). A specific focus is

on the concept of homophily, which describes the phenomenon that people with similar charac-

teristics (in this work, gender) are more likely to interact. This is well-established in the social

sciences (23, 24), but just recently began to gain traction in infectious disease models (25–27).
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The model can be easily extended to account for additional heterogeneities that might affect the

spread of the disease, such as age structure (28, 29) or spatial factors (30, 31). While the focus

in this work is on the treatment of infected individuals, the model can also be modified to help

policymakers in war-affected societies optimize a number of other public health interventions

such as vaccination (32) or disease surveillance (33).

Results and Discussion

We designed an infectious disease model that enables the study of public health resource alloca-

tion trade-offs in a society affected by war. Standard “SIR-type” differential equations describe

how susceptible (S) individuals become infected/infectious (I) and how infected individuals

eventually recover (R) or die (D). Beyond disease status, we stratified the population by gender

(using, for simplicity, a binary classification into male and female) and by location (home (i.e.,

not-at-war) and war), making the simplifying assumption that all soldiers are male. We thus

considered a total of 12 compartments: XF representing females (at home), XHM representing

males at home, and XWM representing males at war, where X ∈ {S, I, R,D}. We further as-

sumed a fast-spreading pathogen such as SARS-CoV-2, allowing us to neglect births and deaths

and changes in the population due to, e.g., migration. The pathogen can spread between the

home and the spatially separated war front through the continuous replacement of soldiers.

The model further accounts for potential gender homophily, i.e., the fact that contacts at

home may occur more frequently among people of the same gender. This is implemented

using the homophily parameter h ∈ [0, 1]. Homogeneous mixing (i.e., no gender homophily) is

modeled by h = 0, while h = 1 describes complete gender segregation. While hard to measure,

the true level of gender homophily most likely lies somewhere between these two extremes (23).

Lastly, we assumed that infected individuals can be treated. Treatment shortens the time to

recovery, yielding two related effects: (i) it lowers the probability that an infected individual
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Table 1: Description of model parameters
Parameter Description Base Value Range

βH Transmission rate at home 0.6 [0,∞)
βW Transmission rate at war front 0.8 [0,∞)
h Gender homophily 0 [0, 1]
η Solider replacement rate 0.05 [0,∞)
κ Scaling factor for the severity of war 1 [0,∞)
γH Recovery rate at home 0.2 [0,∞)
γW Recovery rate at the war front 0.2 [0,∞)

CFRH Case fatality rate at home 0.05 [0,∞)
CFRW Case fatality rate at war front 0.05 [0,∞)

µ Treatment rate 0.2 [0,∞)
ϕH Treatment efficiency at home varies [0, 1]
ϕW Treatment efficiency at war varies [0, 1]

dies from the disease, and (ii) it reduces the chance that an infected individual infects others.

To capture the shortage of public health resources (doctors, nurses, drugs, etc.) during times

of war, we assumed that the total capacity c ≥ 0 of these resources must be split between the

home and the war front, with τ ∈ [0, 1] describing the proportion of resources allocated for

the population at home. The effective treatment rates at home and at the war front decrease if

treatment demand exceeds the allocated supply, causing slower recoveries, and more deaths and

infections. All model parameters and their base values are described in Table 1.

In what follows, we explore solutions to the public health decision-making problem: Given

a total resource capacity c, find the optimal allocation strategy τ ∗(c) that minimizes disease

burden, which can be assessed by various metrics, e.g., the overall number of disease-induced

deaths, final epidemic size, or the basic and effective reproduction number. To begin, we focus

on the latter.
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Optimal resource allocation to minimize the effective reproduction number

The basic reproduction number, denoted R0, describes the expected number of secondary infec-

tions caused by one infected individual assuming the entire population is susceptible. The model

was designed so that R0 is invariant to changes in the assumed level of gender homophily, the

gender distribution in the society (we later study a scenario where a disproportionate number of

females have fled), and the proportion of people at war (Eq. 18). This enables an unconfounded

identification of the effect of changes in these parameters on the optimal allocation of limited

treatment resources.

While the two locations (home and war front) are presumed to be spatially separated, they

are epidemiologically connected through the ongoing replacement of soldiers. R0,home(τ) and

R0,war(τ) describe the basic reproduction number at home and at war, respectively (Eq. 19). For

any choice of positive parameters, ∂R0,home(τ)/∂τ ≤ 0 and ∂R0,war(τ)/∂τ ≥ 0. As expected,

allocating all treatment resources at home (τ = 1) thus minimizes the disease burden for the

population at home (measured by R0,home) while solely focusing on the war front (τ = 0)

minimizes R0,war.

While initially small, the number of infected increases as long as R0(τ) = max{R0,home(τ),

R0,war(τ)} > 1. Eventually, treatment demand may exceed available treatment resources, at

which point infected individuals receive sub-optimal care, increasing their time to recovery and

chance of dying from the disease (Eq. 3). The effective reproduction number Reff(t) describes

the expected number of secondary infections caused by an infected at time t (Eq. 20). To

illustrate how the optimal (i.e., Reff(t)-minimizing) treatment resource allocation τ ∗ depends on

the amount of available resources c, we consider the following scenario: the transmission rate

at war is 1/3 higher than at home (βH = 0.3, βW = 0.4), while the recovery rates are the same

(γH = γW = 0.2) and equal to the treatment rate (µ = 0.2), implying that optimal treatment

can cut the reproduction numbers in half. Moreover, pSH = pSW = 99% of females and males
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at home and at war are susceptible, while 1% is infected, and 25% of the total population

(50% of males) are at the war front (κ = 1 and pM = 0.5). If no treatment resources are

available (c = 0), the effective reproduction rates at home and at war are Reff, home(τ) ≡ 1.5

and Reff, war(τ) ≡ 2, respectively (Fig. 1A). If very limited resources become available (e.g.,

c = 0.0005 as in Fig. 1B), it is, therefore, optimal to dedicate these resources entirely to the war

front. As more treatment resources become available (e.g., c = 0.002 as in Fig. 1C), the optimal

resource allocation τ ∗ shifts more and more towards a more balanced allocation between the two

locations. At a resource capacity of about c = 0.006, all infected individuals can be optimally

treated at a rate of µ if τ ∗ = 57% of all treatment resources are at home (Fig. 1D). Due to

the assumed higher transmission rate at war, it proved optimal to allocate more resources per

capita to the war front (note that 75% of the population is at home). If even more resources are

available, a range of allocation values becomes, in theory, optimal (Fig. 1E). In practice, the

allocation that puts the most emphasis on minimizing both Reff, home and Reff, war instead of only

Reff should be preferable. In Fig. 1E, this implies the right endpoint of the interval of “optimal”

allocation strategies is most preferable.

