
A Deep Ensemble Encoder Network Method for Improved Polygenic Risk Score Predic?on 
 
Okan Bilge Ozdemir1, Ruining Chen1, Ruowang Li1 

1. Cedars-Sinai Medical Center, Computa@onal Biology Department, Los Angeles, CA, USA 

Abstract 

Genome-wide associa@on studies (GWAS) of various heritable human traits and diseases 
have iden@fied numerous associated single nucleo@de polymorphisms (SNPs), most of which 
have small or modest effects. Polygenic risk scores (PRS) aim to bePer es@mate individuals' 
gene@c predisposi@on by aggrega@ng the effects of mul@ple SNPs from GWAS. However, current 
PRS is designed to capture only simple linear gene@c effects across the genome, limi@ng their 
ability to fully account for the complex polygenic architecture. To address this, we propose 
DeepEnsembleEncodeNet (DEEN), a new method that ensembles autoencoders and fully 
connected neural networks (FCNNs) to bePer iden@fy and model linear and non-linear SNP effects 
across different genomic regions, improving its ability to predict disease risks. To demonstrate 
DEEN’s performance, we op@mized the model across binary and con@nuous traits from the UK 
Biobank (UKBB). Model evalua@on on the held-out UKBB tes@ng dataset, as well as the 
independent All of Us (AoU) dataset, showed improved predic@on and risk stra@fica@on, 
consistently outperforming other methods. 

Introduc?on 

Many human traits and diseases are highly heritable, reflec@ng the important influences 
of the underlying gene@cs1–5.  To date, GWAS have iden@fied over 70,000 SNP associa@ons 
spanning a wide range of human traits and diseases6–11. Effec@ve leveraging of these genotype-
phenotype correla@ons to construct gene@c risk predic@on models holds substan@al clinical 
promise by enabling early and stable risk predic@ons12–14. However, individual SNPs typically 
account for only a frac@on of phenotype variability. The recent development of polygenic risk 
score15–17 (PRS), which aggregates univariate effects from many gene@c loci iden@fied through 
GWAS, has shown improved performance in predic@ng and stra@fying gene@c suscep@bili@es in 
large popula@ons18–20. Nevertheless, exis@ng PRS methodologies are constrained by inflexible 
underlying assump@ons of gene@c data that limit their ability to fully capture the predic@ve 
signals21. 

Broadly speaking, exis@ng PRS methodologies, such as pruning and thresholding22–24, 
Lasso regularized regressions25 or Bayesian methods26–30, vary in their approaches to es@mate the 
effects of individual SNPs. Nonetheless, these methodologies o\en share similar fundamental 
assump@ons. Current PRS models primarily focus on the effects of univariate SNPs and their linear 
addi@ve aggrega@ons, thus not allowing poten@al non-linear effects to be captured31,32. In 
addi@on, they also generally assume uniform signal distribu@ons across the genome, as reflected 
by fixed modeling parameters, e.g., a single 𝜆 in Lasso, applied to all SNPs. Furthermore, given 
the high dimensionality and sparsity of gene@c data, many PRS approaches u@lize dimensionality 
reduc@on or variable selec@on techniques to improve the signal-to-noise ra@o in the input feature 
space. However, dimensionality reduc@on typically occurs concurrently with classifica@on or 
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regression in the supervised learning se_ng. Separa@ng these tasks could yield more efficient 
methods, as bePer strategies exist for each task independently.  

Autoencoders are highly efficient in data dimensionality reduc@on, making them 
par@cularly valuable in areas such as imaging and natural language processing33–37. They func@on 
by learning a lower-dimensional representa@on of the data that can minimize data reconstruc@on 
error, effec@vely capturing key features while discarding noise and redundant informa@on. On the 
other hand, fully connected neural networks (FCNN) are considered state-of-the-art in predic@ve 
modeling due to their ability to process complex, high-dimensional data and learn complex 
paPerns38–41. The architecture of FCNN allows for the learning of hierarchical representa@ons of 
underlying data, improving tasks such as regression and classifica@on. However, despite their 
respec@ve strengths, autoencoders and FCNNs have not been u@lized in ensemble learning to 
integrate latent representa@on learning with predic@ve modeling for improving gene@c risk 
predic@on models42–44. 

