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Abstract 

Despite decades of research on the influenza virus, we still lack a predictive understanding of 
how vaccination reshapes each person’s antibody response, which impedes efforts to design 
better vaccines. Here, we combined fifteen prior H3N2 influenza vaccine studies from 1997-
2021, collectively containing 20,000 data points, and demonstrate that a person’s pre-
vaccination antibody titers predicts their post-vaccination response. In addition to 
hemagglutination inhibition (HAI) titers against the vaccine strain, the most predictive pre-
vaccination feature is the HAI against historical influenza variants, with smaller predictive power 
derived from age, sex, BMI, vaccine dose, the date of vaccination, or geographic location. The 
resulting model predicted future responses even when the vaccine composition changed or a 
different inactivated vaccine formulation was used. A pre-vaccination feature ‒ the time between 
peak HAI across recent variants ‒ distinguished large versus small post-vaccination responses 
with 73% accuracy. As a further test, four vaccine studies were conducted in 2022-2023 
spanning two geographic locations and three influenza vaccine types. These datasets formed a 
blinded prediction challenge, where the computational team only received the pre-vaccination 
data yet predicted the post-vaccination responses with 2.2-fold error, comparable to the 2-fold 
intrinsic error of the experimental assay. This approach paves the way to better utilize current 
influenza vaccines, especially for individuals who exhibit the weakest responses. 
 

Introduction 

Although the number of potential influenza vaccine designs has rapidly grown over the past 
years, we lack a clear picture of which individuals will poorly respond to a vaccine or what 
modifications would improve outcomes. Currently, vaccine design is “virus-centric,” where the 
primary goal is to ensure the vaccine strain (or variant) matches the dominant circulating strain 
in the coming season.1-3 While these efforts are complemented by ferret studies (infecting 
ferrets with historical strains to assess how they inhibit current strains), these ferret data do not 
capture the heterogeneity nor the complex immune history in humans, leading to a disconnect 
between vaccine strain selection and the subsequent response it elicits.3-5 Indeed, influenza 
vaccine effectiveness remains around 20-50% even in seasons when the vaccine strain 
matches the dominant circulating strain, with some individuals showing no measurable 
response to the vaccine.6-9 This underscores the need for a combined virus-and-people-centric 
approach based upon both a strain’s prevalence and the immunity it elicits in people. 
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Vaccination induces a complex cascade of immune interactions spanning innate and adaptive 
immunity.5 In this work, we focus on the antibody response that plays a central role in mediating 
protection against influenza, specifically focusing on the hemagglutination inhibition (HAI) assay 
that correlates with protection.10-12 HAI quantifies how antibodies within sera block the virus from 
binding sialic acids on red blood cells, with higher HAI titers associated with greater protection.13 

Although numerous studies use HAI to assess vaccine responses, we lack frameworks that can 
predict each person’s vaccine response a priori and identify why the same vaccine elicits a 
strong HAI response in some but little-to-no response in others (Fig 1A). Prior exposures may 
boost subsequent vaccine responses14,15 or prevent development of de novo B cell 
responses.16,17 Antigenic seniority, imprinting, vaccine blunting, and antibody ceiling effects 
have been observed, often at the population level, yet it is unclear how they weave together to 
shape each person’s post-vaccination response.6,18-21 

In addition, various host features (e.g., age,18,22,23 genomics,24,25 pre-vac HAI26,27) have been 
shown to affect the antibody response. These effects are often assessed one study at a time, 
and it is unclear whether they are universal or study-specific. Here, we demonstrate how 
combining multiple studies readily quantifies how any combination of parameters constrains the 
post-vac response (without requiring any modeling). The most predictive variables provide a 
roadmap for the key features to measure in future studies, as well as providing the ingredients 
for modeling the vaccine response. 

Using those maximally predictive variables, we develop an algorithm that takes a person’s HAI 
titers pre-vaccination (pre-vac) to predict their peak HAI response 3-4 weeks post-vaccination 
(henceforth referred to as “1-month post-vac”), focusing exclusively on the H3N2 subtype. Our 
key findings include: (1) By combining data from prior vaccine studies, heterogeneous vaccine 
responses across ≥10 influenza seasons (from 2009 to 2021) can be predicted with accuracy 
comparable to experimental noise. (2) Prediction accuracy holds across four new vaccine 
studies we conduct (in 2022 and 2023) spanning three vaccine types and two geographic 
locations. For this challenge, the computational team (T.E.) was blinded and only given the pre-
vac data to stringently test the model’s predictive power. (3) The most informative variables for 
the post-vac response are an individual’s pre-vac HAI against the vaccine strain, their pre-vac 
HAI against other influenza variants, whether they receive an inactivated versus live attenuated 
vaccine, and their prior influenza exposure history. (4) While individual studies may find different 
relationships between variants, combining all studies from the past decade leads to universal 
relations that accurately predict post-vac titers. (5) The magnitude of the fold-change post-vac is 
strongly associated with the # of years (ΔPeak) between the two most recent peaks in the HAI 
landscape; 2≤ΔPeak≤3 yields a large fold-change while 4≤ΔPeak≤6 leads to a smaller fold-change 
in 73% of cases. 

The resulting algorithm is built upon a machine learning approach that finds relations between 
pre- and post-vac HAI titers from large-scale influenza vaccine studies going back to 1997. 
Instead of splitting each dataset into training/testing sets, we restrict ourselves to the harder 
prediction challenge of training on some datasets and testing on entirely different datasets. 
Predictions are done forward in time; for example, to predict a person’s vaccine response in 
2020, training was done on data from 2019 and before. This model only uses pre-vaccination 
measurements as input, and hence it can take any individual’s pre-vac HAI and predict their 
post-vac HAI, without needing to “peek” at the initial vaccine response.4,28-32 
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Results 

The Inertia of Vaccine Responses elicits Consistently Strong/Weak Responses across 
Seasons, especially when the Vaccine Strain is Unchanged 

We performed an extensive literature search for influenza vaccine studies from the past two 
decades. Due to the substantial effort involved, such studies often restrict their analyses to the 
sizable datasets they produce. Here, we chose the opposite tact and characterized responses 
across cohorts. Doing so builds towards a fundamentally new question, namely, whether all 
post-vaccination HAI data in each study can be entirely predicted by prior studies, even as the 
virus evolves and the vaccine strains change. 

The literature search found 15 influenza vaccine studies measuring pre- and post-vac serum 
HAI in ≥25 people against ≥6 H3N2 variants (Table 1, Fig S1). On average, cohorts included 
160 (from 31-461) sera that showcase the heterogeneity of responses, measured against 30 H3N2 
variants (from 7-70). Collectively, these ~2,500 sera measure vaccine responses from much of 
the past decade (2014-2021) as well as four prior years (1997, 1998, 2009, 2010), providing 
ample opportunities to characterize vaccine response within and across influenza seasons. 

The HAI of the vaccine strain 1-month post-vac followed an approximate log-normal distribution 
with a geometric mean titer of GMT=95 (Fig 1B). Classic studies found that an HAI of 40 or 80 
correlated with 50% protection against H3N2 infections.33-36 Adopting the conservative stance where 
HAI≥80 is deemed a strong response, 67% of sera had strong post-vac responses on average.  

Across all studies, individuals vaccinated in two consecutive seasons showed a tendency 
towards maintaining their same strong or weak response, although there was a global bias 
towards strong responses (Fig 1C,D). More precisely, someone exhibiting a strong response 
was 82%/18%≈4x as likely to exhibit a strong response the next season, while someone with a 
weak response was only 57%/43%≈1.3x as likely to maintain their weak response (Fig 1D). 

On average, 73%(=0.82ꞏ67%+0.57ꞏ33%) of individuals maintained their strong→strong or 
weak→weak responses across all years examined (Fig 1D), yet ≥83% did so during seasons 
when the H3N2 vaccine strain was unchanged or minimally changed (Table S1, Spearman's 
rank test p=0.04 using the HA epitopes [ΔAAEpitope], p=0.02 using full HA [ΔAATotal]). Taken 
together, these results demonstrate that features of the vaccine strain and the antibody 
response from (at least) one prior season can help inform future responses. 

A Model-Free Approach to Quantifying Predictive Power of Host Traits  

Multiple factors have been shown to affect the antibody response, including age or birth 
year,18,21,40-42 genetics,43,44 and a person’s vaccination or infection history.38,45-47 Yet the amount 
each factor, or a combination of factors, affects the response is harder to quantify. Powered by 
the 15 studies, we introduced a simple, model-free method to assess how different 
combinations of features constrain the post-vac HAI against the vaccine strain. 
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Table 1. List of large-scale influenza vaccine studies. Fifteen existing vaccine studies (white 
background) were used to train and test the model forward in time. Four new vaccine studies (gray) were 
exclusively used to test the model. The total number of measurements in each study equals (# of sera)×(# 
of viruses)×(2 time points [pre- and post-vac]). 

