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Abstract. Liver diseases are a leading cause of death worldwide, with
an estimated 2 million deaths each year. Causes of liver disease are diffi-
cult to ascertain, especially in sub-Saharan Africa where there is a high
prevalence of infectious diseases such as hepatitis B and schistosomi-
asis, along with alcohol use. Point-of-care ultrasound often is used in
low-resource settings for diagnosis of liver disease due to its portabil-
ity and low cost. For classification models that can automatically stage
liver disease from ultrasound video, the region of interest is liver tissue.
A fully-automated pipeline for liver tissue identification in ultrasound
video is presented. Ultrasound video data was collected using a low-cost,
portable ultrasound machine in rural areas of Uganda. The pipeline first
detects the diaphragm in each ultrasound video frame, then segments the
diaphragm to ultimately use this segmentation to infer the position of
liver tissue in each frame. This pipeline outperforms directly segmenting
liver tissue with an intersection over union of 0.83 compared to 0.62. This
pipeline also shows improved results with respect to the ease of clinical
interpretation and anticipated clinical utility.

Keywords: Ultrasound · Video · Liver · Diaphragm · Segmentation ·
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1 Introduction

Liver diseases are a leading cause of death in sub-Saharan Africa, with commonly
recorded causes of hepatitis B and alcohol use [18, 7]. A less recorded, but widely
prevalent cause of chronic, severe liver disease in areas of sub-Saharan Africa
without access to safe water and adequate sanitation is schistosomiasis. Chronic
schistosomiasis infection can cause liver fibrosis, due to immune responses to eggs
from intestinal species of this parasitic blood fluke that are trapped in vessels
in the portal system [15, 1]. This type of liver fibrosis is called schistosomal
periportal fibrosis (PPF). In its early stages, schistosomal PPF is visible at the
early segmental branches of the portal system then advances towards the main
portal vein, and finally extends across the whole liver [3, 17].
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Ultrasound imaging is the most-used, and only recommended method by
the World Health Organisation (WHO) for the diagnosis of schistosomal PPF,
used due to the high echogenicity of the fibrosis [12]. To reach rural populations
affected by schistosomiasis and provide point-of-care services where health sys-
tems lack diagnostic capacity, low-cost, portable ultrasound machines are used
[5]. It has been shown that the quality of images attained by low-cost, portable
ultrasound machines may be lower than the quality obtained from cart-based
ultrasound machines [9, 20]. To enable liver tissue identification in this context,
deep learning approaches might need to exploit features or anatomy that are
known to appear with clearer boundaries.

Automated liver tissue identification from ultrasound video has not been
widely explored, especially considering challenges posed in low-resource settings.
Segmentation for liver ultrasound has focused on cancer, in particular segment-
ing focal lesions as a pre-processing step before classification [16]. There has
been work on the segmentation of liver tissue in ultrasound images, using data
collected in hospital settings. A proposed method has been to locate the liver
capsule and use this as a boundary for liver tissue, before cirrhosis staging [14].
However, this approach was used only for ultrasound images that did not im-
age deep into the body, which do not capture enough liver tissue for staging
complex diseases that present in both diffuse and focal forms, such as schisto-
somal PPF. Recently, another method has been proposed, achieving very good
quantitative results by using multi-head self attention to segment liver tissue
and related structures in ultrasound images [21]. Despite this, there remains no
literature on the identification of liver tissue in ultrasound video. Ultrasound
video may be a more appropriate data form in low-resource settings. The ac-
quisition of specific views of the liver to produce curated images requires expert
knowledge that may not be available. Alternatively, predefined sweep procedures
for video acquisition requires less expertise and training. Thus, there remains a
need to investigate liver tissue identification using ultrasound video collected in
low-resource settings.

In this paper, a pipeline is presented to automatically identify when and
where liver tissue appears in ultrasound video, using ultrasound examinations
of individuals in a rural, sub-Saharan African context.