In this study, we propose a novel method, DeepEnsembleEncodeNet (DEEN), which 
u@lizes an autoencoder for learning latent gene@c feature representa@ons coupled with a FCNN 
for construc@ng predic@ve models. DEEN disentangles gene@c data dimensionality reduc@on and 
predic@on model construc@on into separate modules, allowing op@mal learning for each task. 
The autoencoder module extracts a lower-dimensional latent representa@on of the gene@c data 
that can capture both linear and non-linear rela@onships among the SNPs. Subsequently, the 
FCNN further enables learning of non-linear effects as well as differen@al variable weigh@ng 
across the genome, providing a substan@ally more flexible framework for capturing diverse 
gene@c effects in construc@ng gene@c risk predic@on models.  We op@mized DEEN using binary 
diseases, type 2 diabetes (T2D) and hypertension, and con@nuous phenotypes, body mass 
index(BMI), cholesterol, high-density lipoprotein (HDL), low-density lipoprotein(LDL), from the 
UKBB dataset45.  We then evaluated its performance internally on separate held-out UKBB tes@ng 
datasets and externally on the independent All of Us (AoU) dataset. Results from these analyses 
demonstrate that DEEN achieved superior predic@ve performance for all phenotypes compared 
to exis@ng methods. Moreover, the DEEN model significantly improved the stra@fica@on of 
various risk groups, demonstra@ng its poten@al for clinical u@lity.  

Results  

Overview of the DEEN algorithm 

The DEEN algorithm comprises of three main components (Figure 1). Unsupervised 
autoencoder for learning latent representa@ons: In the ini@al stage, DEEN employs an 
unsupervised autoencoder to derive lower-dimensional latent representa@ons of the input SNPs 
for each chromosome. This approach leverages the expected correla@ons among the SNPs, such 
as those arising from linkage disequilibrium, to generate features that encode the independent 
varia@ons among the SNPs. Each chromosome is modeled separately due to the minimal 
correla@ons expected across chromosomes. Concatena@on of Latent Representa@ons: In the 
second stage, the latent representa@ons obtained from each chromosome are concatenated to 
form a combined feature set for predic@ve modeling. Supervised learning using an FCNN: The 
final stage involves using a supervised FCNN to model the chromosome-specific autoencoders. 
The FCNN can capture both linear and non-linear rela@onships among the input features, thus 
offering a broadened search space for iden@fying the op@mal model. Notably, the FCNN 
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inherently allows differen@al impacts of various genomic regions on the final predic@on, thereby 
providing a more accurate representa@on of the underlying gene@c effects. To assess the model, 
DEEN was trained using 5-fold cross-valida@on on the UKBB dataset. The trained models were 
subsequently evaluated for their predic@ve performance, risk stra@fica@on, and interpreta@on 
using the independent All of Us dataset. 

Evalua?ons in UKBB and AoU Datasets  

We op@mized DEEN on UKBB training data for two binary phenotypes—hypertension and 
T2D as well as four con@nuous phenotypes: BMI, cholesterol, LDL, and HDL. The models' 
predic@ve performance was assessed on the held-out UKBB tes@ng data. We also evaluated 
exis@ng PRS methods, including the summary-sta@s@cs PRS-CS 26, and Lasso (as implemented in 
bigsnpr) using individual-level data46, and an alterna@ve ML method, PCA-FCNN, on the same 
datasets. 

Figure 2a shows that DEEN achieved higher AUC scores for the two binary diseases 
compared to other evaluated PRS methods. In the UKBB dataset, DEEN's AUC for T2D is 3.01% 
higher than the Lasso, and 1.49% higher for hypertension. Compared to PRS-CS, DEEN's AUC 
improvement is 7.99% for Hypertension and 9.29% for T2D. Compared to PCA-FCNN, the 
improvement is 0.47% for Hypertension and 1.22% for T2D.   

Figure 1 Overview of the study design and the DEEN algorithm a. The UKBB dataset is divided into 5 equal parts for each 
phenotype. In each itera;on, one fold is used as the test set, while the remaining 4 folds are used for training. This process is 
repeated 5 ;mes, with each fold used exactly once as the test set.  b. Unsupervised latent space dimensionality reduc;on is 
performed using autoencoders with only gene;c data. c. A single representa;on matrix for each pa;ent is created by 
concatena;ng the latent space matrices obtained from the autoencoders. d. Supervised classifica;on/regression with FCNN is 
carried out using the representa;on matrices obtained in part c and the phenotype data. e. Performance evalua;ons are 
conducted on the UKBB and All of Us datasets. 
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(a) 

 
(b) 

Figure 2 Predic;ve performances of DEEN and exis;ng PRS methods on binary diseases and con;nuous traits in UKBB and AoU. 
The models compared in the figures are DEEN (green), PCA-FCNN (light green), Lasso (dark blue) and PRS-CS (light blue).  a. AuC 
values for different predic;on models applied to Hypertension and T2D using data from the UK Biobank and All of Us datasets. 
The top row shows the results for the UK Biobank dataset, with Hypertension on the leV and T2D on the right.  The boWom row 
shows the results for the All of Us dataset in the same order. b. MSE values of the different predic;on models for con;nuous 
phenotypes: BMI, Cholesterol, HDL and LDL phenotypes respec;vely. The top row shows the results for the UK Biobank dataset 
and in the boWom row, the results for the All Of Us dataset are shown in the same order as the given phenotypes.  