 

* Each year represents the date when a vaccine study was conducted, not when the corresponding manuscript was 
published. 

 

Year + Name of Study* # of Measurements # of Sera # of Viruses Vaccine Type 

1997 Fonville4 7420 106 70 Inactivated (Afluria trivalent) 

1998 Fonville4 8960 128 70 Inactivated (Afluria trivalent) 

2009 Fonville4 1600 80 20 Inactivated (Afluria trivalent) 

2010 Fonville4 1600 80 20 Inactivated (Afluria trivalent) 

2014 HinojosaV 

(Vaccinated or infected)37 
656 41 16 

Inactivated (Fluzone trivalent) or  
Live attenuated (FluMist quadrivalent) 

2015 HinojosaV 

(Vaccinated or infected)37 
656 41 16 Inactivated (Fluzone trivalent) 

2015 HinojosaU  
(Unvaccinated and uninfected)37 

496 31 16 Inactivated (Fluzone trivalent) 

2016 FoxNam 
(Ha Nam)38 

4100 100 41 Inactivated (Vaxigrip trivalent) 

2016 FoxHCW  
(Health Care Workers)38 

1764 49 36 Inactivated (Fluarix quadrivalent) 

2016 UGA39 2516 148 17 Inactivated (Fluzone trivalent) 

2017 UGA39 4878 271 18 Inactivated (Fluzone trivalent) 

2018 UGA39 2500 250 10 Inactivated (Fluzone trivalent) 

2019 UGA39 3688 461 8 Inactivated (Fluzone trivalent) 

2020 UGA39 2373 339 7 Inactivated (Fluzone quadrivalent) 

2021 UGA39 2359 337 7 Inactivated (Fluzone quadrivalent) 

2022 UGA 175 25 7 Inactivated (Fluzone quadrivalent) 

2023 UGA 150 25 6 Inactivated (Fluzone quadrivalent) 

2023 CrottyAfluria
 168 24 7 Inactivated (Afluria quadrivalent) 

2023 CrottyFluMist 175 25 7 Live attenuated (FluMist quadrivalent) 
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Figure 1. Characteristics of the vaccine response across multiple studies. (A) Antibody inhibition 
against multiple variants is heterogeneous across the population. Two representative examples of a strong 
and weak vaccine response (IDs 69 and 117 from the 2016 FoxHCW dataset, Table 1) showing pre-vac 
[gray] and 1-month post-vac HAIs [green]. The vaccine strain is denoted by a pink halo and variants are 
ordered from oldest-to-newest [purple-to-green viruses; past variants to the left of vaccine strain, future 
variants to its right]. (B) Distribution of vaccine strain HAI titers 1-month post-vac across the 15 prior studies 
from Table 1. The HAI geometric mean titer (GMT=95) is shown as a dashed line. (C) Tendency of vaccine 
responses to be strong (HAI≥80) or weak (HAI≤40) over two consecutive seasons (x-axis, all from the UGA 
studies). The percent in each class is shown above the bars. (D) Summary of strong or weak responses 
across all years (boxes) and the tendency to maintain these profiles over consecutive seasons (arrows). 

As an example, we first assessed two commonly measured features: a person’s age and their 
pre-vac HAI against the vaccine strain. To quantify how these two features constrain the post-
vac response, every pair of individuals that have a similar age and pre-vac HAI (age ≤5 years 
apart, HAI exactly matches) were considered, and the ratio of their vaccine strain’s HAI 1-month 
post-vac was computed (which should be ≈1 if they maintain a similar response).  

Given the ultimate goal of predicting vaccine responses across seasons, only pairs of subjects 
vaccinated in different years were considered to test whether features fully specify the post-vac 
HAI over time. For the specific case of age and pre-vac HAI, N≈110,000 pairs matched on both 
traits across all studies, and their post-vac HAI differs by 4.0x root-mean-squared error (RMSE, 
“x” denotes fold-change; 95% CI: 4.0-4.05x) (Fig 2A,B green box). By assessing each feature 
separately, most of this predictive power came from the pre-vac HAI (RMSE=4.5x, 95% CI: 
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4.47-4.5x, Fig 2B red). Age alone poorly constrained the post-vac response across all age 
groups (RMSE=5.9x, 95% CI: 5.88-5.91x, Fig 2B gold), although exclusively considering 
ages≥65 led to more homogeneous responses and slightly better prediction accuracy (Fig S2). 

We similarly assessed other combinations of features measured in the 15 studies, which 
included a participant’s age, sex, BMI, their date of vaccination, dosage, geographic location, 
pre-vac HAI against the vaccine strain, and pre-vac HAI against other variants (Methods). 
Among these features, the largest decrease in RMSE occurred when matching the pre-vac HAI 
against the vaccine strain, resulting in a significant decrease to RMSE regardless of whether 
other features are added (p<0.001, one-sided permutation test, Fig 2A). After matching pre-vac 
HAI against the vaccine strain (Fig 2A red square), further matching pre-vac HAI across all 
variants led to a further significant decrease to RMSE (p<0.001, one-sided permutation test, Fig 
2A purple square). Other features, ordered from most-to-least predictive power, were the date 
of vaccination, BMI, geographic location, age, sex, and vaccine dose, each providing smaller 
but still significant decreases (p<0.001, one-sided permutation test, Fig 2A). 

Note that BMI and the date of vaccination were only measured in the UGA studies. Thus, any 
set including these features (shown by teal squares in Fig 2A) may have artificially lower error, 
since these cohorts necessarily used the same study design, administered the same vaccine, 
and were carried out in the same geographic location. Indeed, combining BMI or the date of 
vaccination with the vaccine’s HAI slightly decreased RMSE, although such results should be 
reassessed against future vaccine studies from other groups. All other features were measured 
in more than one superset (defined as UGA, Fox, Hinojosa, or Fonville, top of Fig 2A), leading 
to more robust estimates with subject pairs that span across study designs. 
 

Forecasting the Vaccine Response 

We next determine how well pre-vac HAIs predict the post-vac response, while taking into 
account the heterogeneity of responses, the different variants measured in each study, and 
differences in study design that may affect the response. Predictions were built upon a series of 
random forests, with one forest created to predict each variant’s post-vac HAI based on every 
prior study with ≥4 overlapping variants (with these variant’s pre-vac HAI used as model input). 
In total, ~103 separate models were collectively built to forecast the vaccine response (Methods). 

Rather than splitting each dataset into a training and testing set ‒ which for future application 
would require some individuals to get vaccinated early each season to predict others’ responses 
‒ we instead strive for the tougher challenge of training exclusively on vaccine studies from prior 
years. Since many influenza studies (beyond the ones analyzed in this work) only measure the 
vaccine strain, we sought to beat the 4.5x error found when only matching the vaccine strain’s 
pre-vaccination HAI (VacPre, Fig 2A red square), ideally aiming for the 2x noise limit of the HAI 
assay (see Methods for the quantification of assay noise). We also compare model 
performance against a null model (assuming no HAI response) and a linear model (assuming a 
linear response for each variant). 
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Figure 2. A model-free way to identify the key parameters that predict vaccine responses across 
studies. (A) For all pairs of subjects vaccinated in different seasons that match across a feature set [x-
axis], their post-vac HAI was compared against their respective vaccine strains. Features include body 
mass index (BMI), the date of vaccination (Date), standard vs high dosage (Dose), geographic location 
(Loc), pre-vac HAI against the vaccine strain (VacPre), and pre-vac HAI against other variants (Methods). 
Root-mean-squared error (RMSE, y-axis) is shown for each feature set, assessed over n pairs of 
subjects. 95% CI are smaller than the plot markers. Blue circles indicate that pairs of matching individuals 
can be found across multiple supersets; teal squares indicate that matched pairs may have artificially 
small RMSE because they came from a single superset of studies (UGA, Fox, Hinojosa, or Fonville; all 
cases of 1 superset came from UGA studies). The dashed line represents the intrinsic 2-fold error of the 
HAI assay.4 *p<0.001 between any feature sets with different gray shading (e.g., Age vs VacPre or Date vs 
VacPre+Variants) using a one-sided permutation test. (B) Vaccine strain’s post-vac HAI (VacPost) across all 
pairs matching on four potential feature sets. For clarity, at most 2000 (randomly selected) points are 
shown, although statistics were computed on all data. 
 

Equating Analogous Variants across Studies 

Since predictions were based on the HAI of overlapping variants between studies, we increased 
this overlap by equating variants whose HA sequences differed by ΔAAEpitope<5 amino acids in 
H3N2 epitopes A-E. This threshold balanced the twin goals of equating more strains while 
ensuring that equated strains have similar HAI profiles (Fig S3A). For example, HAI from H3N2 
A/Hong Kong/1/1968 ≈ A/Bilthoven/16190/1968 ≈ A/Aichi/2/1968 were combined for model 
training and testing (Fig 3A; full list in Fig S3). In total, this decreased the total number of 
unique variants across all studies from 102→80. 

