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Abstract

Near-term disease forecasting and scenario projection efforts rely on the availability of data
to train and evaluate model performance. In most cases, more extensive epidemiological
time series data can lead to better modeling results and improved public health insights.
Here we describe a procedure to augment an epidemiological time series. We used reported
flu hospitalization data from FluSurv-NET and the National Healthcare Safety Network
to estimate a complete time series of flu hospitalization counts dating back to 2009. The
augmentation process includes concatenation, interpolation, extrapolation, and imputation
steps, each designed to address specific data gaps. We demonstrate the forecasting perfor-
mance gain when the extended time series is used to train flu hospitalization models at the
state and national level.
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1 Background

Operational disease modeling initiatives can provide key information for public health response. However,
limited availability of historical epidemiological data pose a challenge for training accurate disease forecasting
and projection models. As contributors to the CDC FluSight consortium, we have experienced these challenges
as they pertain to forecasting near-term influenza hospitalizations in the United States. In 2020, the U.S.
Department of Health and Human Services (HHS) began reporting flu hospitalizations through the HHS
Protect network, which is now known as the National Healthcare Safety Network (NHSN). Because the field
was only mandatory between February 2022 and April 2024 (U.S. Department of Health and Human Services
2023), there are just over two years worth of the gold standard, state-level flu hospitalization surveillance
data. More training data can improve the performance of time series models and enable the use of new
methods. We therefore sought to augment the NHSN data to estimate flu hospitalizations prior to 2020.
What follows is a description of the approach we developed to extend this time series using additional data
signals to create a continuous, comprehensive estimate of flu hospitalizations in the United States.

2 Methods

2.1 Data Sources

To extend the flu hospitalization time series, we considered leveraging two orthogonal flu reporting mechanisms:
FluSurv-NET (FSN) and ILINet. While flu surveillance systems such as FSN and ILINet have critical public
health utility, they are known to in some cases exhibit population bias, limited geographic representation,
and suboptimal provider coverage (Scarpino et al. 2020; Scarpino, Dimitrov, and Meyers 2012; Chaves et al.
2015). FSN provides flu hospitalization records from selected states, with data from some states dating back
as far as 2009 (Centers for Disease Control and Prevention 2023). ILINet is a national, state-level record
of outpatient influenza-like visits. It does not track hospitalizations, and the dataset may include patient
visits caused by other respiratory diseases that produce similar symptoms (Centers for Disease Control and
Prevention 2024). Because of our focus on the hospitalization time series, we chose to prioritize the FSN
hospitalization data over the ILINet outpatient visits.

2.2 Data Augmentation Process

The data augmentation process we developed broadly consists of four steps: concatenation, interpolation,
extrapolation, and imputation. To minimize bias in the imputation of the historical time series, we used the
orthogonal FSN data (extrapolation step). Before extrapolating the counts from the FSN data, we needed a
method for estimating the incidence during non-seasonal weeks (interpolation step), which further required
the existing datasets to be carefully fused (concatenation step).

2.2.1 Concatenation

For this augmentation process the data needed to be organized in a specific format, requiring several
assumptions and significant data preparation. To begin, we retrieved FSN data using the Epidata API R
package (Farrow et al. 2015), collecting reported values from the 19 participating states, some with records
dating back to 2009. The package has a cutoff of April 25th, 2020, so we manually downloaded FSN data
between October 3rd, 2020 and April 27th, 2024. FSN does not report during non-seasonal weeks, hence the
gap between April and October. FSN has two entries for New York State (NY Albany and NY Rochester)
and we averaged these values to summarize New York hospitalizations. For downstream analyses, we used
the usa R package (Nicholls 2024) to annotate the data with 2019 state populations, converting rates per
100k to counts (the unit used by NHSN). Further, we mapped NHSN regions and the proportion of the state
represented by FSN to the individual states (“Influenza Hospitalization Surveillance Network (FluSurv-NET)”
2023; U.S. Department of Health and Human Services 2024). Using the fiphde R package (Nagraj et al.
2024), we queried all state-level hospitalization data from NHSN, removed DC, calculated the rates from the
counts (rates used by FSN), and merged all datasets. Finally, we added rows for all missing dates for each
state dating back to 2009. The combined FSN and NHSN dataset from the concatenation step is depicted in
Figure 1. However, at this point the data has many missing entries for flu hospitalizations, both from states
that never reported to FSN (e.g., Alaska in Figure 1) and from states that did but had gaps in reporting
during the summer months and during the pandemic (e.g., California in Figure 1).
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2.2.2 Interpolation