Optimal resource allocation to minimize total deaths and infections

Besides the basic and effective reproduction number, the final epidemic size (FES) and the total

disease-induced mortality (i.e., the total number of infections and deaths that have occurred

at the end of an epidemic) constitute two further important metrics when designing optimal

policy decisions. While Reff(t) and thus any Reff(t)-minimizing treatment allocation strategy

varies over time, total infections and deaths are computed once, at the end of the epidemic,

making them better-suited for a resource allocation problems such as the one studied here.

In fact, mortality is even the most frequently used metric in COVID-19 vaccine prioritization

models (34).
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A B C D E

Figure 1: Dependence of the effective reproduction number on the treatment resource
allocation τ for different levels of resource capacity c. (A) If no resources are available,
τ does not affect the effective reproduction number, Reff(τ). (B) As very limited resources
become available, the initial focus is on the war front (τ ∗ = 0; green dots above the x-axis), (C)
shifts more and more towards the home front (∂τ ∗/∂c > 0), (D) until at a resource capacity
of about c = 0.006 perfect treatment of all infected individuals at both the home and the war
front is possible (by allocating τ ∗ = 57% of resources to the home front). (E) At even higher
resource capacities, many allocation strategies are optimal, as all treatment demand is met. The
specific parameter choices here are βH = 0.3, βW = 0.4, γH = γW = 0.2, µ = 0.2, κ = 1 and
1% (99%) of each group X ∈ {F,HM,WM} were considered infected (susceptible). These
choices explain why maxc,τ λ2 ≈ 1.5, maxc,τ λ3 ≈ 2, minc,τ λ2 ≈ 0.75,minc,τ λ3 ≈ 1.
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If transmission rates at home and at the war front are comparable, the treatment allocation

τ determines the size and the exact timing of the epidemic peaks as well as the number of

deaths at home and at the war front (Fig. 2A-D). At the beginning of the epidemic (time t = 0),

all infected individuals can be treated optimally. Once treatment demand in one location can

no longer be sufficiently met, the effective reproduction number as well as the effective CFR

increase, as seen, e.g., in Fig. 2A, E for infected at home at t = 10. This enables a positive

feedback loop that yields more new infections and ultimately results in a high FES and death

toll. As expected, the amount of resources allocated to one location correlated negatively with

the location-specific number of infected and the death toll. The mortality-minimizing strategy

τ ∗ = 79% (Fig. 2B, F) allocated treatment resources roughly according to the distribution of the

population across the two locations (κ = 1 implies that 75% of people are home: all females,

and half the males). The FES was minimized when a disproportionate amount of treatment

resources were allocated at home (τ ∗ = 88%).

In a situation where transmission rates at war are much higher than at home (e.g., due to

crowded high-contact conditions or lack of hygiene), the epidemic progresses, as expected,

much faster at the war front, irrespective of the treatment resource allocation (Fig. 3). The

mortality-minimizing strategy in the specific scenario studied in Fig. 3 allocated 1− τ ∗ = 80%

of insufficient treatment resources to the war front, even though only 25% of the total population

were assumed to be at the war front (Fig. 3B, F). Interestingly, this optimal resource allocation

coincides with the point where optimal treatment of individuals at home can just be maintained.

Allocating further resources to the war front leads to a much larger disease outbreak at home

and thus more deaths, as seen in Fig. 3A, E. The final epidemic size was instead minimized by

keeping τ ∗ = 66% of treatment resources at home (Fig. 3C, G). This choice strikes a balance

between preventing a large outbreak at the more populous home front and reducing as many

infections as possible at war.
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A B C D

E F G H

Figure 2: Comparison of epidemic curves when transmission rates at war and at home
are the same. (A-D) For four different allocation strategies (A: τ = 0.01, B: τ = 0.79,
which minimizes total deaths; C: τ = 0.88, which minimizes total infections; D: τ = 0.99),
the location-stratified numbers of infected (red: home, blue: war) are shown over time. For
each choice of τ , the total resource capacity is fixed at c = 0.05, and the location-specific, τ -
dependent resource availabilities are indicated by dashed lines. The location-specific epidemic
peak is indicated just below the x-axis. Final epidemic size (FES), total deaths, deaths at home
and at war are shown at the top. All parameters are at their default value, as specified in Table 1,
except for βW = βH = 0.6. (E-H) Corresponding plots of the effective case fatality rate (CFR),
which is a function of the location-specific number of infected and treatment capacity, both
shown in A-D.
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A B C D

E F G H

Figure 3: Comparison of epidemic curves when transmission rates at war are higher. (A-
D) For four different allocation strategies (A: τ = 0.01, B: τ = 0.2, which minimizes total
deaths; C: τ = 0.66, which minimizes total infections; D: τ = 0.99), the location-stratified
numbers of infected (red: home, blue: war) are shown over time. For each choice of τ , the
total resource capacity is fixed at c = 0.05, and the location-specific, τ -dependent resource
availabilities are indicated by dashed lines. The location-specific epidemic peak is indicated
just below the x-axis. Final epidemic size (FES), total deaths, deaths at home and at war are
shown at the top. All parameters are at their default value, as specified in Table 1, except for
βW = 3βH = 1.8. (E-H) Corresponding plots of the effective CFR (Eq. 3), which is a function
of the location-specific number of infected and treatment capacity, both shown in A-D.
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A comparison of Fig. 2 and Fig. 3 reveals an unexpectedly lower total death toll and FES

when transmission rates at war are much higher. While higher transmission rates at war caused

the expected higher number of infections and deaths at war, the desynchronization of the location-

specific epidemic peaks implies that limited treatment capacities at home suffice to maintain the

outbreak at a relatively modest size, which leads to fewer total infections and deaths (Fig. S1).