Beyond predic@ve performance, we also evaluated the models’ ability to stra@fy risk for 
binary diseases, aligning more closely with their clinical u@lity. The analysis was performed by 
comparing the odds ra@o enrichment of cases between high-risk and low-risk groups. Different 
risk quan@les (top 5%, 10%, 15%, 20%, and 25%) were used to select the high-risk group while 
the low-risk group was kept constant (boPom 5%). DEEN outperformed exis@ng PRS approaches 
and PCA-FCNN in stra@fying the two risk groups(Figure 3). For T2D, DEEN improved the odds ra@o 
enrichment by an average of 25.99% compared to Lasso, 93.68% compared to PRS-CS, and 24.02% 
compared to PCA-FCNN. For hypertension, the respec@ve average improvements are 10.46%, 
77.40%, and 3.74%. 

Figure 2b shows the performance evalua@on of the models for con@nuous phenotypes. 
Consistent with the binary disease results, DEEN achieved lower mean squared error (MSE) for 
all con@nuous phenotypes. For BMI, DEEN reduced the MSE by 4.41% compared to PCA-FCNN, 
10.11% compared to Lasso, and 10.14% compared to PRS-CS. For cholesterol, the MSE reduc@on  
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Figure 3 DEEN has improved risk stra;fica;on for T2D and Hypertension for the best-performing models. The models compared 
are DEEN (green), PCA-FCNN (light green), Lasso (dark blue), and PRSCS (light blue). The x-axis represents different percentage 
thresholds (5%, 10%, 15%, 20%, 25%) for selec;ng the high-risk group, and the y-axis shows the odds ra;os enrichment of cases 
between the high- and low-risk groups for each threshold. 95% confidence intervals are shown for each odds ra;o. Results for 
UKBB are displayed in the top row, and for AoU are on the boWom row.  

is 3.59%, 12.65%, and 13.18%, respec@vely. HDL showed the largest MSE reduc@on, with 
improvements of 4.44%, 15.40%, and 16.11%. Lastly, for LDL, the MSE improvement is 2.24%, 
13.98%, and 14.54%, respec@vely. 

External valida@on on the AoU dataset is shown in the boPom panels of Figure 2 and 
Figure 3. While the predic@on AUC decreased on average for binary phenotypes across all 
methods, the proposed DEEN procedure s@ll achieved the best results for all phenotypes. In 
addi@on, the odds-ra@o analysis demonstrated that the improvement in stra@fying risk groups 
remained stable. In each case, the DEEN method outperforms the other methods.  

For con@nuous phenotypes, the DEEN model applied to the AoU dataset con@nued to 
outperform other methods, similar to the results obtained with the UKBB dataset. In contrast, 
the performance of other methods varied. Lasso outperformed PCA-FCNN for BMI and 
Cholesterol, while PRS-CS outperformed PCA-FCNN for BMI and Lasso for HDL. 

To further inves@gate the improved performance of DEEN compared to the best-
performing PRS method, Lasso PRS, SNPs’ contribu@ons to the final predic@ons were compared 
using model outputs from the T2D analysis (Figure 4). As DEEN disentangles dimensionality 
reduc@on and predic@ve modeling, most SNPs were retained by the model as they may contribute 
to either reconstruc@ng the gene@c features or predic@ng the outcomes. In contrast, around 90% 
of the SNPs have zero coefficients in the lasso model as the model only retains SNPs that are both  
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Figure 4 Comparison of SNP contribu;ons between autoencoder and Lasso. Each histogram displays the frequency distribu;on of 
respec;ve SNP weight values of Lasso regression (leV) and the autoencoder model (right) for T2D disease.  

correlated with the outcome and representa@ve of the feature space. Therefore, DEEN 
compara@vely u@lizes more SNPs when construc@ng the predic@on models. Similar results were 
observed for other chromosomes and diseases. 

The autoencoder can also capture both local and distal rela@onships among the SNPs. 
Using autoencoder outputs from the same T2D analysis, Figure 5a shows the Pearson correla@ons 
among the SNPs based on their es@mated feature weights in the autoencoder model. Since the 
SNPs are organized according to their physical loca@ons across the chromosomes, SNPs in 
proximal distances showed the highest correla@ons, reflec@ng local linkage disequilibrium. 
However, the autoencoder model also captured correla@ons among SNPs in distant regions, 
which are o\en not modeled by exis@ng PRS methods. 