The first missing data that we addressed were the short gaps in FSN hospitalization records across non-seasonal
weeks and some occasional missed reports. Because these gaps were either very short (intermittent missed
weeks) or across summer months when flu hospitalizations tend to be low, we employed a simple linear
interpolation at the state level. Some states that have historically reported to FSN had long periods spanning
several years with no reporting. To avoid estimating large spans of missing data with linear interpolation, we
limited interpolation to gaps of less than 26 weeks. Figure 2 demonstrates the interpolated values alongside
the available FSN observations.

2.2.3 Extrapolation

After the interpolation step, the dataset still contains many gaps but now includes two fields for hospitalizations
for select states: one from FSN and the other from NHSN. We planned to use a multivariate imputation
procedure downstream to complete the dataset for all states and weeks. Imputation procedures can be heavily
biased by including collinear predictors (van Buuren and Groothuis-Oudshoorn 2011), and we therefore sought
to consolidate the two variables representing hospitalizations. Though the FSN record and the ground-truth
NHSN data are highly correlated when both data are present, they are not identical signals. When translated
to counts, FSN hospitalizations tend to be higher than the values reported by NHSN for the same state and
date. As such, we established a conversion equation to extrapolate the interpolated FSN data to NHSN data.

Our extrapolation was based on a generalized linear model (GLM) trained on instances when both records
were present. We used this model to predict NHSN hospitalizations when only FSN data were present,
resulting in a single variable for hospital admissions. Fourteen of the nineteen FSN participating states had
overlapping NHSN records, with a total of 1,388 data points, of which, we excluded five outliers. Using
Akaike information criterion (AIC), Bayesian information criterion (BIC) and log likelihood, we determined
that the best model formulation was a Gaussian GLM with NHSN flu admissions as the response variable,
FSN hospitalizations (8 = 0.818, SE = 0.008, p < 0.001) as the primary predictor variable and population
size (8 = 6.732e-07, SE = 1.543e-07, p < 0.001) and NHSN-defined region (8 = 0.864, SE = 0.567, p =
0.128) as covariates (see Supplementary Figure S1 for a fit of the model). Though they were significant terms
when included in the model, we excluded location (i.e., state), the proportion of the population represented
by FSN, and the NHSN flu admission coverage rate as covariates, because these variables were present in
the data used to train the GLM but not always in the FSN data used for extrapolation. Date, epiyear, and
epiweek were not significant terms and were excluded, as the relationship between NHSN and FSN hospital
admissions did not vary with time. We extrapolated a total of 7,862 FSN hospital admissions, and in cases
where both data were present we kept the NHSN record rather than the extrapolated value. Figure 3 shows
the reported, interpolated, and extrapolated values for the states reporting to FSN overlaid.

2.2.4 Imputation

After the extrapolation step, the dataset has a consolidated representation of flu hospitalizations comprised of
the NHSN signal and the FSN data transformed using the steps described above. The dataset is still missing
values for states that never or irregularly reported to FSN. With records dating back to 2009, the dataset
contains 17,062 flu hospitalization records across 50 states, but there were an additional 22,888 missing
hospitalization records. To complete the data augmentation and address the remaining missing gaps, we
employed multiple imputation using the Multivariate Imputation by Chained Equations (MICE) algorithm
(van Buuren and Groothuis-Oudshoorn 2011). In addition to the hospitalization records, the dataset included
incomplete cases for the proportion of the population represented by FSN and the NHSN flu admission
coverage rates. While these variables are rarely used in downstream analytics (e.g., forecast models), they are
important covariates for imputing flu hospitalizations and were therefore simultaneously imputed by MICE.
We also used location, date, population size, HHS region, epiyear and epiweek as predictors in the imputation.