All subsequent analysis was carried out after equating these analogous strains. In all cases 
where virus analogues were measured in the same study, their HAI titers were nearly identical, 
as expected (Fig S3). However, prior work has shown that some single substitutions lead to 
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dramatically different HAI reactivity,48 and hence the ultimate test for these equivalences will be 
the accuracy of the final forecasts. 
 

Inferring Global Relationships between the Pre- and Post-vaccination HAI of Influenza Variants 

To predict the post-vac HAI for virus-of-interest V0 in study Y using data from study X (also 
measuring V0), a prior random forest algorithm31 was modified to account for the pre- and post-
vac time points. Briefly, five randomly chosen viruses measured in both studies (V1-V5, at least 
one must be V0) were used to train decision trees using pre-vac HAI from V1-V5 as input to 
predict the post-vac HAI of V0 as output (Methods). 50 trees were created, each internally 
trained on 30% of sera from study X and tested on the remaining 70%. The top 5 trees 
comprised the final random forest model, with the average of their HAI outputs serving as V0‘s 
predicted post-vac titers in study Y. 

In essence, this algorithm searched for the most predictive overlapping variants for V0. For 
example, the HAI of H3N2 A/Uruguay/716/2007 in the 2017 UGA cohort could be predicted by 
nine other vaccine studies that measured this same variant, with each study estimating the post-
vac HAI for all 271 individuals in the 2017 UGA study (Fig 3B). Taking the geometric mean of all 
nine values as the final prediction led to an RMSE=2.3x (95% CI: 2.1-2.4x), comparable to the 
≈2x error of the HAI assay. While pre-vac HAI for Uruguay 2007 was among the top two 
features for most trees, other historical or future variants had comparable importance (Fig S4). 
 

Using Poor Predictions to Identify the Factors that Affect Post-Vaccination HAI 

This compilation of random forests predicted the post-vac HAI of all overlapping variants 
between any pair of studies. Although we ultimately desired accurate predictions, poor 
estimates revealed which features fundamentally affect the antibody response in a 
complementary manner to Fig 2. 

For each pair of vaccine studies, post-vac HAIs were predicted for all overlapping variants, with 
the least accurate predictions depicted with more transparency (a few chords shown in Fig 3C, 
all chords in Fig S5). While predictions were generally accurate, three datasets exhibited 
systematically poor predictions (with upper quartile RMSE>4x, Fig S5).  

The two earliest studies (1997-1998 Fonville) poorly predicted all subsequent vaccine studies 
(from 2009 or later). Unsurprisingly, this suggests that as antibody responses change over time, 
prior responses poorly predict outcomes too far into the future. This effect will be examined 
systematically in the following section. 

The only other study with uniformly poor predictions was 2015 HinojosaU, a study comprising 
children that self-reported as being uninfected and unvaccinated to influenza during the past five 
years. Notably, the 2014 and 2015 HinojosaV vaccine studies (children that were either infected 
or vaccinated in the past five years) had uniformly accurate predictions (interquartile RMSE 
between 2-3x, Fig S5), demonstrating that children can predict adult responses and vice versa. 
Instead, these results suggested that the unique exposure history of the children in 2015 
HinojosaU led to their fundamentally different antibody responses. Since this was the only study 
with such exposure histories, it was dropped in the subsequent analysis. All remaining studies 
had upper quartile RMSE<4x, so we next turn to the final step of determining how many prior 
seasons should be used to forecast future responses. 
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This Season’s Vaccine Responses are Informed by Responses from the Past 10 Seasons 

The above framework gave pairwise predictions from study X→Y. While predictions from a 
combination of studies (X1, X2…)→Y will likely be more robust, the number of possible training 
sets grows combinatorially; for example, the 2020 UGA study can be predicted using any 
combination of the 13 prior datasets (213≈8,000 choices).  

For each study, the average post-vaccination response was computed from all vaccine studies 
conducted between 1 and n seasons beforehand (Fig 3D). Prediction accuracy was maintained 
while using n≤10 prior seasons, so the final algorithm combined the predictions of all vaccine 
studies from the past decade to forecast future antibody responses. 
 

Post-vaccination HAI is Predicted with 2.4-Fold Error across 15 Vaccine Studies 

The above framework uses a person’s pre-vac HAI to predict their response 1-month post-vac. 
As an example, forecasts of the 2017 UGA vaccine study were assessed against the measured 
responses (results for all studies in Fig S6). Pre- and post-vac titers are shown for 5 (of 271) 
individuals, demonstrating the heterogeneity in both baseline HAI and the vaccine response 
(Fig 3E). The RMSE across all 271 individuals is 2.3x (95% CI: 2.2-2.3x), comparable to the 
intrinsic noise of the HAI assay, and hence these predictions are as accurate as should be 
possible (Fig 3E, IDs 004C, 175, 246, 081).  

Notably, some individuals showed large consistent deviations (Fig 3E, ID 226). To quantify this 
trend, predictions were extended across all studies to compute the deviation of the 5 worst-
predicted variants for each serum. Overall, 9% of serum responses were substantially 
underpredicted (predictions ≥4x below measurements for 5 worst-predicted variants on 
average) and 3% were overpredicted (predictions ≥4x above measurements), while the 
remaining 88% of sera showed consistently small deviations across all variants (examples in 
Fig S6). 

In addition to assessing each person’s response, a “transposed” analysis quantified each 
variant’s predictions. Returning to 2017 UGA, both the predicted and measured post-vac HAIs 
against the vaccine strain H3N2 A/Hong Kong/4801/2014 ranged from 40 to 640, resulting in a 
2.4x prediction error (Fig 3F, purple bars in Fig 3E denote five such points). Post-vac HAIs were 
smaller for older variants, yet the distribution of titers showed a strong tendency to lie on the 
diagonal line that denotes accurate predictions (Fig 3F, remaining variants in Fig S6). 

Considering all variants in 2017 UGA, the RMSE for 15/18=83% were comparable to the ≈2x 
noise limit of the HAI assay (Fig 3G). The final 3 variants had a larger RMSE≈3x, still within the 
target range of ≤4x. Extending this analysis to all vaccine studies, 90% of variants were 
predicted with RMSE≤3x while the remaining 10% were predicted with 3x<RMSE≤4x (Fig S6A). 
Collectively, this represents 20,000 measurements with an average prediction error of 2.4x. 
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Figure 3. Using pre-vaccination HAI against multiple variants to predict HAI 1-month post-
vaccination. (A) Analogous variants with similar HA sequences are equated (full list in Fig S3). Pre-vac 
HAI from these overlapping variants served as model input to predict post-vac HAI. (B) Example 
predictions for H3N2 A/Uruguay/716/2007 in 2017 UGA using 2009-2010 Fonville, all Hinojosa and Fox 
studies, 2016 UGA, and 2018 UGA (circles), together with the geometric mean across all 9 studies 
(squares). Each point represents one subject. (C) Representative chords showing prediction RMSE 
across pairs of studies (full chords in Fig S5). The three crossed-out studies have upper quartile 
RMSE>4x. (D) Prediction error from training on all vaccine studies from the prior n seasons [x-axis]. Mean 
[black dashed] and standard deviation [gray lines] of these RMSEs are interpolated across n. (E) 
Example predictions of five individuals in 2017 UGA [subject IDs and RMSE across variants shown 
above]. Pre-vac HAIs [gray line] predicted the post-vac response [green points], and results were 
compared to post-vac data [green line]. Prediction error is emphasized by the vertical lines [purple bars 
and text highlight the vaccine strain H3N2 A/Hong Kong/4801/2014, also shown in the bottom-right of 
Panel F and in Panel G]. Variants are sorted from oldest to newest (left-to-right). (F) Predicted versus 
measured post-vac HAI of four variants across all 271 subjects in 2017 UGA. The diagonal line y=x 
represents perfect predictions, while the gray bands denote the RMSE of the predictions. (G) RMSE for 
all variants in 2017 UGA comparing the random forest approach (blue points) with a linear model (gray 
squares) or null model (gray diamonds). The gray region denotes predictions with the desired RMSE≤4x. 
 

The relatively small vaccine responses across all studies suggested that a null model 
(HAIpost=HAIpre) or a linear model (only using each variant’s HAIpre to predict its HAIpost) may 
predict these data equally well. Testing both models led to a marginally larger average 
prediction error of 3.0x across all 20,000 measurements, especially for more recent variants 
(Fig 3G, Fig S7). Notably, both models were far more prone to large outliers. Whereas all 
variants were predicted with ≤4x error with the random forest approach, 16/133=12% of variants 
had error>4x (from 4.4-9.8x, p=0.001 via a one-sided permutation test) with the null model, 
whereas 14/133=11% of variants had error>4x (from 4.2-52.9x, p=0.006 via a one-sided 
permutation test) with the linear model (Fig S7, Fig S8). Hence, the random forest approach led 
to slightly more accurate but far more robust predictions. 
 

