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Abstract

The (sub)type composition of seasonal influenza waves varies in space and time. (Sub)types

tend to have different impacts on population groups, therefore understanding the drivers of

their co-circulation and anticipating their composition is important for epidemic preparedness

and response. FluNet provides data on influenza specimens by (sub)type for more than one

hundred fifty countries. However, due to surveillance variations across countries, global

analyses usually focus on (sub)type compositions, a kind of data which is difficult to treat

with advanced statistical methods. We used Compositional Data Analysis to circumvent the

problem and study trajectories of annual (sub)type compositions of countries. First, we

examined global trends from 2000 to 2022. We identified a few seasons which stood out for

the strong within-country (sub)type dominance due to either a new virus/clade taking over

(2003/2004 season, A/H1N1pdm pandemic) or (sub)types’ spatial segregation (COVID-19

pandemic). Second, we showed that the composition trajectories of countries between 2010

and 2019 clustered in two macroregions characterized by (sub)type alternation vs. persistent

mixing. Finally, we defined five algorithms for forecasting the next-year composition and we

found that taking into account the global history of (sub)type composition in a Bayesian

Hierarchical Vector AutoRegressive model improved predictions compared with naive

methods. The joint analysis of spatiotemporal dynamics of influenza (sub)types worldwide

revealed a hidden structure in (sub)type circulation that can be used to improve predictions

of the (sub)type composition of next year’s epidemic according to place.
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Introduction

Since 2009, the H1N1pdm and H3N2 subtypes of influenza type A and influenza type B

have co-circulated in the human population, with highly variable occurrences in space and

time (1, 2). The viral diversity profoundly impacts the epidemiological characteristics of

epidemics: epidemics dominated by A/H3N2 strains are generally more severe as this strain

is more transmissible (3) and causes increased morbidity in the elderly due to the immune

the imprinting mechanism (4–6); while epidemics due to the A/H1N1 and B strains tend to

cause more infections in the young (6–8). The diversity of strains also manifests with

extended epidemic periods, as, for example, the peak of A infections and of B infections are

typically separated by a few weeks in the northern temperate regions (9, 10). Anticipating the

(sub)type composition of the coming season is therefore key to improving preparedness, e.g.

planning hospital capacities, awareness campaign and vaccine distribution (10, 11).

Yet anticipating the (sub)type co-circulation is complicated because influenza viruses interact

with one another. Evidence of viral interference has been found experimentally (3, 12), from

mathematical models fitted to country-level incidence data (13, 14), and from country (10,

15) and multi-country (9, 16, 17) statistical analyses. In particular, past studies have shown

that cross-immunity is an important ingredient of models aiming at reproducing plausible

influenza dynamics (13, 14). In other words, Influenza (sub)types form a coupled ecological

system that needs to be studied as a whole. A second source of complication is represented

by the fact that influenza rapidly spreads globally (18, 19) and viral compositions in different

countries are interdependent. This makes the study of worldwide influenza circulation critical

for interpreting the viral patterns observed within a focal country.

In response to these needs, the Global Influenza Surveillance and Response System

(GISRS) (1) gathers and makes available through the FluNet portal the weekly number of

samples by (sub)types and country. The quality and quantity of the data is constantly

increasing, but (sub)typing effort is not standardized across countries yet. To allow

multi-countries comparison, it is therefore preferable to focus on rescaled quantities, such as

the percentages of infections by each (sub)type. These data allowed to show strong patterns

of alternation between A/H1N1pdm and A/H3N2 in Europe (20, 21), the domination of

A/H3N2 among all (sub)types and inter-hemispheric synchrony in its circulation (9). It was

also used to characterize the altered (sub)type circulation following the emergence of the

A/H1N1pdm (sub)type (16) and the COVID-19 pandemic (22). However, these studies did

not provide anticipation. Research work attempting to forecast the next-year (sub)type

composition in a country is so far scarce (23).
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Here, we undertook a systematic analysis of the coupled dynamics of (sub)types by

analyzing their relative abundances across countries and years through the Compositional

Data Analysis (CoDA) framework (24, 25). This approach has been used in ecology and

geology to analyze percentage data, taking into account the sum-to-one constraint. Here, we

defined for each country a trajectory in the (sub)type composition space. We quantified how

these trajectories evolved in time and space. We then proposed an approach able to

leverage this structure to forecast (sub)type relative abundance in each country one year

ahead with improved accuracy compared with naive estimators.

Results

Studying the relative abundances of influenza (sub)types with Compositional Data Analysis

(CoDA)

We studied the relative abundance of influenza (sub)types for different countries-years,

defined by the percentages of the form (B%, H1%, H3%). For brevity, we will use in figures

and equations H1 for the A/H1N1 strains - historical A/H1N1 before 2009, and the

A/H1N1pdm after -, and H3 for A/H3N2. We consider weekly surveillance data reported in

FluNet (1, 26) from 2000 to 2023, for up to 151 countries. We aggregated data annually -

from May to April - and defined “compositions” (24), i.e. the percentages of each of the 3

(sub)types for each year and country (Fig. 1A) (for details see the Material and Methods).

These compositions are “sum to one” data that can be shown in a ternary plot (Fig. 1B).

The study of this type of data is complicated since the components are inherently

non-independent (24, 27), making standard statistical tools inadequate (25). Modern

compositional analysis solves the issue by transforming the original data to log-ratios (28).

Here, we chose to use the isometric log-ratio transformation (ilr), i.e. the log-ratio of B to A

and of A/H1N1 subtypes to A/H3N2, as it provided simple epidemiological interpretation - an

alternative transformation, the additive log-ratio transformation was tested in the sensitivity

analysis, see the SI Appendix. The transformation is as follows :

The ternary graph can then be remapped to these new coordinates (Fig. 1C), that makes it

easy to represent trajectories of (sub)type abundance over time for a given country (Fig. 1D).