2 Methods

2.1 Context and data

This study was conducted within SchistoTrack, which is a community-based co-
hort in rural Uganda [2]. Data from an annual follow-up of 3219 participants in
2023 were used. Ultrasound videos were collected from each participant following
a predefined protocol conducted by local sonographers who were highly experi-
enced in assessing liver disease. The procedure for acquiring the video used for
the development of this pipeline was to start with a good view of the gall bladder
with the probe transverse, and then to move the probe to the cephalic position.
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Each video clip was 5 seconds long, at 20 frames per second (fps). Phillips C5-
2 curvilinear transducers were used with the Lumify Application connected to
tablets with Android 9 Pie.

Adults who had fasted before the scan and had no ultrasound findings in-
cluding liver fibrosis, cirrhosis, fatty liver, hepatitis B and other abnormalities,
were used for the development of the pipeline. Of the 728 adults who fit these
criteria, a random sample of 110 adults were selected, each with one ultrasound
video. The participants’ age range was 18-84 years, with a mean (s. d.) of 42.0
(15.6) and 77% (85) were female. Every other frame of each video was labelled
with whether or not the diaphragm was visible. Additionally, masks of the di-
aphragm were created for every other frame of ultrasound video for a randomly
selected 25 videos. For diaphragm detection, 90 videos were used for training,
10 for validation, and 10 for testing. For automated diaphragm segmentation,
18 videos were used for training, two for validation, and five for testing.

2.2 Diaphragm Detection

As the first step of the pipeline, diaphragm detection was conducted. In B-mode
liver ultrasound imaging, the diaphragm is viewed as a echogenic line between
the lung and the liver [10]. The diaphragm appears echogenic and clear even in
cases where liver tissue as a whole may have an ill-defined boundary. The model
used for diaphragm detection was a fine-tuned PulseNet encoder with support
vector machines (SVM) as the classification head. The PulseNet encoder used the
SonoNet model [4], fine-tuned on training data from the PULSE study [8]. The
encoder was trained originally for classification of 13 fetal anatomy views [11],
and fine-tuned for diaphragm detection. Predictions were considered in the con-
text of temporal dependence between frames of video. If one isolated frame was
predicted to have no diaphragm while neighbouring frames were predicted other-
wise, the isolated frame was reclassified as containing the diaphragm. Similarly,
if three or fewer consecutive frames were predicted to have a diaphragm, while
their surrounding frames were predicted to have no diaphragm, these frames
were reclassified to have no diaphragm. This temporal smoothing was based
on the appearance of the diaphragm in the training set. The diaphragm never
appeared in less than three frames consecutively nor disappeared ever for one
isolated frame.

Hyperparameters and training Bayesian hyperparameter tuning was used
for the PulseNet encoder. The temperature parameter, used for estimating un-
certainty in the dataset, was tuned to a value of 1.25. The learning rate was
tuned to a value of 0.022. The model was trained for 100 epochs with early stop-
ping implemented if the validation accuracy stayed within a window of 0.02 for
10 consecutive epochs. The batch size was 32.
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2.3 Diaphragm Segmentation for Liver Tissue Identification

In order to use the diaphragm as an anchor for inferring where liver tissue
appears, it must be segmented. Segmentation masks were propagated across
video frames using adaptive memory to exploit the temporal dependence be-
tween frames as described elsewhere [22]. The original model was trained on
fetal ultrasound video for segmentation of the maternal bladder and placenta,
and was fine-tuned here using 20 annotated videos of the diaphragm. During
inference, to initialise the model for a video, a segmentation mask of the target
object (in this case, the diaphragm) for the first frame of ultrasound video was
required. To fully automate the use of this model, a bank of ultrasound images
was created from the training set. The bank contained liver views with diverse
representations of the diaphragm that had been labelled with masks of the di-
aphragm. An ultrasound image was selected from this bank that best matched
the first frame of ultrasound video, which was identified using the structural
similarity index measure (SSIM) [19]. The labelled ultrasound image from the
bank of ultrasound images and masks that had the highest SSIM value with the
first frame of ultrasound video was used to initialise the model.