Addi@onally, the nodes in the boPleneck layer can differen@ally model the SNPs. 
Comparing the SNPs' weights connected to each node in the boPleneck layer revealed dis@nct 
groups of nodes with similar SNP connec@ons, indica@ng that the autoencoder has dis@nct 
structures modeling different parts of the genome (Figure 5b). Results for other diseases are 
presented in the Supplemental Materials. 

Discussion 

In this study, we introduce a novel method for compu@ng PRS using deep learning, 
employing a deep ensemble encoder-based approach that integrates autoencoders and fully 
connected neural networks. DEEN differen@ates itself from exis@ng PRS methods by modeling 
non-linear gene@c effects through more flexible structures. This allows SNPs in different genomic 
regions to exert differen@al impacts on the final predic@on via learned weights, unlike tradi@onal 
PRS methods that apply uniform priors or regulariza@on penal@es to all SNPs. Furthermore, DEEN 
addresses the common issue of overfi_ng in deep learning models by ini@ally employing an 
autoencoder model to learn a reduced latent dimension of the gene@c data. Given the complexity 
and size of gene@c datasets, directly applying a deep learning model is imprac@cal due to 
computa@onal constraints such as GPU memory limits. DEEN overcomes this by separa@ng 
dimensionality reduc@on and final predic@ve modeling into dis@nct modules. The autoencoder 
module significantly reduces the correla@on among input SNPs, such as those caused by LD, 
crea@ng a new latent representa@on. This reduced input feature space allows the FCNN to build 
more efficient and effec@ve predic@ve models of disease. 
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(a) 

 
(b) 

Figure 5 Correla;ons in the Encoder Layer Nodes Weights and Cluster Map of Correla;ons in the Decoder Layer Nodes Weights. 
Autoencoder output from chromosome 1 in the T2D analysis is used to demonstrate the SNPs and node correla;ons.  a. correla;ons 
of the weights of the encoder SNP inputs, calculated using the Pearson correla;on coefficient. Red indicates posi;ve correla;ons, 
while blue indicates nega;ve correla;ons. b. cluster map showing the correla;on values between nodes in the decoder layer of 
chromosome specific autoencoder. The heatmap visualizes correla;ons ranging from -1 to 1 represen;ng posi;ve correla;ons in 
red and nega;ve correla;ons in blue, while white indicates no correla;on.  

Through real data analysis in UKBB, we demonstrated that DEEN consistently has superior 
predic@ve performance for both binary diseases and con@nuous traits compared to exis@ng PRS 
methods, including summary sta@s@cs PRS-CS, Lasso regression using individual-level data, and 
an alterna@ve ML method, PCA-FCNN (Figure 2). In addi@on, risk stra@fica@on analysis, which 
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aligns more closely with the clinical u@lity of risk scores, showed that DEEN generated risk scores 
significantly improved our ability to iden@fy individuals in the high-risk group (Figure 3). As 
individuals in the high-risk group are more likely to benefit from preven@on schemes or treatment 
op@ons, the proposed model is more likely to provide clinically relevant value. We also 
independently validated the DEEN models in the AoU dataset. Although slight performance 
decreases were observed due to popula@on, demographic, and environmental differences 
between biobanks in different countries, the predic@ve performance remained higher than that 
of other methods. 

We hypothesize that the improved predictability of DEEN is due to the disentanglement 
of dimensionality reduc@on of gene@c data and predic@ve modeling of the outcome. Both PCA-
FCNN and DEEN, which perform separate dimensionality reduc@on and predic@ve modeling, have 
shown bePer performance compared to exis@ng PRS methods (Figure 2). On the other hand, AE 
has been shown to be highly efficient in extrac@ng lower dimensions of data. Compared to 
dimensionality reduc@on using PCA, the AE model has learned a bePer data representa@on, as 
evidenced by the improved final predic@on using the same FCNN model as the predic@on module 
(Figures 2 and 3). When we compared the model weights of the same SNPs from the AE model 
and Lasso PRS, it was clear that the former model u@lizes more SNPs (Figure 4). SNPs included in 
the DEEN model may be informa@ve in either learning the latent representa@ons or predic@ng 
the outcome, or both. In contrast, in Lasso PRS, SNPs that are not predic@ve of the outcome are 
removed from the model, even if they may be important in modeling the correla@ons among 
SNPs. Finally, the AE can capture both proximal and distal SNP rela@onships (Figure 5a). These 
rela@onships are modeled through the boPleneck layers of the AE, which has shown dis@nct 
clusters among the nodes (Figure 5b). The clustering among the boPleneck nodes indicates that 
different parts of the network are differen@ally modeling groups of SNPs. These results 
demonstrate that DEEN is more flexible in modeling gene@c data in rela@on to predic@ng 
outcomes compared to exis@ng PRS methods.  