A Prediction Challenge across Future Seasons 

The above analysis was carried out on all existing datasets, with predictions done forward in 
time (e.g., the 2020 vaccine study was predicted using the ~40,000 measurements from 2019 
and earlier, Table 1). To further demonstrate that prior vaccine studies can predict future 
responses, even in light of continual virus evolution, H3N2 responses 1-month post-vac were 
predicted in four new vaccine studies that we conducted (one in 2022, three from the latest 
2023 season, Fig 4A). For this prediction challenge, the computational team (T.E.) was blinded 
by only receiving the pre-vac (day 0) HAIs which they used to predict the post-vac responses. 

Two of these vaccine studies (2022 UGA and 2023 UGA) followed the same format as the prior 
UGA cohorts,39 administering the inactivated Fluzone vaccine to participants in Athens GA 
(demographics in Fig S1). The other two studies administered either Afluria or FluMist in San 
Diego CA (2023 CrottyAfluria and CrottyFluMist). All four studies enrolled 25 participants and 
administered the seasonal vaccine containing the H3N2 vaccine strain A/Darwin/9/2021, a new 
vaccine introduced in 2022 and also used in 2023. Each study measured HAI titers against this 
vaccine strain as well as six historical variants (A/Hong Kong/4801/2014, A/Singapore/INFIMH-
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160019/2016, A/Kansas/14/2017, A/South Australia/34/2019, A/Hong Kong/2671/2019, and 
A/Tasmania/503/2020) that were chosen to overlap with the 2020 and 2021 UGA studies. 

Unlike inactivated vaccines, the live attenuated vaccine FluMist has no known correlates of 
protection. The one other example in Table 1 using FluMist found no increase in post-vac 
serum HAI.37 More generally, some studies have reported that live attenuated vaccines elicit 
little-to-no HAI responses,49-52 others have found HAI increases in children <18 years old,53-56 
and a randomized double-blind clinical study found a very small HAI rise of 1.05-fold against 
H3N2 in adults.57 Since the CrottyFluMist cohort comprised individuals >18 years old, predictions 
were made using the null model that assumed each variant’s post-vac HAI equals its pre-vac 
titer. In contrast, the inactivated vaccines Fluzone and Afluria were predicted using the random 
forest algorithm described above. 

Collectively, random forests predicted the three inactivated vaccine studies [2022-2023 UGA, 
2023 CrottyAfluria] with an average RMSE=2.3x (95% CI: 2.22-2.48x) (Fig 4B), outperforming 
both the null (RMSE=2.6x, 95% CI: 2.38-2.80x) and linear models (RMSE=2.6x, 95% CI: 2.46-
2.79x). The largest prediction error occurred for the vaccine strain Darwin 2021 (RMSE=2.7‒
4.4x), while the remaining variants had ≲2x error (Fig S9). 

Live attenuated predictions for 2023 CrottyFluMist were better for the null model (RMSE=1.6x, 
95% CI: 1.48-1.68x) than the linear model (RMSE=2.3x, 95% CI: 2.17-2.49x, Fig S9). The null 
model was consistently within the noise threshold of the HAI assay (<2x), confirming that HAI 
titers do not noticeably increase in adults receiving this live attenuated vaccine. 

As before, each vaccine study was predicted forward in time (e.g., models of the 2023 UGA and 
2023 CrottyAfluria vaccines were trained on vaccine studies from 2022 and earlier). However, 
since the 2023 UGA study was carried out in September while the 2023 CrottyAfluria study was 
done in December, the former study could augment the latter's predictions. Rather than training 
on all vaccine studies from the last 10 years, models were trained using every subset of these 
studies, and the subset yielding the best predictions on 2023 UGA was used to predict the 2023 
CrottyAfluria responses. These specialized predictions led to a small but not significant 
improvement in the Darwin 2021 vaccine strain predictions (RMSE=3.5→3.0x, p=0.2 from one-
sided permutation test) and minimally improved the other variants (Fig S9E). 
 

Using the Model to Recoup Known Phenomena and Discover Predictive Features of 
Vaccine Responses 

The model provides an opportunity to search for general relationships between an individual’s 
pre- and post-vaccination HAI. Few such rules are known, with one major exception being the 
antibody ceiling effect where the strongest pre-vac responses hit a “ceiling” and exhibit smaller 
fold-change post-vac. Other results have been noted in individual studies; for example, the 2016 
FoxNam study found that individuals recently infected by H3N2 have stronger post-vac HAI than 
those with no recent exposure.38  

Both effects are captured to an extent by the model. Recently infected subjects in 2016 FoxNam 
were predicted to have 1.3x larger HAI (comparable to 1.5x found experimentally) than subjects 
with no prior infection (Fig S10A). Little-to-no antibody ceiling was both measured and predicted 
for older variants circulating before 2000. For later variants, the model predicted a 2x reduction 
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in fold-change for each 34x increase in pre-vac HAI (while experiments found that only a 10x 
increase is needed, Fig S10B). This effect is small, as increasing pre-vac HAI from 10→320 
(the range of most pre-vac titers for these viruses) is predicted to blunt fold-change by 2x (while 
experiments report a 2.8x blunting). Thus, the model recapitulates these phenomena, although 
with smaller effect sizes. 

 

 

Figure 4. Predicting Post-vac HAI responses from new vaccine studies. (A) Four new vaccine 
studies were carried out administering either the 2022 or 2023 quadrivalent influenza vaccine. Each study 
enrolled 25 participants, and post-vac sera were collected after 28 days and measured against a panel of 
H3N2 variants. (B) The predicted versus measured post-vac HAIs for all variants in all four studies 
(individual variant predictions in Fig S9). Error is shown for the three inactivated vaccine studies 
(RMSEinact for 2022-2023 UGA and 2023 CrottyAfluria) and the live attenuated vaccine study (RMSEatten for 
2023 CrottyFluMist). The diagonal line y=x represents perfect predictions, while the gray bands denote 
RMSE=2.3x for the inactivated predictions. 

Given this caveat, we implemented a robust search for pre-vaccination features that distinguish 
strong vaccine responses (defined as GMTpost ≥2.5ꞏGMTpre against the full variant panel) from 
weak responses (GMTpost ≤1.2ꞏGMTpre, Fig 5A), while accounting for potential prediction error 
and experimental error. Unlike the prior sections analyzing absolute HAI, the following analysis 
uses fold-change (FC) pre-to-post vaccination, often deemed to be an equally important metric 
of the response. 

To account for potential model and experimental error, we assessed which subjects not only 
exhibited either a strong/weak FC response, but where small perturbations (increasing or 
decreasing any variant’s pre-vac HAI by 2x) were predicted to elicit this strong/weak FC 
response ≥75% of the time (Fig S11). The resulting “robustly strong” and “robustly weak” pre-
vac states were further validated by using a support vector machine and nearest neighbor 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 3, 2024. ; https://doi.org/10.1101/2024.08.01.24311325doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.01.24311325
http://creativecommons.org/licenses/by-nc/4.0/


classification system trained on the strong/weak FC responses in each dataset and then used to 
classify all perturbed states (Methods). 

The robustly strong HAI responses were noticeably more jagged than the robustly weak 
responses, especially against recent variants (Fig S11). The time ΔPeak between the two most 
recent pre-vac HAI peaks (for variants circulating within 6 years of each study, Methods) 
correlated with post-vac fold-change. 73% of strong responders had a gap of ΔPeak=2-3 years 
while 73% of weak responses had a larger gap of 4-6 years (Fig 5B-D), with a significant 
decrease in ΔPeak between both classes (p<0.001, one-sided permutation test). As a point of 
comparison, using age≤65 or pre-vac GMT≤80 as an indication of weak-fold change tends to 
accurately predict strong responses (83-92% accuracy) at the cost of characterizing weak 
responses (17-37% accuracy, Fig S12). In summary, the periodicity of pre-vac HAI against 
recent variants predicts the fold-change of the post-vaccination response, and such features 
should be considered in conjunction with features such as age or pre-vaccination titers. 
 

Discussion 

This work developed a computational framework that uses an individual’s pre-vaccination HAI to 
forecast their response 1-month post-vaccination. Any such model must be able to handle the 
heterogeneous immune responses across the population, updates to the vaccine composition, 
and the myriad differences in study designs. 