In these graphs, we also highlighted “dominance” boundaries corresponding to compositions
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with one (sub)type amounting to more than 50% of the samples. The central region, or

“co-dominance” region, corresponds to neither (sub)type being dominant.

Fig. 1 - Use of CoDA to define (sub)type abundance trajectories. A) FluNet samples by (sub)types for
France, Australia, and Singapore. We consider the year 2017 as an example, defined as the period going from

Apr 2017 to Apr 2018, and compute the (sub)type abundances over the year. B) Proportions of A/H1N1 strains

(A/H1N1 before 2009, and A/H1N1pdm after 2009), A/H3N2, and B represented in a ternary graph. Colored

points represent the observations for each of the 132 countries considered in 2017. The dotted line separates the

three dominance and the (central) co-dominance regions. Points are color-coded according to the composition in

B (yellow), A/H1N1 (cyan) and A/H3N2 (magenta) - gray indicates perfect balance of circulating strains. C)

Relative abundances of (sub)types of the same 132 points plotted in panel B) after isometric log-ratio

transformation. D) Trajectory of relative abundances log-ratios in France, from 2000 to 2022. The point for 2020

is missing because less than 50 cases were uploaded on FluNet between Apr 2020 and Apr 2021. Points are

colored with the same triangular code as in Fig. B) and C). In the figure, H3 is used to indicate A/H3N2, and H1 is

used to indicate A/H1N1 before 2009, and A/H1N1pdm after 2009.

Global multiannual trends in (sub)type mixing

The composition trajectories for 151 countries are shown in Fig. 2A. The number of countries

contributing to FluNet was initially limited - in 2000, only 30 countries contributed more than

50 samples, our threshold for inclusion -, but has substantially increased since then, e.g. 125

countries contributed in 2022.

We first analyzed global statistics on the ensemble of trajectories from one year to another.

We introduced the mixing score to quantify the (sub)type mixing in a country/year. This is

defined as the distance in the log-ratio plane between the country/year composition and the

boundary of the co-dominance region. It ranges from positive values when the composition
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is inside the co-dominance region to negative ones when it is outside, i.e. one (sub)type is

dominant. The measure has an upper bound at 0.56 corresponding to equipartition of cases

of a country/year among the three (sub)types, while it does not have lower bound. As an

example, a strong dominance, where e.g. one (sub)type has frequency >75%, corresponds

to mixing score values between -0.9 and -0.8. The distribution of countries’ mixing scores in

a given year provides a global overview of country-level (sub)type mixing. The multiannual

comparison of Fig. 2B highlights anomalous events, when the mixing score was

extraordinarily low, overall. A/H3N2 was strongly dominant (i.e. >75%) in 35 out of 45

countries in 2003, and A/H1N1pdm was strongly dominant in 80 out of 96 countries in 2009

(Fig. 2C). One (sub)type among A/H1N1pdm, A/H3N2, and B was strongly dominant in 13

out of 26 countries in 2020, and in 76 out of 100 countries in 2021.

Atypical values correspond to events occurring at the global scale in those years. The strong

dominance of A/H3N2 in 2003 was caused by an emerging clade for which the vaccine had

limited effect (29, 30). Similarly, the strong dominance of A/H1N1pdm in 2009 was due to the

zoonotic emergence of the A/H1N1pdm subtype and the consequent pandemic (16, 31). In

both examples, a punctuated change in the virus caused a strong level of dominance, which

was associated with a high level of subtype synchrony across countries, and more intense

viral circulation globally. During 2020 and 2021, on the other hand, different (sub)types

strongly dominated in different regions - e.g. in 2020 A/H3N2 in Southeastern Asia,

A/H1N1pdm in five African countries, and B in the Americas, Western Asia, and other

countries (SI Appendix, Fig. S1). This was due to the unprecedented contact and mobility

restrictions during COVID-19 (32–34), which caused a worldwide drop in influenza cases

(only 26 countries reported at least 50 samples in 2020).

In the SI Appendix we analysed the mixing score under alternative log-ratio coordinates. We

also show that the Shannon entropy provides a result similar to the mixing score. The

advantage of the mixing score is that it provides an easy-to-read visualization of how far the

composition is from co-dominance.
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Fig. 2 - Trajectories of relative abundances of influenza (sub)types and global (sub)type mixing. A)
Trajectories of relative abundances of influenza (sub)types. We present trajectories for 151 countries, including

years from 2000 to 2022. Points in the plot represent countries/years for which the number of FluNet samples is

above 50. The number of countries included by year is shown at the top. B) Degree of mixing of influenza

(sub)types over time. For the years 2000 to 2022, the mixing score of influenza (sub)types was computed for

each country, and their distributions are depicted through the boxplots. Positive scores represent countries where

each (sub)type is responsible for <50% of cases, negative scores denote the dominance of one (sub)type. C)

Influenza (sub)type abundances for atypical years. In 2003, 2009, 2020, and 2021, (sub)type mixing was

unusually low. In 2003 and 2009, A/H3N2 and A/H1N1pdm, respectively, were dominant in almost all countries.

Spatial segregation of influenza (sub)types occurred in 2020 and 2021, with different (sub)types dominant in

different regions. In the figure, H3 is used to indicate A/H3N2, and H1 is used to indicate A/H1N1 before 2009,

and A/H1N1pdm after 2009. Points are colored with the same triangular code as in Fig. 1.
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Geographical patterns in (sub)type cocirculation

We then looked for geographical patterns in countries’ trajectories from 2010 to 2019. During

this period, a large number of countries contributed to FluNet - 81 countries’ satisfied our

inclusion criteria. At the same time, it was the longest time window of regular influenza

circulation, in between the periods of 2009 A/H1N1pdm pandemic and COVID-19 pandemic.