During the strong early outbreak at the war front, males that move to the war front get infected

at high rates and remain there while sick, thereby steadily deplenishing the pool of susceptible

males at home. The desynchronized peaks are, therefore, a boon for the population at home.

While we assumed treatment resource allocations to be fixed over time, such resources (e.g.,

doctors) can, in reality, be (at some rate) moved from one location to another based on needs.

While not modeled here, the availability of partially mobile treatment resources would further

reduce the disease burden in the case of desynchronized peaks.

Impact of treatment capacity and gender homophily on optimal resource
allocations

As expected, an increase in available treatment resources always resulted in fewer total deaths

and infections (Fig. 4). Considering again a scenario where transmission rates at war are much

higher than at home, total deaths and the FES were minimized by allocating very limited avail-

able resources entirely at home. If males and females were assumed to mix homogeneously

(h = 0), this strategy proved optimal up to the point where the total resource capacity sufficed

to treat all individuals at home optimally (Fig. 4A, B). All additional resources available beyond

this point were then allocated to the war front. In the extreme case of complete gender segre-

gation (h = 1), the optimal allocation strategy varied a lot more as the total resource capacity

increased (Fig. 4C, D). Beyond a very small resource capacity (c = 0.0002), the focus on the

war front increased (to τ = 0.4 at c = 0.005), then it decreased (to τ = 0.9 at c = 0.025)
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before it increased again (to τ = 0.2 at c = 0.15). An analysis of the epidemic trajectories at

these four switch points revealed again the importance of a desynchronization of the epidemic

peaks (Figs. S2, S3, S4, S5). Particularly for a resource capacity of c = 0.005, the outbreaks

among the male population at home and at war are desynchronized by allocating 1− τ ∗ = 60%

of treatment resources to the war front (Fig. S3). Given that the true level of gender homophily

lies somewhere between the two considered extremes (23), this interesting pattern highlights (i)

the importance of accounting for homophily in infectious disease models and (ii) the compli-

cated dynamics that arise from more realistic heterogeneous mixing patterns.

The FES proved much less affected by treatment inefficiencies due to insufficient resources

during outbreaks. While total deaths decreased from close to 5% (the assumed CFR times the

FES in the absence of any treatment) to roughly 1.4 − 1.7% (depending on the assumed level

of gender homophily), the FES only decreased from about 95% to 57% in the case of no gen-

der homophily, and even only to 70% in the case of complete gender segregation. Moreover,

much fewer resources were required to achieve the maximal reduction in FES than the maximal

reduction in total deaths. The lower impact of treatment on the FES can be explained by the

fact that inefficient treatment causes more deaths in a direct and an indirect way: (i) the person

receiving inefficient treatment faces a higher effective CFR (Eq. 3), and (ii) due to the longer

time to recovery, this person also infects more people, which lowers treatment efficiencies fur-

ther giving rise to the previously-mentioned positive feedback-loop and more deaths. Only the

latter indirect effect contributes to higher final epidemic sizes if treatment is sub-optimal.

Sensitivity of the optimal resource allocation

The model possesses a number of phenomenological parameters. While the effect of certain

parameters on model outcomes is intuitively clear, others require further investigation. For ex-

ample, increases in the CFR will result in corresponding increases in the total mortality without
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A C

B D

Figure 4: Model-predicted deaths and final epidemic size for various treatment capacities
and allocation strategies. The black line indicates the optimal allocation strategy τ ∗ for any
treatment capacity, with black dots indicating τ ∗ for the ten treatment capacities specified in the
legend. The two extreme cases regarding gender homophily are considered: (A, B) no gender
homophily (h = 0), (C, D) complete gender segregation (h = 1). Disease burden is quantified
by (A, C) total mortality and (B, D) final epidemic size. All parameters are at their default
value, as specified in Table 1, except for βW = 3βH = 1.8.
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substantially affecting the FES (Fig. S6). On the other hand, an increased treatment rate will

result in both fewer deaths and fewer infections (Fig. S7), and a slower soldier replacement

rate will result in a weaker coupling between the disease dynamics at home and at the war

front (Fig. S8). To assess the sensitivity of the optimal resource allocation to changes in less

intuitive parameters, we varied the transmission rate at war (while keeping the transmission

rate at home fixed), the severity of the war (scaled by the parameter κ, which determines the

steady-state proportion of males at war), the outbreak severity (by modulating the reproduction

number through the natural recovery rate), the level of gender homophily, as well as treatment

capacity and allocation, as before. Since disease-induced mortality yielded thus far the most in-

teresting results and is also the most frequently used metric in COVID-19 vaccine prioritization

models (34), we focus from here only on minimizing total deaths.