The study also has several limita@ons that warrant future research. The DEEN method 
requires individual-level gene@c and phenotype data to train and op@mize the model. On the 
other hand, the PRS-CS method only requires GWAS summary sta@s@cs to generate the PRS. As a 
result, DEEN is more computa@onally expensive than summary sta@s@cs based PRS methods, but 
with a gain in predic@ve performance. In addi@on, to reduce poten@al model overfi_ng and stay 
within the computa@onal constraint (e.g. GPU memory), we performed the necessary variant 
filtering based on exis@ng GWAS results. While the variant filtering may remove poten@al SNPs 
with small effects, the filtering was consistently applied to all methods to ensure valid 
comparisons. Furthermore, we evaluated mul@ple filtering thresholds, and the rela@ve 
performances among different methods were stable. Lastly, the DEEN model may be less 
interpretable than PRS generated from sta@s@cal models due to the complexity of deep learning 
models. Developing interpretable machine learning models could poten@ally be incorporated into 
DEEN in the future.  

Future research can also explore using autoencoders as a transfer learning tool to improve 
performance across different racial groups. Addi@onally, efforts can focus on improving the 
interpretability of autoencoder models without compromising performance, op@mizing 
computa@onal resources for training, and extending the applica@on of autoencoders to other 
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complex diseases or datasets. Incorpora@ng addi@onal external valida@on datasets can further 
enhance the generalizability of our findings beyond the datasets used in the study. 

In conclusion, to our knowledge, our study is the first to demonstrate the benefits of 
ensembling advanced machine learning algorithms, AE and FCNN, for genera@ng improved PRS. 
Our study provides evidence that modeling complex gene@c effects can improve the gene@c risk 
predic@on of complex diseases and traits. We also have made the DEEN algorithm publicly 
available on GitHub for replica@ons and evalua@ons.  

The Method and Data 

The UKBB Dataset is a comprehensive biomedical database suppor@ng health research in 
the UK and worldwide47–50. The data collected from more than 500,000 volunteers aged 40-69 
living in the UK includes health ques@onnaires, electronic health records (EHR), physical 
measurements, biological samples, gene@c informa@on, imaging data, and digital health data. 
The AllofUs Dataset, which is used as external valida@on in this study, is a dataset containing 
comprehensive gene@c data collected within the scope of the All of Us Research Program 
conducted by the US Na@onal Ins@tutes of Health (NIH)51. This dataset contains the gene@c data 
of more than 200,000 par@cipants of different races.  

Data quality control and variants selec?on 

We performed a series of quality control (QC) measures to ensure the quality of the 
analyzed dataset. For sample-level QC, we retained individuals who passed the following criteria: 
(1). Only unrelated individuals were retained. Among related individuals, one individual from each 
pair was systema@cally removed to prevent undue influence from familial gene@c connec@ons. 
The threshold for relatedness was set at the level of second-degree rela@ves, as indicated by an 
iden@ty-by-descent ˆπ value equal to or greater than 0.25. (2) Individuals with self-reported 
White Bri@sh ancestry. This ensures compa@bility with the popula@on used to generate pre-
trained PRS. (3) Individuals with matched self-reported and gene@cally inferred sexes. (4). 
Individuals with heterozygosity within three standard devia@ons from the mean. For SNP-level 
QC, we excluded SNPs that: (1) with more than 5% missing rate, (2) minor allele frequency of less 
than 1%, (3) have an imputa@on quality info score of less than 0.8 (4) are duplicated or ambiguous 
(5) Hardy-Weinberg equilibrium p-value less than 10−10. 

For hypertension and T2D, case and control statuses were determined using 
the widely adopted PheCode algorithm in UKBB, which relies on the inclusion and exclusion of 
disease-specific ICD-10 codes52,53. The con@nuous traits were extracted from the UKBB data fields: 
field 21001 for BMI, field 30690 for cholesterol, field 30760 for HDL, and field 30780 for LDL. In 
the All of Us data, the study cohort was created using individuals iden@fied as White race to 
ensure the individuals are of similar ancestry as those in the UKBB. The phenotyping algorithms 
for binary diseases were obtained from PheKB54 and implemented by the All of Us team. The 
corresponding con@nuous traits were obtained from AoU with concept ids 3038553 for BMI, 
40772590 for cholesterol, 40782589 for HDL, and 40795800 for LDL. We included individuals with 
13 < BMI < 42, 25 mg/dL < Cholesterol < 380 mg/dL, 1 mg/dL < HDL < 190 mg/dL, and 3 mg/dL < 
LDL < 270 mg/dL to remove poten@al outliers. 
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In addi@on, when applying the proposed DEEN method, we performed variant filtering to 
reduce computa@onal @me and poten@al null signals. For each trait, we selected candidate SNPs 
associated with the trait using a lenient p-value threshold of less than 0.005 or 0.0005 based on 
GWAS results. The respec@ve GWAS was conducted using Plink 2.0 (cite), adjus@ng for age, gender, 
ancestry principal components, and assessment center as covariates. For con@nuous traits, 
100,000 or 150,000 SNPs with the lowest p-values were selected so that the number of SNPs was 
comparable to the binary diseases55. The en@re analysis was repeated for both thresholds.  