We clustered countries showing similar trajectories in the log-ratio plane. There were two

main groups of countries (Fig. 3B), each one overlaping different WHO Influenza

Transmission Zones (ITZs) (35). Group I included 39 countries belonging to the ITZs of

Europe, Northern Africa, and Western Asia, with the addition of Iran, belonging to the

Southern Asian ITZ, and the Republic of Korea from the Eastern Asian ITZ. These countries

were characterized by trajectories showing strong and synchronous alternation between

(sub)types (Fig. 3A). The 42 countries of Group II belonged to the other ITZs, except for

Oman and Qatar which are included in the Western Asian ITZ (SI Appendix, Fig. S2). These

countries displayed flatter trajectories overall (Fig. 3A). Looking more closely, Group II

includes countries in the tropics, which normally see the co-circulation of all (sub)types

throughout the annual period. It also includes countries located in temperate regions across

both hemispheres which are characterized by a marked (sub)type alternation, yet not

synchronous with Group I countries. This is the case of six Central and South American

countries (Mexico, Nicaragua, El Salvador, Costa Rica, Argentina, Chile) and five Northern

Hemisphere countries (United States, Canada, Japan, Mongolia, and Kazakhstan). In the SI

Appendix, Fig. S2, we show that these two groups cluster separately after successive

algorithm iterations. Examples of trajectories of the subgroups of Group II are reported in the

SI Appendix, Fig. S3.

Groups were robust when testing for other clustering techniques and data inclusion criteria,

together with alternative log-ratio coordinates for representing trajectories (SI Appendix).
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Fig. 3 - Geographical pattern of (sub)type trajectories. A) Hierarchical clustering of trajectories of A/H1N1,
A/H3N2, and B relative abundances. Trajectories for 81 countries from 2010 to 2019 are clustered in two groups -

groups I and II - with 39 and 42 countries, respectively. The medoid trajectories - i.e. the most central trajectories

- of the two groups are highlighted in black and are reported in the legends. B) Geographic positioning of Group I

and Group II countries. Source of shape files for the map: Natural Earth (36). In the figure, H3 is used to indicate

A/H3N2, and H1 is used to indicate A/H1N1 before 2009, and A/H1N1pdm after 2009. Points are colored with the

same triangular code as in Fig. 1. The co-dominance regions are shown in Panel A with dashed lines as a

reference.

Forecasting of next-year influenza (sub)type composition

By examining (sub)type compositions as a trajectories over time, we can try to predict

next-year’s influenza (sub)type composition or dominance pattern. As there is currently no

accepted approach to carry out this task, we consider several possibilities based on

epidemiological considerations or using state of the art statistical models building on the

CoDA framework. We focus on predicting compositions for 2017, 2018, and 2019 using the

history of compositions observed worldwide since 2010. The models were as follows (see

Material and Methods for details):
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● M1 past frequencies: prediction for the coming year corresponds to the

dominance/codominance status - between dominance of A/H1N1pdm, A/H3N2, B, or

co-dominance - that occurred most often in previous years. Note that it does not

predict a composition but only the dominance/co-dominance status.

● M2 H1-H3 alternation: we use the composition of the past year in the same country,

exchanging the percentages of A/H1N1pdm and A/H3N2. This is based on the

empirical evidence that A/H1N1pdm and A/H3N2 viruses tend to alternate, while

influenza B often co-dominates (9, 16, 21).

● M3 average composition: we compute the average of previous years' compositions in

the same country, after the log-ratio transformation.

● M4 VAR: we fit a Vector AutoRegressive (VAR) model using the data of all countries

and obtain individual predictions for each country. In VAR models, the future

composition is based on a linear combination of past ones, accounting for

auto-correlation in time and for correlation between individual components (37). We

used a VAR model with lag=1.

● M5 HVAR: we fit a Bayesian Hierarchical Vector AutoRegressive (HVAR) model to

provide predictions for each individual country from past compositions of countries

with similar trajectories (38). The approach extends the M4 VAR model and

compensates for limited data over time by using information on (sub)type

compositions over space. In practice, the trajectories of the training set were

clustered as described in the previous section. The HVAR model was then fitted

separately to each cluster, with the assumption that each trajectory follows a VAR

process, but that the VAR processes of trajectories within the cluster cannot be too

different. We tested both lag=1 and lag=2. Fitted VAR coefficients are analysed in the

SI Appendix.

In models M3, M4, and M5 we also computed prediction regions based on 95% probability

intervals. Models M1 and M2 only allowed punctual predictions.

Table 1, top panel, shows the forecast performances of the models by looking at the

percentages of correctly predicted dominance states - the Dominance State Accuracy.

Results are presented globally and for Group I and Group II countries. Model M1 had 28%

accuracy overall, performing similarly to random guessing the dominance status out of the 4

possibilities, i.e, dominance of A/H1N1, A/H3N2, B, or co-dominance. Accuracy was lower

for Group I (20%) than for Group II (34%), consistent with the difficulty in predicting the
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marked subtype alternation of Group I countries. Other models (M2, M3 and M4) had

performances close to model M1. Estimates improved with M5 HVAR, with a global accuracy

of 34%, improving in both Group I (27%) and Group II (41%).