Using the diaphragm as an anatomical anchor, the position of liver tissue was
identified by finding the end-points of the mask of the diaphragm, and linking
these up to the closest points on the left and right edges of the field of view.
There were some cases where the diaphragm stretched less than halfway across
the field of view. When finding the closest point in Euclidean space, it was often
the case that this point was towards the top of the field of view. Therefore,
using this point for partitioning created a crude under-estimate of liver tissue by
cutting out the lower right side of the field of view. Accounting for the fan shape
of the ultrasound field of view, the closest point in Euclidean space was corrected
in cases with partial diaphragm observation by moving the point used to create
the partition towards the bottom of the field of view, by a factor of |p−c|

2 , where
p is the original closest point, and c is the midpoint of the right-hand edge of
the field of view.

2.4 Full Pipeline

The methods described above fit into a fully-automated liver tissue identification
pipeline, presented in Figure 1.

Performance metrics and benchmarks. Performance was evaluated using
sensitivity, specificity, and F1 score for diaphragm detection. For the final liver
tissue identification, intersection over union (IoU) was used as a quantitative
evaluation metric, in addition to the investigation of failure cases and clinical
utility. For benchmarking diaphragm detection, ResNet-50 with cross entropy
(CE) loss and a ResNet-50 using focal loss to account for the class imbalance
[13] were used. The ResNet models were pre-trained on the ImageNet dataset [6].
As a benchmark for the full pipeline, the annotation propagation model detailed
in [22] was applied without the full pipeline to directly segment liver tissue.
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Fig. 1. Automated pipeline for liver tissue identification from ultrasound
video.

3 Experiments and Results

3.1 Diaphragm Detection

For diaphragm detection, 90 videos were used for training, 10 for validation,
and 10 for testing. The number of frames in which the diaphragm appears and
does not appear in each of these sets is detailed in Table 1. For the training set,
the frames without diaphragm appeared in 45/90 videos. For the validation and
test sets, the frames without the diaphragm appeared in 6/10 and 4/10 videos
respectively.

Table 1. Number of frames in each class for diaphragm detection.

Frames with
diaphragm

Frames without
diaphragm

Total frames

Train 3822 (87%) 565 (13%) 4387
Validation 393 (80%) 100 (20%) 493

Test 451 (95%) 24 (5%) 475

Table 2 shows the sensitivities and specificities and Figure 2 shows the con-
fusion matrices for the PulseNet + SVM model as compared to the benchmark
ResNet-50 models. The PulseNet encoder + SVM classifier were both more spe-
cific and sensitive in both sets, despite seeing an expected dip in performance on
the test set. These results include temporal corrections as previously described.
In particular, PulseNet + SVM was much more sensitive than the ResNet mod-
els, thereby conserving data. Figure 3 shows a set of predictions, before and after
post-processing, as compared to the ground truth, taken from the test set. Com-
mon errors in prediction for the PulseNet model were in the transition between
the diaphragm disappearing or appearing from view, or when the diaphragm
was particularly blurry or unclear.

3.2 Identification of Liver Tissue

There was an improvement (Table 3) in the intersection over union (IoU) when
identifying liver tissue using the full pipeline using the diaphragm as an anchor,
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Table 2. Results for diaphragm detection. Sensitivity and specificity are reported with
respect to detecting frames with no diaphragm.