To validate our method selection for MICE, we ran imputations for every combination of the methods suitable
for imputing continuous variables, resulting in 1,331 method combinations and imputations. We tested each
of the 1,331 methods by withholding data from October 25th, 2020 to April 21st, 2024 in both California and
Utah and then calculated the mean squared errors. The method combination with the lowest mean squared
error was classification and regression trees for missing hospitalizations and random sampling from observed
values for the other two variables with incomplete cases. Using these methods, we ran MICE with 150
multiple imputations and 15 iterations to complete the dataset shown. Figure 4 depicts the fully augmented
dataset, which provides a continuous estimate of flu hospitalizations from 2009 to the April 21st, 2024 across
all states.
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Concatenation Step: California NHSN and FluSurv—NET Flu Admissions
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Figure 1: Concatenation of FluSurv-NET and NHSN hospitalization records. Many states have never
participated in FSN (orange), and thus only the NHSN data (black) are shown. Some states have reported
to FSN intermittently (e.g., Iowa) or do not have records dating back to 2009 (e.g., Utah). California (top
panel) was used as an exemplar state, as it has a long history of reporting to FSN. Still, there are no records
for non-seasonal weeks (e.g., gaps in the FSN record for California).
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Interpolation Step: California FluSurv—NET Flu Admissions with Linear Interpolation of Gaps
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Figure 2: FluSurv-NET hospitalization records with linear interpolation. All states reporting to FSN had
gaps during non-seasonal weeks, and we used linear interpolation (purple lines) to estimate hospitalizations
during those short gaps. Note that we did not interpolate across gaps longer than 26 weeks, such as the
multi-year gaps in Iowa. Further, no states reported to FSN during the pandemic, which is clearly shown in
California (top panel) from early 2020 to late 2021.
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Extrapolation Step: California NHSN Data and Model Extrapolation from Interpolated FluSurv—Net Data
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Figure 3: Extrapolation of FluSurv-Net data to NHSN data. The model extrapolation (blue line) is based on
interpolated FSN data (purple line), state population size, and NHSN region. FSN records (orange) tend
to be higher than NHSN reports (black), and the GLM extrapolation reflects this, often resulting in lower
values than FSN records. Note that several states have no overlapping NHSN and FSN data, which is why
variables like location were not used in the GLM despite their significance when both datasets were present.
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Imputation Step: California NHSN Data, Model Extrapolation, FluSurv—Net Interpolation, and Imputation using those Datasets
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Figure 4: Imputation of remaining missing NHSN data. The final step in our augmentation completes
the dataset, with imputed flu hospitalizations (red line), NHSN truth data (black line), extrapolated FSN
data (blue line), and small interpolated gaps (purple line). Note that this figure is consistent in displaying
California as an exemplar state (top panel) but also highlights Rhode Island. This comparison emphasizes
the range in the amount of imputed data across states. California had a nearly complete flu hospitalization
record between FSN data and NHSN data, with the exception of several months during 2020. On the other
hand, Rhode Island’s record only included FSN data between 2011-2013 and NHSN data since 2021. Further,
many states have never reported to FSN.
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3 Performance and Method Variations