Model M1 past

frequencies

M2 H1-H3

alternation

M3 average

composition

M4 VAR M5 HVAR

Predicted observable: dominance state
Score: Dominance State Accuracy

Group I 0.200 ± 0.003 0.200 ± 0.003 0.200 ± 0.002 0.217 ± 0.003 0.270 ± 0.003

Group II 0.344 ± 0.003 0.328 ± 0.003 0.359 ± 0.003 0.289 ± 0.003 0.406 ± 0.003

all countries 0.276 ± 0.002 0.267 ± 0.002 0.284 ± 0.002 0.255 ± 0.002 0.342 ± 0.002

Predicted observable: composition
Score: Energy Score

Group I / 3.90 ± 0.01 1.85 ± 0.01 2.23 ± 0.01 1.49 ± 0.01

Group II / 2.02 ± 0.01 1.33 ± 0.01 1.61 ± 0.01 1.17 ± 0.01

all countries / 2.91 ± 0.01 1.58 ± 0.01 1.90 ± 0.01 1.32 ± 0.00

Table 1. Evaluating influenza (sub)type forecasting. Scores considered to compare the five predictive models
are the Dominance State Accuracy for dominance state predictions and the Energy Score for predictions on

compositions. Scores are averaged over predicted years (2017, 2018, 2019) and countries within the same group

- i.e. Group I, Group II, and all the countries reported in different rows. Scores are reported with uncertainties

expressed as Standard Errors of the Mean (SEM) calculated over 200 bootstrap samples. For the M5 HVAR

model, we report the result with the lag that performs the best for each group, i.e. lag=2 for Group I and lag=1 for

Group II. Methods that perform best by country groupings are highlighted for both the Dominance State Accuracy

and the Energy Score. Dominance State Accuracy is positively oriented (i.e. it increases as a model performance

increases), whereas the Energy Score is negatively oriented (i.e. it decreases as a model performance

increases).

For models M2, M3, M4, and M5, which predict continuous (sub)type compositions, we can

also use evaluation metrics for probabilistic forecasting commonly adopted in epidemiology

(39), where both calibration (closeness to the target) and sharpness (uncertainty in the

prediction) are taken into account. In Table 1, bottom panel, we show the values of the

Energy Score (40) where smaller values correspond to better characteristics. We found

again that the M5 HVAR model performed better than other models. Predictions for France

(Group I) and Australia (Group II) using this model are illustrated in Fig. 4 as examples.
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Fig. 4 - Prediction of relative abundances of influenza (sub)types for France and Australia in 2019.
Predictions are computed using the M5 HVAR model of lag 2 and 1 (see Materials and Methods), respectively.

For each country, the observed trajectory from 2010 to 2018 is represented with a black solid line, while the

dashed segment links the points corresponding to 2019 - to be predicted - to the rest of the time series. The

thinner gray lines correspond to the trajectories of the other countries within the respective group - Group I for

France, and Group II for Australia - that were used to train the model. The crosses depict the predictions and the

shadow areas the ellipses associated with the 95% confidence intervals. In the figure, H3 is used to indicate

A/H3N2, and H1 is used to indicate A/H1N1pdm. Points are colored with the same triangular code as in Fig. 1.

The co-dominance regions are shown with dashed lines as a reference. The Energy Scores for the 2019

predictions for France and Australia are 0.93 and 0.69, respectively.

Finally, we focused on simpler prediction tasks still relevant for public health. Precisely, we

focused on each (sub)type in turn, and investigated whether it will be (i) dominant (>50% of

cases) or not, and (ii) negligible (<10% of cases) or not. For model M1 past frequencies, the

probability of negligibility of a (sub)type corresponded to the proportion of times the

(sub)type was negligible in the previous years. To evaluate the performance of the five

models in carrying out the two tasks we used the Area Under the Receiver Operating

Characteristic Curve (AUROC). Results are provided in Table 2.

The M5 HVAR model was the best performing model in predicting the negligibility of

influenza type B and both dominance and negligibility of subtype A/H3N2. In particular, the

M5 HVAR provided the greatest improvement when applied to the trajectories of Group I

countries. For these countries, the AUROC score for the M5 HVAR model reaches 0.88 in

predicting B negligibility, compared to scores of 0.37 to 0.60 obtained with other models. We

found a similar improvement when predicting the dominance (negligibility) of A/H3N2, where

the AUROC score for M5 HVAR was 0.82 (0.79) compared to 0.40-0.70 (0.36-0.69) for the

other models. M5 HVAR was not always the best performing model, notably it was not

always able to improve the predictions of the M1 past frequencies and M3 average

composition models in predicting dominance of B and both dominance and negligibility of

11

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 2, 2024. ; https://doi.org/10.1101/2024.08.01.24311336doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.01.24311336
http://creativecommons.org/licenses/by-nd/4.0/


A/H1N1. For the dominance of A/H1N1 for Group I countries no model performed

significantly better than a random guess.

Predictions for all countries and years, obtained with the five methods are reported in the SI

Dataset S1. In the sensitivity analysis we performed predictions with the alternative log-ratio

transformation and using alternative metrics for the forecast evaluation. Results were overall

consistent (see SI Appendix, Tables S1-S6).