Treatment, which was assumed to be fixed at a rate of µ = 0.2, was much more successful

in reducing deaths if, assuming optimal treatment, R0,home = 1.5,R0,war ∈ [0.5, 4.5] (Fig. 5,

rows 1 and 3) versus R0,war = 3,R0,home ∈ [1, 9] (Fig. 5, rows 2 and 4). The optimal treat-

ment allocation strategy also varied more in the case of lower outbreak severity. In the case

of very limited resources, a focus on the more populous home front minimized deaths unless

transmission rates at war and at home were assumed to be similar (Fig. 5A-H). This finding

was qualitatively consistent across changes in the outbreak severity, severity of war, and gender

homophily. If Reff,home ≈ Reff,war, the smaller size of the population at the war front implies that

very limited treatment capacities can have a larger relative effect on reducing Reff,war, thereby

curbing infections and deaths more. At higher resource capacities, patterns already observed

before emerged: If transmission rates at war are higher than at home and individuals mix homo-

geneously, it was optimal to focus on ensuring the best possible treatment of the large population

at home before shifting attention to the war front (Fig. 5A, C), as seen in Fig. 4A, B. Due to the

desynchronization of the epidemic peaks between the home and the war front, first described
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in Fig. 3, total deaths were lower despite substantially higher transmission rates at war (Fig. 5I,

K). In the extreme case of complete gender segregation and higher at-war transmission rates

(as already seen in Fig. 4C, D), the focus shifted, as treatment capacities increase, from home

towards the war front, back to home and again back towards the war front, irrespective of the

proportion of males at war (Fig. 5E, G). In case of higher transmission rates at home (unrealis-

tic but worth exploring), it was optimal to use all treatment resources at home, irrespective of

treatment capacity, gender homophily, outbreak severity, and gender homophily (Fig. 5A-H).

Impact of war-induced predominantly female migration

When war breaks out, men often stay, while women and children flee abroad, as exemplified

by the overwhelmingly female wave of Ukrainian refugees since 2022 (35). This predomi-

nantly female migration due to war can give rise to a highly unbalanced gender distribution.

When 70% (instead of 50%) of the population was assumed to be male, the focus on the war

front increased for many parameter combinations, likely since fewer females at home required

treatment (Fig. S9). In the case of lower transmission rates at war, the total mortality and the

treatment capacity required to meet all demand both decreased slightly, likely because relatively

more infections occurred at the war front. In general, however, the results proved qualitatively

robust to changes in the male-to-female ratio.

Conclusion

Conflict and war have risen substantially over the course of the last decade (4). Given the

particular susceptibility of societies at war to infectious disease outbreaks (6), this emphasizes

the need to study effective disease mitigation strategies. The frequent scarcity of public health

resources in war-affected societies further complicates mitigation efforts, as decision-makers

must choose between prioritizing the soldiers at war or the population at home. We framed this
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Figure 5: Sensitivity of the optimal resource allocation. For 150 equally-spaced values of
treatment capacity (c ∈ [0, 0.08]) and transmission rates at war (βW ∈ [1/3βH , 3βH ]), the
disease-induced mortality-minimizing treatment allocation strategy τ ∗ is shown in (A-H), while
the total deaths under the respective strategy are shown in (I-P). The gray region describes pa-
rameter combinations where a range of resource allocations were optimal, i.e., where treatment
resources sufficed to treat everyone optimally. In (A-D, I-L), males and females mix homo-
geneously (h = 0), while in (E-H, M-P), the extreme case of complete gender segregation
(h = 1) is assumed. The outbreak severity varies between the rows, modulated by considering
γH = γW = 0.2 (low severity) in rows 1 and 3, and γH = γW = 0.1 (high severity) in rows 2
and 4. The severity of war varies between the columns, modulated by considering κ = 1 (high
severity, 50% of males at war) in rows 1 and 3, and κ = 4 (low severity, 20% of males at war)
in rows 2 and 4. All other parameters are fixed at the default values described in Table 1.

18

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 2, 2024. ; https://doi.org/10.1101/2024.08.01.24311365doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.01.24311365
http://creativecommons.org/licenses/by-nc/4.0/


trade-off as a one-dimensional optimal resource allocation problem in a generic, extendable

compartmental disease model and described the impact of several standard epidemiological

parameters as well as parameters related to war dynamics and social structure.

The comprehensive model analysis revealed, among others, the desynchronization of epi-

demic peaks among subpopulations as a generally desirable principle that helps minimize dis-

ease burden, even when assuming fixed resource allocations. In reality, resources can be - at

least slowly - reallocated, implying that strategies that spread out the epidemic peaks become

even more beneficial. We only considered an initially synchronized outbreak (with the same

initial disease incidence in each subgroup). Subsequent desynchronization is the result of dif-

ferential transmission rates and treatment efficiencies due to the choice of allocation strategy. If

the outbreak began in a specific subgroup, a different strategy might yield the desirable, maxi-

mal desynchronization.

A second major result is the importance of accounting for contact heterogeneity, exemplified

in this study by the large impact of gender homophily on disease dynamics and optimal resource

allocation strategies. In this study, we exclusively considered the extreme cases of homogeneous

mixing and complete gender segregation. The true level of gender homophily, while hard to

measure, will vary from country to country and lie somewhere between these extremes (24),

leading to results that also are somewhere between the reported extreme results, as revealed in

a one-dimensional sensitivity analysis (Fig. S10).

The developed model can be easily extended and adapted to specific pathogens and situ-

ations, yielding more accurate model dynamics at the expense of higher complexity. For ex-

ample, incorporating a non-zero rate of female participation in warfare could capture more

accurately current military trends (36, 37). Similarly, age-assortative mixing patterns have be-

come a crucial building block of accurate infectious disease models (38). SIR dynamics fail to

accurately describe the spread of certain pathogens, such as SARS-CoV-2, which is frequently
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transmitted prior to the onset of symptoms. The inclusion of additional compartments could

mitigate this issue. A further model limitation relates to pathogens with substantial presymp-

tomatic or asymptomatic transmission. We assumed that infected males do not move from and

to the war front. This is only possible if cases can be ascertained, requiring either clear symp-

toms or efficient testing. Therefore, a likely more realistic approach would be to assume lower

(but non-zero) replacement rates for infected individuals. Altogether, there exists a plethora of

possible modifications to the developed model. We consciously employed a very simple, ab-

stract model to facilitate the analysis and to focus on the key social and disease mechanisms that

affect disease spread and optimal mitigation strategies in a population affected concurrently by

war and an infectious disease outbreak.