Specificity Sensitivity F1 score
Validation Test Validation Test Validation Test

ResNet-50 + CE Loss
(benchmark)

0.96 0.97 0.5 0.42 0.86 0.94

ResNet-50 + Focal Loss 0.97 0.97 0.37 0.00 0.82 0.91

PulseNet + SVM 0.99 0.98 0.72 0.63 0.93 0.96
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Fig. 2. Diaphragm detection confusion matrices.
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Fig. 3. Diaphragm detection for an example video. Frame-by-frame diaphragm
detection predictions, both before and after post-processing, compared to the ground
truth for an example video with a total number of 66 frames.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 2, 2024. ; https://doi.org/10.1101/2024.08.01.24311342doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.01.24311342
http://creativecommons.org/licenses/by/4.0/


An Automated Pipeline for the Id. of Liver Tissue in US Video 7

as compared to directly segmenting liver tissue. The results presented in this ta-
ble use the SSIM selected ultrasound image to initialise the segmentation model.
For comparison, the model was rerun using the first frame of ultrasound video
for initialisation; the SSIM method was nearly equivalent to using the first frame
with a difference in the mean IoU of <1%. Figure 4 shows examples of failure
cases for each model. Figures 4 (a) and (b) show that the direct liver segmen-
tation model incorrectly used vessel walls as the liver tissue boundary. Figure 4
(c) shows an example where both lobes of the liver are in view, and the poor
prediction of this tissue by both models.

Table 3. Liver tissue identification results. Comparison in intersection over union
(IoU) of directly segmenting liver tissue and inferring liver tissue from diaphragm
position. The mean IoU is weighted by the number of frames in each video.

IoU
Direct liver tissue

segmentation
Liver tissue

identification pipeline

Video 1 0.742 0.803
Video 2 0.459 0.828
Video 3 0.639 0.768
Video 4 0.549 0.913
Video 5 0.657 0.848

Mean (s.d.) 0.622 (0.160) 0.829 (0.094)

4 Conclusion

A fully automated pipeline for identification of liver tissue in ultrasound video
has been presented. This pipeline enables automatic annotation of the diaphragm
and liver tissue in large volumes of ultrasound video data, as a processing step be-
fore liver disease diagnosis and staging. The liver identification pipeline presented
here is more fit-for-purpose than direct liver segmentation. Errors encountered
using direct liver segmentation include the detection of other echogenic struc-
tures, in particular vessel walls, as the boundary for liver tissue. Not only is this
anatomically incorrect, but the results from direct segmentation are not useful as
a pre-processing step for schistosomal PPF diagnosis or similarly complex liver
diseases requiring whole views of the liver for accurate staging. In particular,
schistosomal PPF develops along vessel walls, so using these as a boundary will
discard important information for staging. Importantly, the proposed pipeline is
suitable for processing data from low-cost, portable ultrasound in rural, resource-
limited areas and generalisable to sub-Saharan African populations.

Limitations. There were several underlying assumptions that underpin this
work. Firstly, there could be cases, if free-hand probe sweeps are instead used,
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Fig. 4. Failure cases. Examples of where the diaphragm segmentation and inference
improves liver partitioning.

where the diaphragm does not appear in an ultrasound video frame but there is
liver tissue in that frame. However, this can be avoided by following the same
acquisition protocol used in this study. Further to this, the method to infer
the position of liver tissue from the diaphragm might provide a crude estimate
of liver tissue area in a given frame of ultrasound video, especially when the
diaphragm does not stretch fully across the field of view. This issue would be
an important consideration if the pipeline were to be used for liver tissue area
measurement or volume estimation but does not undermine the purpose of this
pipeline; which is to identify the region of interest for liver disease classification
models.

Future work. The generalisability of this pipeline to diseased populations, to
children, and to videos with known quality issues should be investigated in future
studies. Subsequently, the key next steps for this pipeline include an evaluation
as a pre-processing step before the use of a classification model for liver disease
staging, including for schistosomal PPF. Importantly, a full pipeline for liver
tissue identification and morbidity prediction for diseases like schistosomal PPF
could serve as a capacity building tool for trainee sonographers, a risk prediction
tool for clinical decision support, and a triage system for screening patients where
staff are limited in areas of sub-Saharan Africa.
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