Polygenic risk score methods 

The PRS-CS method is a Bayesian approach used to more accurately predict the effects of 
gene@c variants on a set of diseases or phenotypes26. For our analysis, we used the following 
parameter settings: phi=100, n_gwas=320000. For the LD reference genome, we used the 
precomputed LD reference using the UK Biobank data. The phi parameter controls the global 
shrinkage of the effect sizes of SNPs, while n_gwas specifies the sample size of the GWAS. The 
GWAS summary sta@s@cs were obtained from the GWAS analysis of the UKBB55. Lasso (Least 
Absolute Shrinkage and Selection Operator) is a regression method used for variable selection 
and regularization, especially for high-dimensional data. We used the Lasso method implemented 
in the BigSNPr46 package to generate the Lasso PRS used in this study. Specifically, we used the 
big_spLogReg and big_spLinReg functions for binary and continuous phenotypes, respectively. 
The k parameter was set to 5, represen@ng the number of folds used in cross-valida@on. These 
parameter se_ngs were selected using the default parameters provided by the respec@ve 
methods.  

Dimensionality Reduc?on with PCA 

As a comparison to our proposed method, we also u@lized a common method for 
dimension reduc@on, the principal component analysis56 method (PCA), implemented in 
Sklearn57 v1.3.1. Because PCA is an unsupervised method that does not u@lize the outcome labels, 
we expect the dimensionality reduc@on to be similar across different diseases and traits. As a 
result, we op@mized the dimension reduc@on using the hypertension dataset. For each 
chromosome, we applied PCA to reduce the dimensionality of the gene@c feature space. We 
evaluated the PC space between 5% and 50% of the original dimensions. For each PC dimension, 
we calculated the variance explained and for each chromosome, we calculated the number of PCs 
required for the variance to exceed 90%. Since the number of PCs required varies for each 
chromosome, we determined the number of PCs in propor@on to the number of SNPs in the 
chromosome. As a result of the experiments, we defined the number of PCs as the number of 
SNPs in the chromosome divided by 8 and determined the number of PCs required to maintain 
the variance at the required level. The dimension-reduced pa@ent array for this method can be 
given as follows: 

𝑷 = 	𝑝𝑐𝑎(	𝒙𝒄𝒉𝒓𝟏*	, pca(	𝒙𝒄𝒉𝒓𝟐*	, …		 , pca(	𝒙𝒄𝒉𝒓𝟐𝟐*	 

where x is the input array of the chromosome. The computed pa@ent array is then given as input 
to the FCNN. The modeling process of combining PCA and FCNN is referred to as PCA-FCNN in this 
study.  
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Dimensionality Reduc?on with Autoencoders 

The proposed DEEN method consists of 3 main parts, as shown in Figure 1. In the first part, 
autoencoders were used for dimensionality reduc@on. In this study, PyTorch58  and PyTorch 
Lightning59 libraries were used to train and evaluate autoencoder and FCNN models.  An 
autoencoder is a type of ar@ficial neural network designed to learn efficient coding of input data 
through compression. It primarily consists of two components: an encoder that maps the input 
data to a latent space representa@on and a decoder that reconstructs the input data from this 
compressed representa@on. During this process, the model learns the key features of the original 
input. A learning process takes place to ensure that the compressed representa@on is as similar 
as possible to the original data. In this study, grid search was used for hyperparameter selec@on 
to op@mize the performance of the model. Each of the hyperparameters is tested individually by 
trials to determine the op@mal values. This manual grid search process allowed for a detailed 
analysis of the impact of each hyperparameter on the performance of the model and allowed for 
more fine-tuning.  