Material and Methods

Compartmental disease model

We describe the spread of infectious disease among the population of a country at war using

a system of twelve differential equations, each describing the size of one subpopulation (also

referred to as a compartment). The population is divided into three different subgroups based

on gender (females and males) and location (those at home and those at the spatially separated

war front), and we make the simplifying assumption that only men fight at war. Distinguishing

further four disease statuses yields the following twelve compartments: susceptible individuals

(SF, SHM, SWM), infected individuals (IF, IHM, IWM), recovered individuals (RF, RHM, RWM), and

deceased individuals (DF, DHM, DWM). The subscripts denote the gender and location (F for

females, HM for males at home, WM for males at war). The total population size N is fixed

when including deceased individuals in the count. Balancing model complexity and accuracy,

we do not model births, deaths, and active migration since the generic infectious disease studied

here is assumed to be fast-spreading with a short disease generation time. Note that the impact
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of migration on model predictions can be indirectly assessed by varying the initial conditions,

i.e., the male-to-female ratio, as females and children often leave war-torn regions at higher

rates (35).

Continuous replacement of soldiers

We assume that the home and the war front are spatially separated, implying that no contacts

between men at war and the rest of the population occur. The disease dynamics at home and

at war are nevertheless coupled due to the replacement of males at war with males at home,

and vice versa, at fixed rates of κη and η, respectively. Here, η describes the speed of the

replacement, while κ represents the severity of the war. We assume that infected individuals are

not replaced until they recover. If pM ∈ [0, 1] denotes the proportion of the population that is

male; we have at any steady state

N⋆
F = (1− pM)N,N⋆

HM =
κpMN

1 + κ
,N⋆

WM =
pMN

1 + κ
, (1)

where N⋆
X = S⋆

X + I⋆X + R⋆
X + D⋆

X denotes the total population size of subgroup X ∈

{F,HM,WM} at a steady state.

New infections and gender homophily

The force of infection, FOIX , describes the rate at which susceptible individuals in a given

subgroup X ∈ {F,HM,WM} become infected. It depends on the proportion of infected in-

dividuals, the contact patterns among subgroups, mitigation measures, as well as the location-

specific transmission rates, βH and βW . By considering βW ∈ [1
3
βH , 3βH ], we study situations

in which the transmission rates between the two locations differ up to a factor of three, due to

e.g., more or prolonged contacts in one location. At home, we assume that females and males

have the same total number of contacts. In the absence of preferential mixing among people

of the same gender, we assume that the proportion of contacts an individual at home has with
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females is NF/(NF + NHM) and with males is NHM/(NF + NHM), irrespective of the gender

of the individual itself (note that NX = NX(t) denotes the total population size of subgroup

X ∈ {F,HM,WM} and does typically not vary much over time). To account for possible gen-

der homophily h ∈ [0, 1] (that is, more frequent contacts between people of the same gender

due to preference and/or job setting), we move a fraction h of contacts among people of the op-

posite gender to contacts among people of the same gender, as explained in detail in (39). This

approach ensures the same level of total contact between the population at home, irrespective

of the assumed level of gender homophily.

Together, these considerations yield subgroup-specific forces of infection

FOIF = βH

[(
1 + h

NHM

NF

)
IF

NF +NHM
+ (1− h)

IHM

NF +NHM

]
,

FOIHM = βH

[(
1 + h

NF

NHM

)
IHM

NF +NHM
+ (1− h)

IF

NF +NHM

]
,

FOIWM = βW
IWM

NWM
.

(2)

Natural recovery and death

Location-specific recovery rates (γH ≥ 0 for females and males at home, and γW ≥ 0 for males

at war) and case fatality rates (CFRH ≥ 0 for females and males at home, and CFRW ≥ 0

for males at war) conclude the description of the disease dynamics. Upon leaving the infected

compartment, any individual recovers with probability 1 − CFR and dies with probability

CFR. While they may differ in practice, we only considered the situation where γH = γH and

CFRH = CFRW .

Treatment

We account for the possibility of treatment of infected individuals by including an additional

recovery rate due to treatment, implying that treatment accelerates recovery. The treatment rate
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is µϕH for those at home and µϕW for those at war. Here, µ ≥ 0 describes the maximal pos-

sible treatment rate (given unlimited resources) and the location-specific treatment efficiencies

ϕH , ϕW ∈ [0, 1] enable the definition of an optimal control limited-resource allocation problem

(see below). Individuals who recover due to treatment do not die. Treatment thus has two ef-

fects: (i) it shortens the time an individual is infected and can infect others, and (ii) it lowers the

proportion of infected individuals that die from the disease.

To fully understand these two effects, it helps to consider a single infected individual at lo-

cation X ∈ {H,W}. The individual’s time to recovery due to treatment and the time to natural

recovery is exponentially distributed with parameters µϕX and γX , respectively. When the indi-

vidual is not treated, it dies with probability CFRX . Otherwise, it is assumed to survive. Thus,

the probability that an infected dies from the disease depends on the treatment rate µϕX , and is

termed the effective CFR. Thus, given two independent random variables A ∼ Exp(µϕX), B ∼

Exp(γX) with joint density function p(a, b) = µϕXγX exp(−µϕXa− γXb), we have

effective CFRX = CFRXP(A > B)

= CFRX

∫ ∞

0

∫ a

0

p(a, b) dbda = CFRX
γX

µϕX + γX
.

(3)
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Complete model and parameter choices

Transitions between the twelve compartments are illustrated in Fig. 6, and the complete set of

model equations is as follows:

Susceptible



dSF

dt
= −βH

SF

NF +NHM

[(
1 + h

NHM

NF

)
IF + (1− h)IHM

]
dSHM

dt
= −βH

SHM

NF +NHM

[
(1− h)IF +

(
1 + h

NF

NHM

)
IHM

]
− ηSHM + κηSWM

dSWM

dt
= −βWSWM

IWM

NWM
+ ηSHM − κηSWM

Infected



dIF

dt
= βH

SF

NF +NHM

[(
1 + h

NHM

NF

)
IF + (1− h)IHM

]
− µϕHIF − γHIF

dIHM

dt
= βH

SHM

NF +NHM

[
(1− h)IF +

(
1 + h

NF

NHM

)
IHM

]
− µϕHIHM − γHIHM

dIWM

dt
= βWSWM

IWM

NWM
− µϕW IWM − γWIWM

Recovered



dRF

dt
= µϕHIF + γH(1− CFRH)IF

dRHM

dt
= µϕHIHM + γH(1− CFRH)IHM − ηRHM + κηRWM

dRWM

dt
= µϕW IWM + γW (1− CFRW )IWM + ηRHM − κηRWM

Dead



dDF

dt
= γHCFRHIF

dDHM

dt
= γHCFRHIHM

dDWM

dt
= γWCFRW IWM

(4)

Given the abstract nature of the model, we set all parameters to default values (Table 1) and

conducted extensive sensitivity analyses to explore the impact of specific parameters.