Our approach used: (1) pre-vac HAI against the vaccine strain and (2) pre-vac HAI against 
historical variants, both of which improved prediction by ~30% relative to predictions based 
solely on demographic features such as age. While many studies measure the vaccine strain, 
data from variants is less common, yet recent work showed that variants can reveal long-term 
trends in the antibody response58 or estimate protection against future variants.59 

In the context of vaccine responses, measuring variants offers three main advantages. First, 
prior work has shown that titers from multiple variants can be used to infer exposure history,60,61 
a feature that is known to affect the antibody response yet is difficult to accurately report. 
Conceptually, variants break up potential degeneracies in the data: for example, two subjects 
may have the same pre-vac HAI=20, but in one case it was caused by a minor recent infection 
while in the other case it was caused by a larger infection several years back. Measuring the 
response against historical variants would distinguish these two scenarios. 

Second, variants provide common features that can be used for prediction, even among studies 
that administer different vaccines. Even the oldest 1997 Fonville study had ≥4 overlapping 
variants with every other vaccine study we considered from 1998-2018, letting us test how far 
forward in time the patterns in early studies continue to hold. 

Third, previous work showed that measuring a serum’s pre- or post-vac HAI against as few as 4 
variants can predict other variants’ HAI at this same time point (e.g., one pre-vac response can 
predict another, or that post-vac can predict post-vac).31 This demonstrated that at each slice of 
time, there are conserved patterns between variants that hold across datasets, and in this work 
we pushed further by using variants to predict the pre-to-post vaccine response. 
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Figure 5. Time between HAI peaks of recent influenza variants distinguishes strong from weak 
fold-change responses. (A) Vaccine responses were defined as strong fold-change (FC≡post-vac 
GMT/pre-vac GMT≥2.5) or weak fold-change (FC≤1.1) across all variants; intermediate FC was not 
considered. (B) ΔPeak was defined as the years between the two most recent HAI peaks (white squares) 
for variants circulating 0-6 years prior to the study (pink region, Methods). Subjects were classified as 
strong if 2≤ΔPeak≤3 and weak if 4≤ΔPeak≤6; subjects with longer ΔPeak or ≤2 peaks within this time period 
were not classified. Data shown for IDs 208 [top right] and 50C [bottom right] from the 2019 UGA dataset. 
(C) Classification accuracy across all studies. (D) Classifications mapped back onto the pre- and post-vac 
GMTs for the strong and weak fold-change responses across all studies. 

In comparison to variant pre-vac HAI, a person’s age, sex, BMI, date of vaccination, vaccine 
dose, or geographics location led to small improvements in prediction accuracy. This lack of 
predictive power is especially surprising for age, which many studies have shown affects the 
influenza antibody response.23,40,42,62 One explanation is that these age effects may be small (as 
shown for the infection history and antibody ceiling effects), or they may be dataset-specific and 
change across seasons.  
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Indeed, children's responses (2014-2015 HinojosaV) accurately predicted adult responses and 
vice versa (upper quartile RMSE<4x). Aside from the two oldest studies, the only poorly 
predicted dataset was 2015 HinojosaU, a cohort containing subjects that self-reported as being 
uninfected and unvaccinated in the past five years.37 Notably, even the 2016 FoxNam cohort 
comprising adults receiving the first influenza vaccine of their life was well-predicted. Taken 
together, these results suggest that a lack of recent influenza infections (and possibly young 
age) can result in fundamentally different antibody responses. 

If these results translate into animal studies, they suggest that experiments on naive mice or 
ferrets may have limited transferability to humans not only because they are a different species, 
but also because of their nonexistent immune history. This hypothesis can be tested by comparing 
the vaccine response in humans to that in mice/ferrets with different exposure histories.63-66 

Since most influenza deaths occur in the elderly (age 65+), antibody responses in this age 
group are particularly important. In the UGA studies, all elderly individuals ≥65 years old in the 
UGA studies were offered high-dose Fluzone, and 76%(=259/340) received it (see the 
supplemental dataset for each person’s vaccine dose). However, we found no stark difference 
between elderly individuals (age 65+) receiving high dose vaccines and an adjacent age group 
(55-64) receiving standard dose Fluzone in any season. Notably, several prior studies found 
that high dose vaccines elicited higher HAI or led to fewer hospitalizations,67-69 although some 
studies found little effect.70 In the UGA studies, the high-dose vaccines may have blunted 
differences in the response across age groups. 

Few methods exist to predict the post-vac response from pre-vac data. Antigenic cartography 
uses naive ferret data to predict the relationship between the HAI of each strain,4,59 but it cannot 
predict the magnitude of the response to distinguish weak from strong responders. Other 
methods have predicted whether the vaccine strain’s HAI is above or below a threshold rather 
than predicting absolute titers.27,71 The null and linear models introduced here can predict 
responses from multiple variants, yet both were more prone to large prediction errors.  

Our approach used random forests to predict each variant’s post-vac HAI using its pre-vac HAI 
together with the four most informative other variants from each study (Methods). Information 
about each vaccine was not directly encoded, but rather indirectly learned in a data-driven 
manner by training on all studies from the past 10 seasons. This crude encoding cannot 
distinguish between vaccine formulations or even vaccine strain composition, and hence the 
overall 2.4x prediction error across all studies suggests that either feature has a minor effect on 
the resulting vaccine response. This holds across all seasons, including cases where the H3N2 
vaccine strain stayed the same (2016→2017, 2022→2023) or changed across clades 
(2018→2019 [Kansas 2017]→2020). Had a different variant been chosen for the 2019 vaccine, 
we hypothesize that vaccine studies would have looked similar (but with the new vaccine strain 
replacing Kansas 2017). 

Regarding vaccine formulation, although most studies we analyzed administered Fluzone, other 
inactivated vaccines (Afluria, Fluarix, Vaxigrip) were predicted with uniformly low error. The only 
notable exception was the live attenuated vaccine FluMist that elicited no antibody response in 
84% of individuals (pre-vac HAI ≈ post-vac HAI for all variants), and future work will determine 
where other vaccine types (e.g., recombinant, adjuvanted) fall along this spectrum. Note that 
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while inactivated vaccines induced a measurable antibody response on average, ~35% of 
individuals still exhibited little-to-no response (≤2x fold-change against any variant). 

Across the influenza seasons with predictions (2009-2010, 2014-2023), our approach 
characterizes ~88% of sera within the roughly 2x error of the HAI assay. Yet the most extreme 
responses ‒ the very strongest and very weakest ‒ were poorly predicted, likely because the 
vaccines elicit a small response in most individuals. Given that the vaccine response peaks 1-
month post-vac, the 3% of overpredicted sera may represent individuals who had been infected 
in the month prior to vaccination, edge cases poorly handled by the model, or experimental 
error. The 9% of underpredicted responses (comparable to the ~10% annual influenza 
incidence72) may similarly represent breakthrough infections that magnified the HAI response or 
a shortcoming of the model. 

Yet a model need not perfectly predict all data to be useful. By identifying states that were 
robustly strong or robustly weak (even after a 2x perturbation to any pre-vac titer), strong 
responses were found to be associated with jagged HAI landscapes with more frequent peaks. 
A cross-sectional study recently found long-term periodicity in the influenza response, yet it is 
unclear what mechanisms underlie such behavior.58 We observed short-term periodicity, and we 
speculate that the oscillatory HAIs from robustly strong responders imply that they elicit 
antibodies targeting variant-specific epitopes, and hence they are prone to respond strongly to 
drifted vaccine strains. Conversely, robustly weak responders may target more conserved 
epitopes that can inhibit and attenuate future vaccine strains with these same conserved sites. 
Our work is limited in so far as it points out but does not directly explore the underlying biology. 

Each vaccine study requires substantial time and effort, but the sera collected have utility 
beyond quantifying the vaccine response in a single season. For example, existing sera tested 
against next year’s vaccine variants (as done in 2009/2010 Fonville, 2016 FoxNam/HCW, 
2019/2020/2021 UGA) informs future vaccine responses. Alternatively, vaccine responses from 
early in the season or from studies from the southern hemisphere (whose influenza season is 
offset by 6 months) could augment predictions in the northern hemisphere. 

Predicting vaccine responses at the start of a season sets the stage to design better vaccine 
strategies. For example, individuals who would exhibit a weak vaccine response with one 
influenza formulation may benefit from receiving a different formulation. If we could estimate the 
durability of each person’s response, individuals whose HAI rapidly decays could get booster 
doses. Next generation vaccines under development will enable more complex vaccine 
strategies, and while a universal one-size-fits-all vaccination scheme may ultimately result, it is 
also worth considering vaccine recommendation schemes that better utilize the tools at hand.  