Separate autoencoders were trained for each chromosome using the training dataset. The 
number of nodes in the boPleneck layer required for each chromosome was kept the same as the 
number of dimensions determined by the PCA experiments. The coded features of the pa@ents 
in the training and test dataset were obtained using only the coder blocks of the autoencoders 
obtained a\er training. The set of hyperparameters required for training the autoencoders was 
the number of layers, batch size, learning rate, weight decay, ac@va@on func@ons, and epoch size. 
As AE is an unsupervised method, the op@mal parameters do not depend on the outcome 
phenotype. As a result, these parameters were determined using only gene@c data from the 
hypertension dataset and applied to the other diseases. MSE was used as the loss func@on during 
autoencoder training. The parameters used in the experiments for the grid search are learning 
rate 0.0001, 0.00001, and 0.000001, weight decay 0, 0.001, and 0.1, epoch size 100,200,400, 
chunk size 64,256,1024 and the number of layers 2,3 and 4. Through gird search op@miza@on, the 
following parameters were determined: learning rate 0.00001, weight decay 0, epoch size 400, 
batch size 256, and number of layers 2. The same parameters were used for all diseases. The 
ac@va@on func@on used between the layers is ReLU60. Details of these experiments can be found 
on the GitHub page (https://github.com/okanbilge/DEEN). 

The encoded chromosome is represented by a func@on where k is the boPleneck layer, 

𝒌 = 	γ(	𝒙𝒄𝒉𝒓_𝒕𝑾𝒄𝒉𝒓_𝒕 + 𝒃𝒄𝒉𝒓𝒕) 

where 𝒙𝒄𝒉𝒓_𝒌 is the input matrix of the chromosome t, 𝑾𝒄𝒉𝒓_𝒌 is the matrix of weights between 
the input and encoder layer for chromosome t, b is the vector of biases for the encoder layer, and 
γ ∶ 	ℝ → ℝ	an ac@va@on func@on.  Similarly, the decoding network can be formulated as follows, 

𝒙𝒄𝒉𝒓_𝒌' =	γ'(	𝑾'
𝒄𝒉𝒓_𝒕𝒌 + 𝒃𝒄𝒉𝒓𝒕

') 

where 𝑾'
𝒄𝒉𝒓_𝒕 is the weight matrix between the encoder and output layer of the autoencoder. 

The loss func@on for each chromosome is given as: 
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	𝑎𝑟𝑔𝑚𝑖𝑛 ?𝐿 A(𝒙𝒄𝒉𝒓𝒕
' , 𝒙𝒄𝒉𝒓𝒕*BC 

where L is the loss func@on. We can write the resul@ng loss func@on with MSE as follows: 
 

𝑎𝑟𝑔𝑚𝑖𝑛((γ'(	𝑾'
𝒄𝒉𝒓_𝒕𝒌 + 𝒃𝒄𝒉𝒓𝒕

') − γ(	𝒙𝒄𝒉𝒓_𝒕𝑾𝒄𝒉𝒓_𝒕 + 𝒃𝒄𝒉𝒓𝒕))
(* 

A\er this minimiza@on process, Pa@ent array P is calculated using the calculated weights as 
follows: 

𝑷 = 	γ(	𝒙𝒄𝒉𝒓_𝟏𝑾𝒄𝒉𝒓_𝟏 + 𝒃𝒄𝒉𝒓𝟏)	, γ(	𝒙𝒄𝒉𝒓_(𝑾𝒄𝒉𝒓_( + 𝒃𝒄𝒉𝒓𝟐)	, …		 , γ(	𝒙𝒄𝒉𝒓_𝟐𝟐𝑾𝒄𝒉𝒓_𝟐𝟐 + 𝒃𝒄𝒉𝒓𝟐𝟐) 

 
The computed pa@ent array is then given as input to the FCNN. 

Fully Connected Neural Networks 

Fully Connected Neural Networks (FCNN) is a widely used model in ar@ficial neural 
networks. FCNN consists of layers where each neuron is connected to all neurons in the previous 
layer. These networks usually operate as feedforward networks, meaning that informa@on flows 
unidirec@onally from the input layer of the network to the output layer. A\er dimensionality 
reduc@on in both PCA-FCNN and autoencoder-based methods, the reduced data was used for 
classifica@on or regression with FCNN. The hyperparameter op@miza@on for this method was 
similar to the autoencoder method. The set of hyperparameters required to train the FCNN is the 
number of layers, node size, batch size, learning rate, weight decay, ac@va@on func@ons, and 
epoch size. These hyperparameters were determined by conduc@ng separate training for each 
phenotype.  As with the autoencoder method, a manual grid search was performed on pre-
defined values to obtain the best results. These experiments were carried out using several 
network models with 2,3, and 4 layers and sizes ranging from 16 to 2048 with learning rates 
0.0001 and 0.00001, weight decay 0, 0.001, and 0.1, and batch sizes 256-512-1024. 