Optimal control resource allocation problem

Countries at war often suffer from insufficient public health resources, hindering the effective

control of an infectious disease outbreak. In this study, we consider a one-dimensional resource
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Figure 6: Illustration of the modeled transitions (Eq. 4) between the different compartments
(susceptible: SX , infected: IX , recovered: RX , and dead: DX), where the subgroup X describes
location (home: H, and war: W) and gender (male: M, and female: F). The parameters are
defined in Table 1.
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allocation problem: given c > 0 people can be treated at any moment (where c is determined,

among others, by the number of available healthcare personnel and drugs), how should the

treatment resources be optimally split between the war and the home front to minimize the

overall number of disease-induced deaths.

Given the presumed spatial separation between the home and the war front and the fast

outbreak dynamics, we considered the resource allocation fixed over time and let τ ∈ [0, 1]

describe the proportion of resources allocated at home. Then, τc and (1 − τ)c represent the

maximal number of infected individuals at home, and at war, respectively, that can be treated

at the optimal rate µ. If more individuals are infected at either location, treatment becomes

sub-optimal, and the effective treatment rate decreases proportionally. That is, the effective

treatment rate at home and at war is µϕH(t) and µϕW (t), where the treatment efficiencies are

ϕH(t) =

1 if IF(t) + IHM(t) ≤ τc,
τc

IF(t) + IHM(t)
otherwise,

ϕW (t) =

1 if IWM(t) ≤ (1− τ)c,
(1− τ)c

IWM(t)
otherwise.

(5)

The optimal control problem thus is: Given a treatment capacity of c > 0, find the treatment

resource allocation τ ⋆(c) ∈ [0, 1] that minimizes the disease burden, quantified in this study by

the overall mortality

D(∞) := lim
t→∞

DF(t) +DHM(t) +DWM(t), (6)

the final epidemic size (FES)

1− S(∞) := 1− lim
t→∞

SF(t) + SHM(t) + SWM(t), (7)

or the effective reproduction number at a certain moment in time, defined below.
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Simulations

To compute the total number of disease-induced deaths (Eq. 6) and the FES (Eq. 7) for a given

choice of parameters and resource allocation τ , we solved the system of differential equations

numerically using the fourth-order Runge-Kutta method (RK4) and a time step ∆t = 0.25.

This method is accurate and computationally efficient. The use of the high-performance Python

compiler Numba substantially improved the compute time (40).

Throughout, we initiated the disease dynamics at an early stage of the outbreak, assuming

0.01% of people are infected, while 99.99% are susceptible. The infected individuals are split

across the three subgroups proportional to the size N⋆
X of each subgroup X ∈ {F,HM,WM} at

the disease-free equilibrium (Eq. 1).

Derivation of the basic reproduction number

The basic reproduction number, R0, constitutes one of the most widely used metrics in the

study of infectious diseases. It quantifies the average number of secondary infections caused

by a single infected individual in a completely susceptible population. Following the standard

next-generation matrix approach to compute R0 (41, 42) and writing the compartments as

x(t) = (x1(t), . . . , x12(t)) = (IF, IHM, IWM, SF, SHM, SWM, RF, RHM, RWM, DF, DHM, DWM)(t),

(8)

the disease-free equilibrium can be written as

x0 = (0, 0, 0, S∗
F , S

∗
HM, S

∗
WM, 0, 0, 0, 0, 0, 0), (9)

where S∗
F + S∗

HM + S∗
WM = N , (S∗

HM + S∗
WM)/N = pM ∈ [0, 1] describes the proportion of the

population that is male, and S∗
HM = κS∗

WM relates the number of males at home and at war. As

in Eq. 1, for a given pM we have

S∗
F = 1− pM , S∗

HM =
κpM
1 + κ

, S∗
WM =

pM
1 + κ

. (10)
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The disease dynamics of the model can then be represented as

dxi

dt
= Fi(x)− Vi(x), (11)

where Fi(x) describes the appearance of newly infected individuals in compartment i, while

Vi(x) describes the rate of net out- versus in-flow of individuals in compartment i. We have

(F1, F2, F3)
T =


βH

SF

NF +NHM

[
(1 + h

NF

NHM
) + (1− h)IHM

]
βH

SHM

NF +NHM

[
(1− h)IF + (1 + h

NHM

NF

)IHM

]
βW

SWM

NWM
IWM

 , (12)

and

(V1, V2, V3)
T =

 µϕHIF + γHIF

µϕHIHM + γHIHM

µϕW IWM + γW IWM

 . (13)

As described in (42), we can compute two Jacobian m×m-matrices F = ∂Fi/∂xj(x0) and

V = ∂Vi/∂xj(x0) such that R0 = ρ(FV −1) where ρ(·) denotes the spectral radius of a square

matrix. For the presented model, FV −1 is a block matrix (since people at war and home cannot

infect each other) with eigenvalues

λ1 =
βH (−∆+NHMNF(S

∗
F + S∗

HM) + S∗
FhN

2
HM + S∗

HMhN
2
F )

2NFNHM(NF +NHM)(γH + µϕH)
,

λ2 =
βH (∆ +NHMNF(S

∗
F + S∗

HM) + S∗
FhN

2
HM + S∗

HMhN
2
F )

2NFNHM(NF +NHM)(γH + µϕH)
,

λ3 =
S∗

WMβW

NWM(γW + µϕW )
,

(14)

where

∆ =

√√√√√ S∗2
F h2N4

HM +N2
HMN

2
F

(
2S∗

FS
∗
HMh

2 − 8S∗
FS

∗
HMh+ (S∗

F + S∗
HM)

2
)
+

2S∗
HMhNHMN

3
F (S

∗
HM − S∗

F) + 2S∗
FhN

3
HMNF(S

∗
F − S∗

HM) + S∗2
HMh

2N4
F .