Methods 

Datasets analyzed 

Vaccine studies are described in the following manuscripts: Fonville,4 Hinojosa,37 Fox,38 UGA,39 
Crotty [this work]. Vaccine strains are listed in Fig S1; in 14/16 studies the vaccine strain was 
included in the variant panel, but in the two cases the closest variant was used instead (2009 
Fonville: A/Perth/27/2007 [ΔAAEpitope=1 substitution in the HA head compared to 
A/Brisbane/10/2007], 2021 UGA: A/Tasmania/503/2020 [ΔAAEpitope=2 substitutions compared to 
A/Cambodia/e0826360/2020]). 
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The explicit time points measured in each study can subtly differ. 2016 FoxNam/HCW and 
2016/2017 UGA measured the response 21 days post-vac, whereas all other vaccine studies 
measured the day 28 post-vac response. In 2020-2021 UGA, measurements were given as a 
spectrum of more precise dates (i.e., participants were asked to return 28 days post-
vaccination, but the exact date of the post-vac visit was recorded. This exact date ranged from 
21-71 days, and a similar spread is expected in all other studies). Such subtleties in timing were 
ignored in this analysis, with all post-vaccination time points treated as “1-month post-
vaccination,” which simplifies time from a continuous variable to a Boolean variable. 
 

Variants 

The full list of H3N2 variants measured in each dataset are given in Fig S3C. The four new 
vaccine studies conducted in this work measured HAI titers against A/Hong Kong/4801/2014 
(except 2023 UGA), A/Singapore/INFIMH-160019/2016, A/Kansas/14/2017, A/South 
Australia/34/2019, A/Hong Kong/2671/2019, A/Tasmania/503/2020, and A/Darwin/9/2021. The 
majority of viruses were propagated in embryonated chicken eggs in the lab of Dr. Ted Ross for 
all four new vaccine studies. The only exceptions were A/Darwin/9/2021 and A/Kansas/14/2017 
in the 2023 CrottyAfluria/FluMist studies, which due to limited reagents were instead supplied by Dr. 
Florian Krammer.  
 

Vaccine Study Participants 

25 participants were recruited for each of the four new influenza vaccine studies presented in 
this work (2022 UGA, 2023 UGA, 2023 CrottyAfluria, and 2023 CrottyFluMist). These studies 
administered different formulations of the influenza vaccine from that season.  

The 2022 UGA study administered the 2022-23 vaccine comprising H1N1 A/Victoria/2570/2019, 
H3N2 A/Darwin/9/2021, B/Austria/1359417/2021 (B/Victoria lineage), and B/Phuket/3073/2013 
(B/Yamagata lineage). As in prior UGA studies, participants less than 65 years old were given 
standard-dose [15 mg/component] Fluzone Quadrivalent (Sanofi Pasteur). Participants aged 65 
or older were offered the high-dose [60 mg/component] Fluzone Quadrivalent (Sanofi Pasteur), 
and 3/5 of participants in this age group opted for the high-dose vaccine (see the supplemental 
dataset for information on vaccine dose). 

All three 2023 studies administered the 2023-24 vaccine composed of H1N1 
A/Victoria/4897/2022 and the same H3N2, B Victoria, and B Yamagata strains as the 2022-23 
vaccine. In the 2023 UGA study, participants under 65 years old were given standard-dose 
Fluzone Quadrivalent (Sanofi Pasteur) while those 65 and older were offered the high-dose 
version, with 9/10 participants in this age group opting for the high-dose vaccine. All participants 
in the 2023 CrottyAfluria study received the 2023-24 formulation of Afluria Quadrivalent (Seqirus) 
while those in 2023 CrottyFluMist received FluMist Quadrivalent (AstraZeneca). 

In all studies, sera were collected pre-vaccination (day 0) and one-month post-vaccination (day 
28) in the fall of their respective year. Participants for the 2022-2023 UGA studies were 
recruited from medical facilities near Athens GA while those in the Crotty studies were recruited 
from La Jolla CA. The SST tube of one participant in 2023 CrottyAfluria clotted during the one-
month blood draw resulting in n=24 post-vaccination samples, and the unpaired pre-vaccination 
sample was dropped from our analysis. 
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The UGA vaccine studies were approved by the Western Institutional Review Board and the 
University of Georgia Review Board. The Crotty studies were approved by the La Jolla Institute 
for Immunology Review Board (IRB#: VD-271). 
 

Analyzing HAI Titers 

The hemagglutination inhibition (HAI) assay quantifies how potently an antibody or serum 
inhibits the ability of a virus to bind red blood cells. The value (or titer) for each antibody-virus 
pair corresponds to the maximum dilution at which an antibody inhibits this interaction, so that 
larger values represent a more potent antibody. This assay is traditionally done using a series of 
2-fold dilutions, so that the HAI titers can equal 10, 20, 40… Plots with too many overlapping 
points were jittered for clarity (Figs 2B, 3B, 3F, 4B). 

As in previous studies, all analysis was done on log10(HAI titers) because experimental 
measurements span orders of magnitude, and taking the logarithm prevents biasing the 
predictions toward the largest values while also accounting for the declining marginal protection 
from increasing titers.10 For example, the dashed line in Fig 1B shows that the vaccine strain’s 
geometric mean titers post-vac equal 95; using the arithmetic mean would yield mean post-vac 
titers of 230. 

Prediction error was quantified in unlogged units so that it can be readily compared to the 
measured values. RMSEs were computed by first taking the root-mean-squared error σ of the 
log10(HAI titers) and then present the un-logged value that is exponentiated by 10 (i.e., σ=0.3 for 
log10 titers corresponds to an error of σPredict=100.3=2-fold, with “fold” or “x” indicating an un-
logged number). Confidence intervals were computed by bootstrapping the log10 values. 
 

Intrinsic Noise of the HAI Assay 

Harvey et al. reported HAI from influenza surveillance data, where HAI from the same ferret 
sera were measured against the most common circulating variants each week.73 Thus, their 
dataset contained ~700,000 repeat measurements of the same serum-virus pair, and these 
measurements were consistent with Gaussian error (on a log2 scale) with standard deviation 
σ=1 (i.e. 2-fold error). More precisely, 40.0% of their repeat measurements did not change (1x 
error), 44.7% had 2x error, 12.6% had 4x error, 2.4% had 8x, and 0.2% had 16x error. In 
comparison, a log-Gaussian error distribution would predict that 38.7% of measurements would 
not change, 48.3% have 2x error, 11.7% have 4x error, 1.1% have 8x error, and 0.03% have 8x 
error. 

In addition, Fonville et al. analyzed HAI measurements from nearly identical sera and found that 
the inherent error of the assay is log-normally-distributed with standard deviation ≈2-fold.4 This 
is shown by Figure S8B in Fonville et al.4 (neglecting the stack of not-determined measurements 
outside the dynamic range of the assay), where 40% of repeats had the same HAI value, 50% 
had a 2-fold discrepancy, and 10% had a 4-fold discrepancy. 

As further corroboration, across the 15 studies examined there were n=9 pairs of variants with 
identical HA sequences that were measured within the same study (points in Fig S3A with 
ΔAAEpitope=0 that also all had ΔAATotal=0). The RMSE between the HAI of these 9 variants varied 
from 1.6x-3.3x with a geometric mean of 2.1x. 
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HAI Protocol 

For the UGA studies, sera were treated with receptor destroying enzyme (RDE) (Denka) to 
inactivate nonspecific inhibitors. Briefly, three volumes of RDE were added to one volume of 
sera and incubated overnight at 37°C. The next day, samples were incubated at 56°C for 30-60 
minutes, after which 6 volumes of 1x phosphate buffered saline (PBS) were added to each 
sample, resulting in a final serum dilution of 1:10. For the Crotty studies, 20µL starting volume of 
serum was treated with 0.5×(starting volume) of 8mg/mL TPCK-trypsin (Sigma-Aldrich) and 
incubated at 56℃ for 30 minutes. After cooling to room temperature, 3×(starting volume) of 
11mM potassium periodate (Sigma-Aldrich) was added and incubated for 15 minutes at room 
temperature. 3×(starting volume) of 1% glycerol-PBS was then added and incubated for 15 
minutes. Lastly, 2.5×(starting volume) of 0.85% PBS was added to all samples.  

Serum was diluted in a series of 2-fold serial dilutions in 96-well V-bottom plates (Thermo Fisher 
for UGA studies, Sarstedt for Crotty studies). An equal volume of influenza virus, adjusted to 8 
hemagglutination units (HAU)/50µL diluted in 1x PBS, was added to each well of the plate. For 
the UGA studies, plates were then covered and allowed to incubate at room temperature for 20 
minutes. After incubation, 50µL of a solution consisting of 0.8% turkey red blood cells (Lampire 
Biologicals) diluted in 1x PBS was added to each well. The plates were then mixed by gentle 
agitation, covered, and allowed to incubate for another 30 minutes at room temperature. For 
Crotty studies, sera and virus were incubated for 30 minutes at room temperature. After this 
incubation, 50µL of 0.5% turkey red blood cells (Lampire Biologicals) or 0.75% guinea pig red 
blood cells (GPRBCs) in 1x PBS (Lampire Biologicals) were added to all wells and incubated at 
4℃ for 45 minutes. GPRBCs were used for H3N2 A/Darwin/9/2021 in the Crotty studies due to 
lack of viral activity observed with turkey red blood cells.  