3.1 Imputation Accuracy

In extending the NHSN flu hospitalization data back in time, we have created a novel signal that hybridizes
truly observed flu hospitalization data with informed estimates. For dates and locations for which there
was no NHSN or FSN data previously available, we inherently lack truth data against which to compare
the imputation results. This introduces challenges in assessing accuracy. In spite of these constraints, we
attempted to demonstrate validity of our imputation procedure by censoring and then imputing a limited
amount of more recent data for which we did have an NHSN signal. We performed this analysis by censoring
data reported after October 2020 in two separate imputations: one in which data was censored in Tennessee
and Utah, and the other in which it was censored in California and New Hampshire. When compared
against the NHSN observed data, the seasonality of the imputations for the 2023-2024 flu season was fairly
accurate, though less so for the seasons impacted by pandemic mitigation measures (e.g., mask mandates,
social distancing, etc.). The accuracy of the imputed hospitalization burdens varied by state. New Hampshire
showed the most accurate burden, whereas California’s imputation noticeably over-estimated the burden.
Ultimately, without more extensive observed data, it is impossible to definitively assess the performance of the
imputation. We emphasize that the imputed data were created to guide model training, hypothesis generation,
and related activities. In terms of capturing a historical record of flu hospitalizations, the extensions to this
time series do not have parity with true, reported signals.

3.2 Forecast Performance with Imputation

To demonstrate the utility of the augmented data set, we implemented a proof-of-principle, near-term forecast
using a time-series approach. We based our forecast on an autoregressive integrated moving average (ARIMA)
model. We implemented the ARIMA approach using the fiphde R package, which internally calls functions
from the fable and fabletools packages (O’Hara-Wild, Hyndman, and Wang 2021a, 2021b). As part of this
modeling procedure, the ARIMA performed a grid search of possible values for lag (p), differencing (d), and
order (q) parameters, with ranges constrained 0:4, 0:4, and 0 respectively. The procedure was performed
independently for each forecasting week and location to find the best fitting model, which was then used to
generate forecasts for 4 weeks-ahead for the US and all 50 states for every week of the 2023-2024 flu season.
We tested the model using variations of the dataset, each of which was iteratively masked to obscure training
data for horizons that had not yet been eclipsed. The variations of training data included: the NHSN flu
hospitalization dataset without any augmentation, the complete augmented dataset with hospitalizations
dating back to 2009, a dataset truncated to exclude data before June 2010 (to account for the unusually
severe avian flu season), a dataset excluding COVID-19 pandemic years, a dataset truncated to exclude data
before June 2012 (based on irregular reporting to FSN), and several combinations of these exclusions. Note
that for the dataset variation that excluded flu hospitalizations during the pandemic years, we removed data
from the 2020-2021 and the 2021-2022 flu seasons, and shifted the data prior to May of 2020 forward by two
years (i.e., the model assumes that the 2019-2020 flu season was the 2021-2022 flu season). We evaluated the
performance of these variations using weighted interval scores (WIS), absolute error (AE), and the percent of
forecasts that captured observed hospitalization counts within their 95% prediction intervals (95% coverage).

At the aggregated, national level, there were not substantial differences in performance between the forecasts
using the original NHSN data (median WIS = 18.49, AE = 28, 95% coverage = 79.97%) and the variations
of the imputed dataset (see Supplementary Figure S2). While the differences in performance were slight, the
model trained on data that excluded flu hospitalizations prior to June 2010 demonstrated the best performance
with a median WIS of 15.68, a median AE of 22, and capturing 89.6% of observed hospitalization counts.
This suggests that excluding the 2009 flu season slightly enhances forecast accuracy. The configuration that
was truncated prior to June 2012 and the one that included all augmented data, which covered the entire
dataset without exclusions, also performed relatively well, indicating that the full historical context may
be valuable for the model. Conversely, excluding the COVID-19 pandemic years generally led to poorer
performance, highlighting the importance of including pandemic data despite its known abberations in flu
activity (Zipfel, Colizza, and Bansal 2021). The original un-augmented NHSN data performed the worst,
underscoring the benefits of the augmentation process in general (see Supplementary Figure S2).