(15)
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Since S∗
F , S

∗
HM ≥ 0 we have |λ1| < |λ2| such that the basic reproduction number R0 is

R0 = max {|λ2|, |λ3|} . (16)

As long as some treatment resources are available (i.e., c > 0) and these resources are somewhat

distributed between the home and war front (i.e., 0 < τ < 1), we have at the disease-free

equilibrium, ϕH = ϕW = 1. That is, the initially tiny fraction of the population that is infected

can be treated at the optimal rate µ. Moreover at the disease-free equilibrium, S⋆
X = NX for

X ∈ {F,HM,WM} so that

∆ =
√

h2(NHM +NF)2 − 8NFNHMh+ (NF +NHM)2 + 2hNF(NHM −NF) + 2hNHM(NF −NHM)

= (1− h)(NHM +NF).

(17)

With this, Eq. 16 becomes

R0 = max

{∣∣∣∣βH (∆ + (1 + h)(NF +NHM))

2(NF +NHM)(γH + µϕH)

∣∣∣∣ , ∣∣∣∣ βW

γW + µϕW

∣∣∣∣}
= max

{
βH

γH + µ1[c > 0, τ > 0]
,

βW

γW + µ1[c > 0, τ < 1]

}
.

(18)

Since the two locations (home and war) are spatially separated, λ2(τ) describes the basic repro-

duction number at home, while λ3(τ) describes the basic reproduction number at the war front.

That is,

R0,home(τ) := λ2(τ) =
βH

γH + µ1[c > 0, τ > 0]
,

R0,war(τ) := λ3(τ) =
βW

γW + µ1[c > 0, τ < 1]

(19)

Eq. 18 further highlights that neither the relative number of individuals in the three groups, F,

HM, WM, nor the level of gender homophily influences R0. This validates the model setup

and enables us to study the true impact of homophily and changes in the population distribution

(through varying initial conditions) on optimal treatment resource allocation without having to

worry about a confounding effect due to changes in the basic reproduction number.
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Derivation of the effective reproduction number

When more than a negligibly small proportion of the population is infected (some may even

have recovered), the basic reproduction number no longer applies because it is defined as

the number of secondary infections caused by one infected individual in a fully susceptible

population. Instead, we use the effective reproduction number, denoted Reff(t), to describe

the expected number of secondary infections caused by one infected individual at time t. As

long as the proportion of females and males at home that are susceptible is the same, denoted

pSH(t) ∈ [0, 1], the expressions in Eq. 14 can be simplified, as shown above for R0, to obtain

Reff(t) = max {λ2, λ3} = max

{
pSH(t)

βH

γH + µϕH(t)
, pSW(t)

βW

γW + µϕW (t)

}
. (20)

Here, pSW(t) ∈ [0, 1] describes the proportion of males at war that are still susceptible, and the

treatment efficiencies ϕH(t), ϕW (t) are functions of the location-specific number of infected,

the resource allocation strategy τ and the total resource capacity c, and can therefore take on

any value in [0, 1]. Again, as for R0, λ2(τ) describes the effective reproduction number at home,

while λ3(τ) describes the effective reproduction number at the war front. That is,

Reff,home(τ) := λ2(τ) = pSH(t)
βH

γH + µϕH(t)
,

Reff,war(τ) := λ3(τ) = pSW(t)
βW

γW + µϕW (t)

(21)

If the proportion of males and females at home that are susceptible is not the same, we can

still compute Reff(τ), Reff,home(τ), and Reff,war(τ) from Eqs. 14,15 but cannot obtain formulas as

simple as Eqs. 20,21.
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A B C

D E F

Figure S1: Comparison of epidemic curves for different relative transmission rates and
treatment allocations. For three different treatment allocation strategies (A, D: τ = 0 (all at
war), B, E: τ = 0.5, C, F: τ = 1 (all at home)), the location-stratified numbers of infected (red:
home, blue: war) are shown over time. For each choice of τ , the total resource capacity is fixed
at c = 0.05, and dashed lines indicate the location-specific, τ -dependent resource availabilities.
The location-specific epidemic peak is indicated just below the x-axis. Total deaths, as well
as location-specific deaths, are shown at the top. All parameters are at their default value, as
specified in Table 1, except for (A-C) βW = βH = 0.6 and (D-F) βW = 3βH = 1.8.
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Figure S2: Comparison of epidemic curves when transmission rates at war are higher,
males and females are completely segregated, and c = 0.0002 treatment resources are
available. (A-D) For four different allocation strategies (A: τ = 0.21, B: τ = 0.4, C: τ = 0.9,
D: τ = 0.99), the numbers of infected are shown over time, stratified by gender and location.
For each choice of τ , the total resource capacity is fixed at c = 0.05, and the location-specific, τ -
dependent resource availabilities are indicated by dashed lines. The location-specific epidemic
peak is indicated just below the x-axis. Final epidemic size (FES), total deaths, deaths at home
and at war are shown at the top. A gray box highlights the total mortality-minimizing strategy
(D). All parameters are at their default value, as specified in Table 1, except for βW = βH = 0.6.
(E-H) Corresponding plots of the effective case fatality rate (CFR), which is a function of the
location-specific number of infected and treatment capacity, both shown in A-D.
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Figure S3: Comparison of epidemic curves when transmission rates at war are higher,
males and females are completely segregated, and c = 0.005 treatment resources are avail-
able. (A-D) For four different allocation strategies (A: τ = 0.21, B: τ = 0.4, C: τ = 0.9, D:
τ = 0.99), the numbers of infected are shown over time, stratified by gender and location. For
each choice of τ , the total resource capacity is fixed at c = 0.05, and the location-specific, τ -
dependent resource availabilities are indicated by dashed lines. The location-specific epidemic
peak is indicated just below the x-axis. Final epidemic size (FES), total deaths, deaths at home
and at war are shown at the top. A gray box highlights the total mortality-minimizing strategy
(B). All parameters are at their default value, as specified in Table 1, except for βW = βH = 0.6.
(E-H) Corresponding plots of the effective case fatality rate (CFR), which is a function of the
location-specific number of infected and treatment capacity, both shown in A-D.
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Figure S4: Comparison of epidemic curves when transmission rates at war are higher,
males and females are completely segregated, and c = 0.025 treatment resources are avail-
able. (A-D) For four different allocation strategies (A: τ = 0.21, B: τ = 0.4, C: τ = 0.9, D:
τ = 0.99), the numbers of infected are shown over time, stratified by gender and location. For
each choice of τ , the total resource capacity is fixed at c = 0.05, and the location-specific, τ -
dependent resource availabilities are indicated by dashed lines. The location-specific epidemic
peak is indicated just below the x-axis. Final epidemic size (FES), total deaths, deaths at home
and at war are shown at the top. A gray box highlights the total mortality-minimizing strategy
(C). All parameters are at their default value, as specified in Table 1, except for βW = βH = 0.6.
(E-H) Corresponding plots of the effective case fatality rate (CFR), which is a function of the
location-specific number of infected and treatment capacity, both shown in A-D.