After incubation with red blood cells the plates were tilted to observe the hemagglutination 
inhibition. The HAI antibody titer was determined by taking the reciprocal dilution of the last well 
that contained non-agglutinated red blood cells. For GPRBC plates, the HAI titer was 
determined as the last dilution with a “halo” of the same size as PBS and virus only wells. 
Samples with no detectable activity were assigned to half the limit of detection (HAI=5). 

To confirm assay consistency between runs, positive controls were included. In the UGA 
studies, these consisted of sera from previously performed mouse or ferret infections. In the 
Crotty studies, normal control goat serum (FR-1377) and positive control influenza A(H3) 
Reference Goat Antiserum (FR-1562, FR-1612, FR-1683, FR-1737, FR-1780, FR-1827) were 
obtained through the International Reagent Resource, Influenza Division, WHO Collaborating 
Center for Surveillance, Epidemiology and Control of Influenza, Centers for Disease Control and 
Prevention, Atlanta, GA, USA. In addition, pre- and 1-month post vaccination serum for the 
same participants were run on the same plate together with the negative and positive control 
serum. 

Quantifying Predictive Power of Different Features 

A pair of subjects matched across each feature in Fig 2A if they met the following conditions: 
● Age: Pairs have ages ≤10 years apart from one another. (Alternative thresholds of ≤5 

and ≤20 years apart led to worse predictions.) 
● Sex: Pairs have the same sex (male or female). 
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● BMI: Pairs have a BMI ≤2 of one another. (A threshold of ≤5 led to worse predictions.) 
● Date of vaccination [1=Jan 1, 365=Dec 31]: Pairs have a date of vaccination ≤14 days 

apart. (A threshold of ≤21 or ≤28 days made no difference.) 
● Vaccine dose: Pairs receive the same standard-dose or high-dose vaccine. (The latter is 

only available [but not mandatory] when age≥65 in the UGA studies.) 
● Location: Pairs exactly matched along the geographic location of the study (all Fonville 

studies or 2016 FoxHCW → Australia, 2016 FoxNam → Ha Nam, all Hinojosa studies → 
Wisconsin, all UGA studies → Georgia). 

● Pre-vac HAI (VacPre): Pairs exactly match in their pre-vaccination HAI titer against the 
respective vaccine strain in their study. 

● Variant HAI: Pairs must be measured against ≥5 overlapping viruses (excluding their 
vaccine strains), and there must be a correlation>0.9 between the log10(HAI titers) of 
these overlapping viruses. 

When assessing what dataset features affect the vaccine response (Fig S4), predictions were 
considered both forward and backward in time (e.g., 2016 UGA can predict 2017 UGA and vice 
versa), since there are cases where predictions appear accurate in one direction but the reverse 
predictions reveal a dissimilarity. After excluding the 1997/1998 Fonville studies and 2015 
HinojosaU, all subsequent predictions were predictions forward in time. 
 

Predicting the HAI Response 1-Month Post-Vaccination 

The random forest framework adapted our previous approach,31 with each decision tree 
constrained to use pre-vaccination data as input and post-vaccination data as output. In 
constructing the random forests, variants V1-V5 are chosen with replacement, so that variants 
can appear multiple times. At least one variant is always set to V0, since unsurprisingly, the 
variant-of-interest’s HAI at time 0 was highly informative of its HAI 1-month post-vac. 

Row-centering was found to be crucial to accurately predict across datasets. Row-centering 
means that if t0-t5 represent the log10(titers) of V0-V5, with mean titer tavg, then each decision tree 
will take (t1-tavg, t2-tavg, t3-tavg, t4-tavg, t5-tavg) as input to predict t0-tavg. The value tavg (which will be 
different for each serum) is then added to this prediction to undo the row-centering. Note that 
row-centering does not throw away any information. Similarly, this approach does not normalize 
or threshold the HAI titers in any way. Instead, the exact post-vaccination titers were predicted 
for each variant. 

When using multiple training sets, predictions from each study were equally weighed by taking 
their geometric mean (or the arithmetic mean of log10[HAI titers]). Unequal weights (for 
predictions from 1, 2, 3… prior seasons) were assessed through nonlinear fitting, yet we found 
that the optimal weights were essentially flat and hence opted for equal weighing. 

The final post-vac predictions were given as the maximum of the pre-vac HAI and the model 
predictions. Although there are few cases where model predictions fell below the pre-vac titers, 
this biologically-realistic constraint slightly improved model predictions.  
 

Classifying Robustly Strong and Robustly Weak Responses 

In addition to our random forest (regression) model, we also trained two classification models 
using either nearest neighbors or a support vector machine. Both latter models were trained 
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separately on each dataset, taking in every subject’s pre-vac HAI against all variants and a 
classification of “strong” if post-vac GMT/pre-vac GMT≥2.5 (which requires a substantial post-
vac response, especially since HAI from older variants stays nearly constant post-vac) and 
“weak” if post-vac GMT/pre-vac GMT≤1.1 (a null response accounting for error). Subjects with 
an intermediate fold-change were not used. The resulting models were then applied to each 
subject’s pre-vac HAIs as well as a perturbed version of these HAIs (where each titer was 
increased or decreased by 2x), and cases where ≥75% of states were strong/weak were 
denoted as robustly strong/weak. 

We determined the peaks in HAI data by first sorting viruses by their year of circulation. H3N2 
A/South Australia/34/2019 (the 2019 southern hemisphere strain) was removed from 2019-2021 
UGA since it interfered with H3N2 A/Hong Kong/2671/2019 (the 2020 northern hemisphere 
strain) and allowed peaks to happen in 2019 and 2020 which decreased classification accuracy. 
Peaks were then determined after applying a Gaussian blur with scale σ=1 to account for error. 
In case of a plateau where multiple consecutive variants had an equally large HAI, the peak was 
set at the position of the earliest variant. 

The two most recent peaks between (year of study)‒6 and (year of study) were used to 
compute ΔPeak; if two peaks did not exist in this time frame then no classification was made. 
Attempts to use values of ΔPeak>6 to classify lead to worse accuracy, likely because the variant 
panels lose resolution beyond this time interval and hence many peaks are artificially missed. 
 

Data Availability 

The data and code used in this work is contained in the following GitHub repository: 
https://github.com/TalEinav/PredictFluVaccine 
 
Both the raw data and random forest predictions are provided in a CSV file. We also provide a 
supplementary Mathematica notebook that implements our prediction framework and 
reproduces all figures from this manuscript. 
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Figures and Tables 

 

Current → Next Season 
% Subjects Strong/Strong or 

Weak/Weak in Both Seasons (n) 
ΔAAEpitope across vaccine 

strains (amino acids) 
ΔAATotal across vaccine 
strains (amino acids) 

2016 → 2017 83 (n=102) 0 0 

2017 → 2018 88 (n=149) 3 6 

2018 → 2019 73 (n=161) 10 16 

2019 → 2020 64 (n=316) 11 18 

2020 → 2021 74 (n=252) 11 16 

2021 → 2022 84 (n=19) 8 10 

2022 → 2023 100 (n=3) 0 0 

 