This pa@ent array will be used as input to the first hidden layer of the classifica@on/regression 
network: 

ℎ(,) = 	γ(𝑾(,)(𝑷) + 𝒃(,) 

Between hidden layers: 

ℎ(.) = 	γ(𝑾(.)ℎ(./,)) + 𝒃(,) 

Between the last hidden layer to the classifica@on layer: 

𝑦G = 	𝑾(0)ℎ(0/,) + 𝒃(0) 

where L is the decision layer, and i is the layer number of the classifica@on/regression 
network.  

Binary Cross Entropy(CE) was used as the loss func@on in the classifica@on models, while 
MSE was used in the regression models. The formula@on of MSE and BCE were given as, 

𝑀𝑆𝐸 = 	
1
𝑛	L(𝑦. − 𝑦G.)(

1

.2,
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𝐵𝐶𝐸 =
1
𝑛	L(𝑦. log(𝑦G.) + (1 − 𝑦.) log(1 −𝑦G.))

1

.2,

 

where 𝑦. 	is the observed value of the pa@ent i,  𝑦G. 	is the es@mated value of the pa@ent i, and n is 
the number of pa@ents.  

Correla?on Analysis with Autoencoders 

Autoencoders can iden@fy important paPerns among SNPs and generate a lower-
dimensional encoding (latent space) representa@on of these SNPs. During the learning process, 
each input SNP is connected to neurons in the hidden layer of the model through learned weights. 
These weights determine how the model processes the input data and highlight the importance 
of each SNP. By analyzing the correla@on of these weights, we can iden@fy associa@ons between 
different input SNPs. E.g. a high correla@on between the weights of two SNPs may suggest that 
they contribute similarly to the model. In this study, we examined the correla@on between the 
weights of the autoencoders trained separately for each chromosome to inves@gate correla@ve 
rela@onships among SNPs. These rela@onships can indicate poten@al linear or non-linear 
interac@ons that are important for learning the latent representa@on. Conversely, analyzing 
correla@ons between nodes in the boPleneck layers can reveal nodes that differen@ally model 
groups of SNPs.   Such correla@ons could indicate that the model captures the finer and more 
complex structure of the data.  

Methods evalua?ons 

To accurately assess the performance of the proposed model, we applied 5-fold cross-
valida@on to the UKBB data, where the dataset was divided into five equal parts. Each part was 
used as the tes@ng data once, while the remaining four parts were used as the training data. This 
process was repeated five @mes. The performance of the model was evaluated for all 5 tes@ng 
splits. Subsequently, the same models trained on the UKBB dataset were applied to the AuO 
dataset for independent external evalua@ons. 

The study used two performance metrics, MSE for con@nuous traits and AUC (Area Under 
the Curve) for binary diseases for evalua@ng the predic@ve performances of PRS models.  MSE is 
a commonly used error measure in regression problems. It is calculated by averaging the square 
of the differences between actual and predicted values. A lower MSE indicates bePer 
performance of the model. AUC refers to the area under the Receiver Opera@ng Characteris@cs 
(ROC) curve, which plots the True Posi@ve Rate (TPR) against the False Posi@ve Rate (FPR) at 
various thresholds. TPR (True Posi@ve Rate) measures the propor@on of actual posi@ve cases that 
are correctly iden@fied by the model, while FPR (False Posi@ve Rate) measures the propor@on of 
actual nega@ve cases that are incorrectly classified as posi@ve by the model. AUC takes a value 
between 0 and 1, with a value closer to 1 indica@ng bePer classifica@on ability of the model. 
 To assess the risk stra@fica@on of PRS models, we calculated the odds ra@o of case 
enrichment between high-risk and low-risk individuals.  We stra@fied individuals into high-risk 
and low-risk groups based on their predicted probabili@es. For the low-risk group, we selected 
individuals with the lowest 5% predicted probabili@es according to each model. Conversely, we 
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varied the high-risk group selec@on for each model by progressively relaxing the predicted 
probability threshold from the top 5% to the top 25%, in increments of 5%. A logis@c regression 
model was then employed to determine the odds ra@o enrichment of cases between the high-
risk and low-risk groups for each model at each threshold. 
 The development and training of deep learning models was carried out using the PyTorch 
and PyTorchLightning libraries. In the training process, we used a hardware configura@on with a 
32-core CPU, 1 NVIDIA A100 GPU, and 100 GB RAM.  

Data availability 

The UKBB is a large-scale biomedical database with genetic and health information from 
more than 500,000 UK participants. Available for research by request at 
https://www.ukbiobank.ac.uk. The UKBB data was approved under application # 86494 The All 
of Us Research Program is a large-scale biomedical database with diverse health data from over 
one million U.S. participants. Available for research by request at this link: 
https://www.researchallofus.org/ 

Code availability 

We provide the scripts used to perform the model training and inference proposed in the 
article in the GitHub repository https://github.com/okanbilge/DEEN  
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