For state-level forecasts, models that were trained on datasets that were truncated at 2010 or 2012 and
excluded pandemic data generally performed best (see Supplementary Figures S3-S5). The model that used
the 2010 truncated and pandemic excluded data resulted in more state-level forecasts with the lowest median
WIS values, closely followed by the model which used the 2012 truncated and pandemic excluded data, which
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was also the model with the lowest AE values. Interestingly, for most states the full augmented dataset
performed better than the one that only excluded the pandemic. In general, at the state-level the original
un-augmented dataset and the dataset that only excluded years affected by COVID-19 performed worst.
These findings emphasize the importance of balancing historical depth and the inclusion of significant events
like the COVID-19 pandemic to optimize the forecasting model’s performance across different states.

4 Discussion

The data augmentation approach we have developed and implemented provides a valuable resource for
specifically improving flu hospitalization forecasting models and more generally demonstrating how an
epidemiological time series may be extended. By combining data from FSN and NHSN, we have successfully
created an estimate of state-level flu hospitalizations extending back to 2009. Flu hospitalization counts are
particularly limited with only several years of reported, state-level data. Furthermore, reporting mandates
have recently shifted (U.S. Department of Health and Human Services 2023), and in the future, imputation
procedures may be even more critical for this signal. An extended time series provides higher resolution,
which allows for forecasting methods that require more training data than was previously available (e.g.,
autoregressive neural network (Kandula and Shaman 2019; Turner, Hulme-Lowe, and Nagraj 2022)). Likewise,
for time series methods that are currently being used (e.g., ARIMA approaches) we have demonstrated that
access to this extended time series can improve forecast performance.

There are several limitations to the imputation approach and analysis described here. First, our decision to
average the two New York jurisdictions from FSN could have introduced some biases. Additionally, relying
solely on FSN data without incorporating ILINet data might have limited the robustness of the augmented
dataset. We acknowledge that the ILINet data could have been used as a covariate in the final imputation
step, although we expect it would require additional steps for data pre-processing and appropriate fusion for
the time points we aimed to impute. Notably, another group contributing to the CDC FluSight consortium
was working in parallel to achieve the same goal, and they did incorporate ILINet data into their augmentation
method (Meyer et al. 2024). We have not yet quantitatively compared these methods. The inclusion of 2009
data, a year marked by a surge in flu cases due to the avian flu, might also skew the model training, though
initial results indicate similar model performance with and without this data. Similarly, using data from
2020-2021, years significantly affected by the COVID-19 pandemic, could impact model accuracy, although
preliminary tests suggest that the model’s performance remains consistent regardless of the inclusion of 2020
data. Appropriate evaluation of forecast performance throughout the season is an area of active research, and
the WIS, AE and coverage metrics we described are aggregated across all seasonal weeks. As such, the impact
of extended time series on forecast performance at pivotal seasonal moments (e.g., initial rise, peak, etc.)
may be obscured. Furthermore, the choice of linear interpolation for addressing short gaps in the data might
not be the most accurate method, but it was deemed sufficient given the available data and the context of
the study. Finally, we expect that the data augmentation procedure and our demonstration analysis could be
improved by more fully exploring the impact of variability at each step. For example, while the extrapolation
step is built on a GLM model, we only used the point estimate in downstream imputation. Likewise, while
we have standard error estimates from the imputation step, we only used the point estimate as the input to
our forecasting models in the performance analysis.

We anticipate that future work will focus on addressing the limitations above. We also recommend further
validation of the imputation methods as the gold standard NHSN grows. However, as noted above, changes to
hospitalization reporting mandates may highlight an even more pressing need for data augmentation methods
like that which we have presented here. Furthermore, the NHSN flu hospitalization dataset is by no means
the only epidemiological signal that invites time series extension. We expect that our work may help provide
a guide for other researchers to explore implementations of data augmentation approaches in other disease
surveillance signals.

5 Conclusion

The procedure detailed here successfully combines FSN and NHSN datasets to address gaps and provide
state-level estimates of flu hospitalizations dating back to 2009. The resulting dataset is anticipated to
improve the performance of time series models used in forecasting and outbreak analytics, contributing to
better preparedness and response strategies.
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