Table S1. Percent of all participants vaccinated two seasons in a row with consistently strong 
(HAI≥80) or consistently weak (HAI≤40) responses against the vaccine strain. The right-most column 
represents the total number of differences in either HA epitopes A-E (ΔAAEpitope) or the entire HA 
(ΔAATotal) between the H3N2 vaccine strain’s hemagglutinin (HA) between both seasons. Rows where 
>80% of subjects showed consistent responses are shaded in gray. The H3N2 vaccine strains are given 
in Fig S1A; note that the H3N2 vaccine strain did not change between the 2016-2017 or 2022-2023 
seasons and minimally changed in 2017-2018. The final two rows are based on the 2022/2023 UGA 
vaccine studies introduced in this work and have far fewer subjects. 
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Figure S1. Demographics and null responders in the vaccine studies used to predict responses. 
(A) Null responders are defined as participants whose response 1-month post-vac differed by ≤2-fold 
across all variants measured. The final four entries represent the new studies introduced in this work; 
each study enrolled 25 participants, although one participant in the 2023 CrottyAfluria study did not have 
post-vac measurements because their serum tube clotted during the blood draw. Dashed represent 
features that were not reported. (B) Age distribution for all males and females (when measured) in each 
study. 
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Figure S2. Feature importance when predicting vaccine responses in 65-year-olds or older. 
Analysis from Fig 2A carried out exclusively on subjects with age≥65 (such subjects were only present in 
the UGA or Fox supersets). For all pairs of subjects vaccinated in different seasons that match across a 
feature set [x-axis], their post-vac HAI is compared against their respective vaccine strains. Features 
include body mass index (BMI), the date of vaccination (Date), standard vs high dosage (Dose), 
geographic location (Loc), pre-vac HAI against the vaccine strain (VacPre), and pre-vac HAI against other 
variants (Methods). Root-mean-squared error (RMSE, y-axis) is shown for each feature set, assessed 
over n pairs of subjects. 95% CI are smaller than the plot markers. Blue circles indicate that pairs of 
matching individuals can be found across multiple studies; teal squares indicate that matched pairs may 
have artificially small RMSE because they came from a single superset of studies (UGA or Fox; all cases 
of 1 superset came from UGA studies). The dashed line represents the intrinsic 2-fold error of the HAI 
assay.4 *p<0.001 between any feature sets with different gray shading (e.g., Age vs VacPre or Date vs 
VacPre+Variants) using a one-sided permutation test. 
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Figure S3. Equating analogous viruses across studies. (A) Determining HAI similarity as a function of 
amino acid mutations across H3N2 epitopes A-E (ΔAAEpitope). Within each dataset, for all pairs of viruses 
with a given ΔAAEpitope [x-axis], we computed the root-mean-squared error between their log(HAI) [y-axis]. 
Virus sequences were taken from each study when available and otherwise from GISAID consensus 
sequences. (B) Using the threshold ΔAAEpitope<5 to equate viruses across studies; viruses were equated 
whenever it increased the number of predictions (by creating more squares in the same row in Panel C). 
Differences in the HA amino acid sequence are shown considering H3N2 epitopes A-E [ΔAAEpitope], the 
full HA head [ΔAAHead], or the full HA head+stem [ΔAATotal] between the original variant and its analogue. 
Most (but not all) epitopes are within the HA head, so ΔAAEpitope≤ΔAAHead is generally true. Both 
ΔAAEpitope≤ΔAATotal and ΔAAEpitope≤ΔAAHead always hold. (C) List of variants measured in each study, with 
arrows representing a shift to an analogous strain to increase virus overlap. All egg- and cell-passaged 
strains were equated, since in every study when both were measured their HAI titers were approximately 
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identical [Panel D]. (D) HAI similarity directly assessed for cases where two virus analogues were 
measured in the same study. HAIs from analogue 1 (x-axis) and analogue 2 (y-axis) across all sera and 
all time points are shown, with most points lying along the diagonal leading to RMSE≲2x. (E) In the vast 
majority of cases where an egg and non-egg strain were measured in the same study, the HAI of both 
was nearly identical with an RMSE≲2x. 

 

 

Figure S4. Example predictions for H3N2 A/Uruguay/716/2007 in 2017 UGA. Feature importance 
when predicting Uruguay 2007’s post-vac HAI using (A) 2009 Fonville, (B) 2014 HinojosaV, (C) 2016 
FoxHCW, or (D) 2016 UGA. In each case, decision trees were trained using Day 0 HAI from different 
variants to predict Uruguay 2007’s HAI 1-month post-vaccination. The average predictions from the top 5 
decision trees (with the lowest internal RMSE) were used to predict Uruguay 2007’s HAI in 2017 UGA. 
Plots show the absolute value of SHAP feature importance. 
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Figure S5. Accuracy of pairwise predictions between vaccine studies. (A) Predictions between two 
studies were carried out when ≥4 variants were measured in both studies, as indicated by each chord. 
For clarity, studies are colored from purple-to-green based on the year they were carried out. (B) The 
error from each pairwise prediction in both directions (average of Study X predicting Study Y and Study Y 
predicting Study X) is shown by each chord’s opacity. Lower opacity represents poorer predictions. (C) 
Distribution of all predictions to and from each study. The three studies boxed in red (Panel B) or shown 
in red boxes (Panel C) have an upper quartile RMSE>4x (above the purple region), indicating that some 
features of their study design led to fundamentally different vaccine responses. The characteristics of 
these three studies are shown below Panel C. 
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Figure S6. Summary of predictions across all datasets. (A) Distribution of prediction errors across 
each dataset [left] or each variant [right, colored variants on x-axis denote the vaccine strains]. (B-L) 
Examples of post-vac predictions for eight randomly chosen subjects [left] and up to 20 variants [right]. 
The vaccine strain is highlighted in purple in each study. Some variants may not have predictions if they 
were not measured in any previous datasets. 

 

 

Figure S7. Comparing modeling approaches. (A) Predicted versus measured post-vac HAI of four 
variants in 2017 UGA, showing the random forest predictions (blue, as in Fig 3F) overlaid with the linear 
model (gray squares) and null model (gray diamonds). (B-D) The distribution of RMSEs for all viruses 
predicted in each study. (B) The random forest approach described in Fig 3. (C) A linear model predicting 
each variant V by training on all (HAIV,pre, HAIV,post) titers from prior datasets. (D) A null model assuming 
that each variant’s post-vac HAI equals its pre-vac HAI. The number of variants predicted with RMSE>4x 
is emphasized in each panel. P values are calculated using a 1-sided permutation test. 
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Figure S8. Using pre-vaccination titers alone can lead to large prediction error across studies. 
Comparison of vaccine strain (H3N2 A/Hong Kong/4801/2014) HAIs across the 2016 FoxNam and 2016 
FoxHCW studies. (A) Schematic emphasizing that two people may have the same HAI pre-vac (HAIpre) but 
end up with very different HAI post-vac (HAIpost). (B) Pre- and post-vac HAI for the vaccine strain across 
both studies. There is heterogeneity both within one study (distribution of points around each best-fit line) 
as well as heterogeneity across studies (differences between the best-fit lines). (C) For within-dataset 
predictions of the vaccine strain’s pre→post-vac HAI, linear regression was fit to 70% of the data to 
predict the remaining 30%, with error showing the mean fold-change across 10 iterations. For cross-
dataset predictions, all data from one cohort was used to predict all data in the other cohort. Cases where 
error>4x are highlighted in red. Note that some errors reach >100x.  
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Figure S9. Individual virus predictions from Fig 4. Predicted versus measured post-vac HAI for the 
new vaccine studies (A) 2022 UGA, (B) 2023 UGA [which did not measure Hong Kong 2014], (C) 2023 
CrottyFluMist, and (D) 2023 CrottyAfluria using the random forest approach (F, colored points), linear model 
(L, gray squares), or null model (N, gray diamonds). For all predictions, training was carried out on studies 
from the past 10 years; random forests were not used for the live attenuated vaccine study (2023 
CrottyFluMist). RMSE and 95% confidence intervals (sub/superscripts) are shown in the top-left. (E) Since 
the 2023 CrottyAfluria study was conducted three months after the 2023 UGA study, an additional 
specialized prediction was created by finding the best combination of vaccine studies that predicted the 
2023 UGA data and then using those to predict 2023 CrottyAfluria. The resulting predictions were based 
upon 2022 and 2023 vaccine studies [some currently unpublished]. The gray diagonal band denotes the 
width of RMSEF in panels A,B,D,E and RMSEN in panel C. 
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Figure S10. Recouping the effects of recent infection history and the antibody ceiling. (A) Predicted 
versus measured post-vac HAI for the 2016 FoxNam study, showing the geometric mean of the responses 
for n=51 individuals with a known influenza H3N2 infection after 2010 (green) and n=49 individuals with 
last confirmed H3N2 infection before 2010 (blue). The shaded area indicates that the more recently 
infected cohort has a larger HAI. (B) The antibody ceiling effect was computed for each variant and every 
study using the slope of the linear fit of pre-vac HAI versus fold-change (both on log-axes). Resulting 
slopes are shown for all measurements and predictions.  
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Figure S11. Characterizing “robustly strong” and “robustly weak” vaccine responses. (A) 
Representative examples of robust strong or weak responses from the UGA studies. A support vector 
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machine and nearest-neighbors classified each state, as well as ≥85% of perturbed states (varying any 
single HAI by 2x or 1/2x), as this same strong/weak state. (B) Classifying subjects with strong or weak 
fold-change post-vaccination from all studies. Each subject is either correctly classified (blue), incorrectly 
classified (red), or not classified (gray). Blue lines represent the years of all variants from 2000 onwards in 
each study, and points on each column represent the peaks of an individual’s HAI profile. In Panels A and 
B, the purple region represents the region in which ΔPeak is computed (i.e., the period 0-6 years before 
each study). The dashed line in Panel B represents the year of each study. 

 

 

Figure S12. Alternate categorization of strong/weak fold-change responses. (A) An age-based 
categorization assuming the elderly (age≥65) exhibit weak fold-change (FC) post-vaccination. (B) Pre-vac 
GMT-based categorization assuming that individuals that start with higher titers (GMT pre-vac≥80) will 
exhibit weak fold-change. In both panels, statistics in the bottom-right show how many of the actual 
strong responses (FC≥2.5) or weak responses (FC≤1.1) were correctly predicted. 
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