Model M1 past

frequencies

M2 H1-H3

alternation

M3 average

composition

M4 VAR M5 HVAR

Predicted observable: B will be dominant (>50%) in the next season: yes/no ?
Score: AUROC

Group I 0.452 ± 0.004 / 0.525 ± 0.004 0.435 ± 0.004 0.600 ± 0.004

Group II 0.606 ± 0.007 / 0.628 ± 0.006 0.457 ± 0.008 0.489 ± 0.013

all countries 0.541 ± 0.003 / 0.647 ± 0.003 0.510 ± 0.004 0.588 ± 0.004

Predicted observable: H1 will be dominant (>50%) in the next season: yes/no ?
Score: AUROC

Group I 0.514 ± 0.004 / 0.423 ± 0.004 0.336 ± 0.004 0.450 ± 0.004

Group II 0.471 ± 0.004 / 0.521 ± 0.004 0.553 ± 0.004 0.612 ± 0.004

all countries 0.501 ± 0.003 / 0.491 ± 0.003 0.457 ± 0.003 0.529 ± 0.002

Predicted observable: H3 will be dominant (>50%) in the next season: yes/no ?
Score: AUROC

Group I 0.401 ± 0.004 / 0.437 ± 0.005 0.703 ± 0.004 0.822 ± 0.003

Group II 0.566 ± 0.004 / 0.594 ± 0.004 0.540 ± 0.004 0.658 ± 0.004

all countries 0.497 ± 0.003 / 0.540 ± 0.003 0.614 ± 0.003 0.748 ± 0.003

Predicted observable: B will be negligible (<10%) in the next season: yes/no ?
Score: AUROC

Group I 0.421 ± 0.004 / 0.366 ± 0.004 0.604 ± 0.004 0.876 ± 0.003

Group II 0.520 ± 0.006 / 0.529 ± 0.006 0.561 ± 0.005 0.649 ± 0.004

all countries 0.575 ± 0.003 / 0.523 ± 0.003 0.618 ± 0.003 0.804 ± 0.002

Predicted observable: H1 will be negligible (<10%) in the next season: yes/no ?
Score: AUROC

Group I 0.620 ± 0.005 / 0.628 ± 0.007 0.257 ± 0.006 0.230 ± 0.005

Group II 0.639 ± 0.004 / 0.558 ± 0.005 0.594 ± 0.005 0.644 ± 0.005

all countries 0.598 ± 0.003 / 0.548 ± 0.004 0.442 ± 0.004 0.465 ± 0.005

Predicted observable: H3 will be negligible (<10%) in the next season: yes/no ?
Score: AUROC

Group I 0.362 ± 0.004 / 0.425 ± 0.005 0.688 ± 0.004 0.788 ± 0.003

Group II 0.599 ± 0.004 / 0.503 ± 0.005 0.651 ± 0.006 0.641 ± 0.006

all countries 0.548 ± 0.003 / 0.556 ± 0.004 0.692 ± 0.003 0.743 ± 0.003

Table 2. Forecast evaluation for predicting the dominance (yes/no) and negligibility (yes/no) of
(sub)types. Results are summarized in six panels: the three top ones focus on dominance and the three bottom
ones on negligibility. As a score of prediction we used the Area Under the Receiver Operating Characteristic
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Curve (AUROC). Scores were averaged over predicted years (2017, 2018, 2019) and countries within the same

group - i.e. Group I, Group II, and all the countries reported in different rows. Scores are reported with

uncertainties expressed as Standard Errors of the Mean (SEM) calculated over 200 bootstrap samples. The

probability of dominance and negligibility of (sub)types could not be calculated with the M2 H1-H3 alternation

model therefore the AUROC cannot be computed for this model. We highlight the method performing best by

country grouping.

Discussion

Viral composition plays a key role in shaping influenza dynamics and the population burden

of epidemics. A better anticipation of seasonal epidemics requires an improved ability to

monitor, quantify, and predict (sub)type composition. This is increasingly within our reach

thanks to the rapid increase of virological data on the global scale. Still, novel quantitative

frameworks are needed to better visualize and analyze these data to extract meaningful

information for response planning. Here we have shown that CoDA enables defining

(sub)type composition trajectories thus opening the door to state-of-the-art statistical tools

for analyzing their spatiotemporal properties and forecasting their future evolution.

We have analyzed (sub)type composition at the global level considering trajectories of

annual compositions by country. This has revealed meaningful spatiotemporal patterns.

First, we have characterized the evolution in time of the ensemble of trajectories by focusing

on the extent of (sub)type mixing through the mixing score. We have highlighted years of

strong dominance of a given (sub)type within each country – the strong dominance of

A/H3H2 and A/H1N1pdm in almost all countries globally, respectively occurring in 2003 and

2009, and the spatial segregation of (sub)types occurring concomitantly to the COVID-19

pandemic. Past events of disruption of seasonal influenza activity were mainly analyzed by

looking at changes in peak timing and severity of seasonal waves (16, 41). The mixing score

introduced here provides a concise metric to quantify the impact of these events on

(sub)type mixing for epidemiological interpretation. Strong (sub)type dominance can have

marked effects on the age profile of cases. Mortality shifted toward young individuals during

the 2009 A/H1N1pdm pandemic (42). This was linked to early-in-life infection with the

A/H1N1 subtype circulating before 1950 that conferred protection against A/H1N1pdm to the

older cohort (43). In addition, a sudden reduction of viral diversity can have long-term

consequences on influenza ecology. The case of influenza during the COVID-19 pandemic

provides a paradigmatic example as one clade of influenza B, B/Yamagata, has not been

reported since the COVID-19 pandemic period (34, 44).