5

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 2, 2024. ; https://doi.org/10.1101/2024.08.01.24311365doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.01.24311365
http://creativecommons.org/licenses/by-nc/4.0/


A B C D

E F G H

Figure S5: Comparison of epidemic curves when transmission rates at war are higher,
males and females are completely segregated, and c = 0.15 treatment resources are avail-
able. (A-D) For four different allocation strategies (A: τ = 0.21, B: τ = 0.4, C: τ = 0.9, D:
τ = 0.99), the numbers of infected are shown over time, stratified by gender and location. For
each choice of τ , the total resource capacity is fixed at c = 0.05, and the location-specific, τ -
dependent resource availabilities are indicated by dashed lines. The location-specific epidemic
peak is indicated just below the x-axis. Final epidemic size (FES), total deaths, deaths at home
and at war are shown at the top. A gray box highlights the total mortality-minimizing strategy
(A). All parameters are at their default value, as specified in Table 1, except for βW = βH = 0.6.
(E-H) Corresponding plots of the effective case fatality rate (CFR), which is a function of the
location-specific number of infected and treatment capacity, both shown in A-D.
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A C

B D

Figure S6: Optimal model-predicted allocation strategies for various treatment capacities
and case fatality rates. The optimal allocation strategy τ ∗ is shown for any treatment capacity
and two choices of the CFR at home and at war. The two extreme cases regarding gender
homophily are considered: (A, B) no gender homophily (h = 0), (C, D) complete gender
segregation (h = 1). Disease burden is quantified by (A, C) total mortality and (B, D) final
epidemic size. All parameters are at their default value, as specified in Table 1, except for
βW = 3βH = 1.8.
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Figure S7: Optimal model-predicted allocation strategies for various treatment capacities
and maximal treatment rates. The optimal allocation strategy τ ∗ is shown for any treatment
capacity and three choices of maximal treatment rate. The two extreme cases regarding gender
homophily are considered: (A, B) no gender homophily (h = 0), (C, D) complete gender
segregation (h = 1). Disease burden is quantified by (A, C) total mortality and (B, D) final
epidemic size. All parameters are at their default value, as specified in Table 1, except for
βW = 3βH = 1.8.
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Figure S8: Optimal model-predicted allocation strategies for various treatment capacities
and soldier replacement rates. The optimal allocation strategy τ ∗ is shown for any treatment
capacity and three choices of maximal treatment rate. The two extreme cases regarding gender
homophily are considered: (A, B) no gender homophily (h = 0), (C, D) complete gender
segregation (h = 1). Disease burden is quantified by (A, C) total mortality and (B, D) final
epidemic size. All parameters are at their default value, as specified in Table 1, except for
βW = 3βH = 1.8.
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Figure S9: Sensitivity of the optimal resource allocation to changes in the male-to-female
ratio. This figure shows the same five-dimensional sensitivity analysis as Fig. 5, except that
70% of the population is assumed to be male. For 150 equally-spaced values of treatment ca-
pacity (c ∈ [0, 0.08]) and transmission rates at war (βW ∈ [1/3βH , 3βH ]), the disease-induced
mortality-minimizing treatment allocation strategy τ ∗ is shown in (A-H), while the total deaths
under the respective strategy are shown in (I-P). The gray region describes parameter combina-
tions where a range of resource allocations were optimal, i.e., where treatment resources suf-
ficed to treat everyone optimally. In (A-D, I-L), males and females mix homogeneously (h = 0),
while in (E-H, M-P), the extreme case of complete gender segregation (h = 1) is assumed. The
outbreak severity varies between the rows, modulated by considering γH = γW = 0.2 (low
severity) in rows 1 and 3, and γH = γW = 0.1 (high severity) in rows 2 and 4. The severity of
war varies between the columns, modulated by considering κ = 1 (high severity, 50% of males
at war) in rows 1 and 3, and κ = 4 (low severity, 20% of males at war) in rows 2 and 4. All
other parameters are fixed at the default values described in Table 1.10
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Figure S10: Optimal model-predicted allocation strategies for various treatment capacities
and levels of gender homophily. The optimal allocation strategy τ ∗ is shown for any treatment
capacity and three choices of maximal treatment rate. Disease burden is quantified by (A) total
mortality and (B) final epidemic size. All parameters are at their default value, as specified in
Table 1, except for βW = 3βH = 1.8.
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