13

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 2, 2024. ; https://doi.org/10.1101/2024.08.01.24311336doi: medRxiv preprint 

https://www.zotero.org/google-docs/?kd2q6C
https://www.zotero.org/google-docs/?f93PQ0
https://www.zotero.org/google-docs/?fBwh0Y
https://www.zotero.org/google-docs/?wY4yWB
https://doi.org/10.1101/2024.08.01.24311336
http://creativecommons.org/licenses/by-nd/4.0/


Second, considering a period free from disruption events, we investigated the geographical

pattern of the (sub)type alternation. We used clustering to group countries with similar

(sub)type trajectories. Grouping regions with similar characteristics is essential for

surveillance. To this end, WHO defined the Influenza Transmission Zones as countries,

areas or territories with similar influenza transmission patterns (35). A number of studies

analyzed the similarity between countries’ seasonal profiles to evaluate the validity of the

partition (20, 45, 46). However, limited work addressed the problem by including (sub)type

proportion as relevant information (20). Here we found that Group I - composed of countries

from Europe, North Africa, and West Asia - was characterized by a synchronous alternation

of (sub)types, clearly distinguishable from the rest of the world. The spatial synchrony in

Europe following the 2009 influenza pandemic was noted before (20). It can be explained by

the strong mobility coupling within the region and the consistent climatic conditions (20). Still,

North America clustered in Group II despite being strongly connected with Europe and

having a similar climate. The fact that the United States and Canada had a pattern of

A/H1N1pdm and A/H3N2 alternation different from Europe the years that followed the

A/H1N1pdm emergence was noted before (16, 21). It was hypothesized that this was due to

the higher vaccination coverage in North America which mitigated the circulation of A/H3N2

preventing it from dominating over A/H1N1pdm during the 2011/2012 season (16).

Interestingly, Australia and New Zealand had a different (sub)type alternation than Northern

Hemisphere countries a few months later. They clustered in Group II, meaning that they

were markedly different from Europe. They were also different from the US and Canada

which were assigned to a different subcluster within Group II. Southern hemisphere

countries are often regarded as sentinels of the approaching influenza season in northern

countries (47–49). Still, the epidemiological evidence supporting this practice is contrasting

(23, 50–52). For instance, the correlation between spatiotemporal indicators of Australia’s

wave and the waves in the UK, the US, and Canada was limited (51, 52). A similar clustering

analysis can be repeated in the future to see whether the pattern remains robust following

the disruption of influenza circulation caused by the COVID-19 pandemic, and therefore to

identify robust priors predictive of sub-type circulation in the different areas.

Finally, the CoDa transformation made it possible to use state-of-the-art statistical

forecasting algorithms such as VAR and hierarchical VAR to predict the (sub)type

composition the following year. VAR is trained on past data, therefore we limited our analysis

to the period 2010-2019 excluding the periods of disruption of circulation. The short length of

the time series limited the power of VAR. Thus, the algorithm did not improve over naive

estimates. Still, we could reach better performances through the hierarchical VAR model

which leveraged the geographical structure identified by the clustering. Interestingly, despite
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Group I countries being characterized by a marked A (sub)type alternation from one year to

another the M2 H1-H3 alternation model did not perform well, likely due to its inability to

capture the trend of B proportion. Besides forecasting (sub)type proportion and the dominant

(sub)type we attempted to forecast binary outcome, e.g. whether one specific (sub)type

would be dominant (yes/no) or negligible (yes/no). We found surprisingly accurate results

when predicting the negligibility of type B and dominance and negligibility of subtype

A/H3N2. For instance, for subtype A/H3N2 prediction of dominance, the AUROC score was

0.82 for Group I countries. Predicting the dominance A/H3N2 is important for preparedness

since this is often associated with high epidemic burden.

Epidemic forecasting is a central problem in infectious disease epidemiology. Consortia of

modelers are dedicating a great effort in projecting seasonal influenza epidemics in the short

and long term. In the context of these initiatives, a wide range of mechanistic and statistical

models are being combined in ensemble modelling to forecasting influenza incidence weeks

ahead or to identify possible evolution scenarios months ahead (53–57). This provides

critical information for response planning. Other studies focus on the evolution of influenza

viruses, combining genetic and antigenic analyses to predict changes in the frequency of

circulating clades for each (sub)type (58, 59). The identification of the clade more likely to be

prevalent in the future informs the choice of vaccine composition which needs to be done six

months in advance. Here we focused on (sub)type abundance and attempted to forecast this

observable one year ahead. The (sub)type composition affects the expected epidemic size,

the peak timing, and the age distribution of cases (6, 9, 13, 15). Therefore, its knowledge is

precious for planning intervention measures. Predictions of next-year (sub)type composition,

if reliable, would provide a long time horizon to plan the response, e.g. resource allocation,

and targeted recommendation and vaccination. They could support scenario modeling and

real-time incidence forecast. For instance, probabilistic projections of (sub)type composition

could be used to weight possible scenarios. Knowing the dominant (sub)type at the start of

the season would enable using statistical forecasting algorithms trained on the past seasons

with the similar (sub)type frequency only, leading to higher prediction accuracy.

With this goal in mind, the accuracy of models tested is still limited and the analysis provided

here should be regarded as a proof-of-concept. Still, the CoDA framework makes it possible

to design more sophisticated models, incorporating demography, climate, air travel data,

vaccine coverage, and other relevant covariates. In particular, vaccine coverage could

provide critical information. Vaccination may impact (sub)type abundance because vaccine

efficacy is different across (sub)types and age groups. Yet, no global database exists on

vaccination coverage, which prevents the inclusion of this ingredient in global analyses. In
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addition, new models could be designed to capture causal relationships between epidemics

in different countries/years, e.g. through Bayesian networks (60). It is important to note that

statistical forecasting models can be applied to periods of stable strain circulation, as was

the case for 2010-2019. Following the COVID-19 pandemic, the global circulation of

influenza viruses was highly perturbed, making any prediction more difficult.

CoDA is under-exploited in epidemiology. Analyses similar to the ones presented here could

be applied to influenza (sub)type abundances at different spatiotemporal scales - weekly

data to study the dynamics within a season (15), regional, or within-country spatial scale.

More broadly, there is a variety of circulating viruses with distinct strains interfering with one

another - SARS-CoV-2 variants, RSV types, HPV genotypes, and Dengue serotypes, to

name a few. Percentage data are also used in monitoring the co-circulation of bacterial

strains. This is the case of studying the dynamics of Staphylococcus aureus strains with

different antibiotic resistance profiles (61), or vaccine-targeted vs. non-targeted strains of

Streptococcus pneumonie (62).

Materials and Methods

FluNet data

FluNet publishes the weekly number of samples tested for influenza by country worldwide,

classified as positive/negative and by influenza A subtype and B lineages (1, 26). For each

country, we determine influenza B infections by summing B\Yamagata, B\Victoria, and

unspecified B samples. We grouped the pre-pandemic A/H1N1 and A/H1N1pdm.

Throughout the Material and Methods section we will use for brevity H1 for A/H1N1 and

A/H1N1pdm and H3 for A/H3N2. The un-subtyped influenza A samples were distributed

between H1 and H3 according to the respective proportions of these subtypes among the

subtyped A samples that week. If no A samples were subtyped that week, we looked at the

proportions of H1 and H3 in the five weeks centered around the week or in the year. We

aggregated influenza B, H1, and H3 samples over one year and calculated the respective

percentages to define the relative abundance of the three influenza strains. The time frame

of a year considered in the analyses starts from the first Monday following April 23. By

aggregating all samples worldwide and by averaging annual profiles between 1995 and 2019

we found that this week had the lowest proportion of positive influenza cases over the year.

Thus setting the cut-off date this week minimized the risk of splitting the influenza epidemics

in temperate countries into two consecutive years. In all analyses, we discarded
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countries/years with fewer than 50 positive samples. We also tested an alternative threshold

of 500 cases for robustness check.

Data pre-processing

Neither isometric log-ratio transformation defined in the section Results nor the additive

log-ratio transformation, tested for robustness checks (see SI Appendix), are defined when

any component equals zero. We thus first dealt with zeros assuming that they were due to

insufficient sample sizes, rather than a real absence of the virus. We used a Geometric

Bayesian-multiplicative treatment (63, 64). We first replaced the zero components with the

Bayes estimator of a multinomial model, then rescaled all components to maintain their sum

to one keeping at the same time their ratios. The multinomial model assumes that the

number of infections per (sub)type follows a multinomial distribution, whose parameters are

distributed with a Dirichlet prior. This choice leads to a posterior distribution which is still a

Dirichlet distribution, from which the Bayes estimator (i.e. the expectation of the posterior

distribution) is easily computed.

Definition of the mixing score

The mixing score is defined as the distance between the point in the log-ratio plane (u,v),

representing the (sub)type composition, and the boundary of the co-dominance region, taken

with a positive sign when the point is within that region and with a negative sign otherwise.

The boundary of the co-dominance region in the simplex is identified by the points (B%,

H1%, H3%) for which one component corresponds to exactly 50%. As an example, the

points such that H1%=50%, are mapped by the ilr transformation into the coordinates (u,

v(u)) such that

.

Clustering of trajectories

We defined the distances between any pair of country trajectories as the average Euclidean

distance of the corresponding points in the (u,v) plane. We then applied the Ward's linkage

hierarchical clustering (65). Hierarchical clustering provides a hierarchy of nested partitions.

We used the Silhouette coefficients (66) to choose the optimal number of clusters, i.e. the

level of hierarchy. The optimal partition grouped countries into two groups. Robustness

checks and sensitivity analyses (including alternative clustering algorithms) are described in

the SI Appendix.

17

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 2, 2024. ; https://doi.org/10.1101/2024.08.01.24311336doi: medRxiv preprint 

https://www.zotero.org/google-docs/?jxcRCu
https://www.codecogs.com/eqnedit.php?latex=v(u)%20%3D%20%5Csqrt2%20%5C%5B%20%5Cln(e%5E%7Bu%5Csqrt%7B3%2F2%7D%7D%20%2B%20%5Csqrt%7Be%5E%7Bu%5Csqrt6%7D%20%2B%204%7D)%20-%20%5Cln2%20%5C%5D#0
https://www.zotero.org/google-docs/?lJC588
https://www.zotero.org/google-docs/?ByeJps
https://doi.org/10.1101/2024.08.01.24311336
http://creativecommons.org/licenses/by-nd/4.0/


Forecasting of trajectories

We tested five forecasting algorithms to predict next-year (sub)type composition in each

country. We attempted to predict observables of different nature: (i) the multi-label

categorical variable corresponding to the dominance state (dominance of B, H1, H3, or

co-dominance); (ii) the (sub)type composition; (iii) the binary variables corresponsidng to the

dominance (yes or no) and the negligibility (yes or no) of each (sub)type. Predictions of the

three observables where associated to a qantification of the uncertainty in the prediction and

a metric for prediction evaluation. However, not all observables, quantifications of uncertainty

and prediction evaluations were computable with all prediction methods. The five forecasting

algorithms and the evaluation metrics used in the main paper were introduced in the Results

section. We provide hereafter additional details. A complete summary of what can or cannot

be computed across predicted observables and prediction methods is reported in the SI

Appendix, Table S1.

Algorithms for trajectory forecasting.We studied annual bivariate trajectories of

compositions of the form (y1, … , yT), such that yt=(u,v)’t=ilr((B%, H1%, H3%)’t), with t=1,...,T

and the single quote mark indicating transposed. We forecasted yT+1, i.e. the composition of

2017, 2018 or 2019, each time using the preceeding period as training set, i.e. (y1, … , yT)

with y1 the composition in 2010. Below we present the five forecasting methods.

M1 past frequencies: the dominance state was predicted to be the most frequently observed

state during the preceeding years, if that state was unique. Otherwise, it was randomly

chosen with uniform probability among the dominant states observed most often.

M2 H1-H3 alternation: the prediction for the yT+1 composition was ŷT+1=(u,-v)’T, i.e., in

percentage form, (B%T+1=B%T, H1%T+1=H3%T, H3%T+1=H1%T)’.

M3 average composition: the predicted composition was , and the

prediction’s confidence interval was given by the covariance matrix

.

M4 VAR: assuming that the trajectory has been generated by a VAR process of lag p, then

composition t can be written as a linear function of the previous p compositions:

, where is the vector intercept, are 2x2
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coefficient matrices, and is the Gaussian noise. This can be rewritten in matrix form as

(37), where

The resulting least squares estimator is . It follows that the prediction of the

composition T+1 is , and the prediction’s confidence interval is estimated via

the empirical covariance matrix corrected for short time-series:

.

We only considered VAR processes with p=1 , since for the shortest trajectories (prediction

of 2017, with training set between 2010 and 2016), when p>1, the estimator of the

covariance matrix is not defined.

M5 HVAR: the trajectories of the training set were clustered as described above in the

Method section. For all three forecasted years, this yealded two groups that were almost

identical to Group I and Group II obtained for the whole period 2010-2019 and discussed in

the Results. For each cluster, we assumed that each trajectory followed a VAR process,

such that the process for country c is: . Similarly

to the previous model, the coefficients can be encoded in the matrix

, and the Gaussian noise in the matrix . Then, the hierarchical structure is imposed by

assuming that the VAR processes for the trajectories in the group are similar. Specifically, we

define , with being the matrix of coefficients encoding the average behavior

of the group, that is the same for all the trajectories in the group, and being the coefficient

matrix for the single trajectory adjustment. Moreover, we assume that elements in

are independent random variables, sampled from distributions parametrized by some latent

variables. All model equations are shown in the SI Appendix. The model coefficients were

optimized by maximum likelihood estimation using Monte Carlo methods. In particular, since

for each coefficient it was possible to write the mode’sl likelihood conditional on the other

coefficients, efficient estimation was performed using a Gibb sampler. For the conditional
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likelihood distributions and the code to implement the Gibb sampler, we followed (38),

modifying their model to introduce the intercept terms. From the Monte Carlo chains, for

each country, we sampled the distribution of predictions ŷT+1 . Then, from those samples, we

computed the mean prediction and the covariance matrix for the confidence intervals. We

tested HVAR models with p=1 and p=2.

Metrics for evaluating the goodness of predictions. To enable model comparison, the
evaluation scores of different countries/years were averaged to obtain a single value for the

model performance. Confidence interval was computed with bootstrap. Specifically, the

values reported in Table 1 correspond to the averages of the Dominance State Accuracy and

Energy Score values for different countries/years, while the values in Table 2 are averages

of the country/year Area Under the Receiver Operating Characteristic Curve (AUROC)

scores.

To compare dominance state predictions (Table 1) we defined the Dominance State

Accuracy as the percentage of dominance states correctly predicted. To compare predictions

of compositions (Table 1) we instead relied on probabilistic forecasting evaluation scores.

Specifically, the Energy Score compares the composition corresponding to the

observation with the forecast distribution F defined by N samples , . The

formula for the Eenergy Score is

It is worth noting that this is a multivariate generalization of the more common Continuous

Rank Probability Score, often used in epidemiology (39). Moreover, in the case of point

forecast, it coincides with the Mean Absolute Error. Thus it can be also used for evaluating

the M2 H1-H3 alternation method for which we do not have a confidence interval. The score

is negatively-oriented, so that it decreases when the forecast improves, and has a lower

bound of zero for an ideal model. Furthermore, it is a strictly proper score, i.e. designed to be

optimial only when the forecast distribution coincides with the true distribution of the

observations (40). Binary predictions - i.e., dominance (yes/no) and negligibility (yes/no) of

each (sub)type - were evaluated through the Area Under the Receiver Operating

Characteristic Curve (AUROC) score (Table 2). It quantifies the overlap between the positive

and negative classes and ranges from 0 to 1: 1 for an ideal model where the classes are

perfectly separated, 0.5 for a random guess, and 0 for the worst possible model that

misclassifies all observations.
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For the M5 HVAR model, we tested p=1 and p=2. The results for the M5 HVAR model in all

tables are obtained using the value of p with the lowest Energy Score for each group of

countries, i.e. p=1 for Group II countries and p=2 for Group I countries.

Other evaluation metrics where tested as sensitivity analysis. They are described in the SI

Appendix, Tables S1, while results of these metric are reported in the SI Appendix, Tables

S2-S6.

Code and data availability

Analysis was implemented in R (version 4.3.2) and Python (version 3.8.5). Other than

standard packages for data treatment, plots and calculations (mainly the python packages

pandas, matplotlib, and numpy), we relied on the following packages for specific tasks:

- zComposition 1.4.0-1 (R) for zero imputation in the pre-processing of compositions

(64);

- robCompositions 2.3.1 (R) for mapping compositions from the Simplex to the

Euclidean space and back (67);

- ternary (python) for drawing ternary plots (68);

- scipy 1.6.2 (python) for clustering analysis;

- sklearn 1.3.2 (python) for clustering analysis and computation of some of the

prediction evaluation scores (69);

- R code developed by Lu et al (38), on the basis of which we performed the VAR and

HVAR predictions;

- scoringRules 1.0.2 (R) for calculation of proper scores for probabilistic forecast

evaluation (70).

Code and data for reproducible analyses are available at

https://github.com/FrancescoBonacina/coupled-dynamics-flu-subtypes/ .
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