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Abstract:  

Objective: A multitude of factors affect a hospitalized individual’s blood glucose (BG), making BG difficult to 
predict and manage. Beyond medications well established to alter BG, such as beta-blockers, there are likely 
many medications with undiscovered effects on BG variability. Identification of these medications and the 
strength and timing of these relationships has potential to improve glycemic management and patient safety. 

Materials and Methods: EHR data from 103,871 inpatient encounters over 8 years within a large, urban 
health system was used to extract over 500 medications, laboratory measurements, and clinical predictors of 
BG. Feature selection was performed using an optimized Lasso model with repeated 5-fold cross-validation on 
the 80% training set, followed by a linear mixed regression model to evaluate statistical significance. Significant 
medication predictors were then evaluated for novelty against a comprehensive adverse drug event database.  

Results: We found 29 statistically significant features associated with BG; 24 were medications including 10 
medications not previously documented to alter BG. The remaining five factors were Black/African American 
race, history of type 2 diabetes mellitus, prior BG (mean and last) and creatinine.  

Discussion: The unexpected medications, including several agents involved in gastrointestinal motility, found 
to affect BG were supported by available studies. This study may bring to light medications to use with caution 
in individuals with hyper- or hypoglycemia. Further investigation of these potential candidates is needed to 
enhance clinical utility of these findings.  

Conclusion: This study uniquely identifies medications involved in gastrointestinal transit to be predictors of 
BG that may not well established and recognized in clinical practice.  

Background and Significance:   

Individuals with diabetes are at a significantly increased risk of hospital admission, with rates ranging from two 
to six times higher than those without diabetes1–4. Uncontrolled blood glucose (BG) in the hospital is associated 
with increased morbidity and mortality.5 Inpatient hypoglycemia, or BG<70mg/dL6,7 that occurs during 
hospitalization, has been reported in 20% of hospitalized insulin-treated patients8 and is the most common 
adverse event associated with inpatient treatment of diabetes5,9,10. Hypoglycemia can cause troublesome acute 
symptoms such as confusion, impaired vision and seizures, but can also increase the risk of chronic 
complications, length of stay and all-cause mortality11–17. Inpatient hyperglycemia, defined as a BG>140mg/dL 
in hospitalized patients5, can cause acute (e.g., diabetic ketoacidosis) and long term (e.g. retinopathy, 
nephropathy, cardiovascular disease) complications, both of which are associated with an increased risk of 
mortality18. 
 
The dangers associated with dysglycemia highlight the importance of researching mechanisms involved in 
glucose homeostasis. Numerous pharmacologic agents are well established to cause hyperglycemia, including 
steroids and beta-blockers19, through a variety of mechanisms such as impaired insulin secretion or direct effects 
on beta cell proliferation20. However, many of the mechanisms underlying glucose alterations due to drugs are 
not well understood20. Drug package inserts may not be a reliable source for adverse events as they may present 
data from studies limited by small sample size and incidental findings21. Confounding is present between patient 
risk factors and BG22. For example, a drug administered to an individual with diabetes may be reported to cause 
hyperglycemia, but this correlation may be due to the disease and not actually the drug21.The management of 
BG in hospitals is further complicated by the dynamic nature of medication prescribing and patients’ 
unpredictable responses to these medication changes23.  

Approved medications may have unexpected effects. In some cases, positive developments have been made 
in drug re-purposing research. For example, bumetanide, a diuretic, has been suggested as a potential therapy 
for Alzheimer’s disease24. Attempts have been made to identify drugs that may be repurposed for diabetes 
treatment. A computational pipeline using a large type 2 diabetes mellitus (T2DM) genome-wide association 
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study combined with outpatient electronic health records (EHR) found angiotensin-converting enzyme 
inhibitors and calcium channel blockers to affect BG25. Another study created an open source repository with 
drug targets and genes specific to diabetes. Investigators screened around 1500 drugs on 20 proteins and 
identified five drugs with potential for repurposing to treat diabetes26. A data-guided approach and the wealth of 
information stored in the EHR may provide an initial step in uncovering drugs not previously established to 
cause BG alterations.  
 
To address this challenge, we extracted a large, comprehensive EHR dataset including hospitalized patients 
who had received at least one anti-diabetic medication. The 500 most frequently prescribed inpatient 
medications were combined with relevant past medical history, demographics, social history, and labs 
available in the EHR. A least absolute shrinkage and selection operator (Lasso) linear regression model 
optimized using a training set allowed for filtering those initial variables using the highest model coefficients27. 
A linear mixed model (LMM) was fit and tested on the selected features from Lasso. LMM accommodates 
inter-patient variability and allows the interpretability through statistical significance testing that is lacking with 
machine learning models. This study aimed to use a computationally driven strategy and a large dataset to 
reveal associations between medications and point of care blood glucose (POC BG). To our knowledge, this is 
the first study to evaluate the predictive performance of several hundred medications without filtering based on 
prior knowledge of medications known to effect BG. 
 
Materials and Methods:   

Data Source: Available retrospective EHR data was extracted for patients admitted to the hospital between 

May 2014 and September 2022 within the Cedars-Sinai Health System, which includes a tertiary medical 

center, Cedars Sinai Medical Center (CSMC), and community hospitals, Marina Del Rey Hospital and 

Huntington Hospital. Inclusion criteria consisted of adult inpatients (>/= 18 years old) who received at least one 

anti-hyperglycemic medication during their admission. Encounters to Labor & Delivery, Emergency 

Department, or with a length of stay less than 24 hours were excluded. The following EHR datasets were 

extracted for each encounter: past medical history, demographics, social history, labs, and inpatient 

medications. Cedars-Sinai IRB approval was obtained for this study.  

Model Design: Model inputs were static and time-dependent variables (Figure 1A). Static variables, or 
baseline characteristics that do not change during an inpatient stay, included demographic data, past medical 
history, and social history, and were collected from a single point during the admission (Table 1). Time-
dependent variables, or variables that are changing during an admission, included labs and medications and 
were collected during a 12-, 24- or 48-hour lookback window preceding a prediction horizon. Given POC BG is 
checked typically four to six times per day in the hospital, a 4-hour prediction horizon was used to mimic a 
realistic next POC BG check. An output POC BG was selected for each encounter if there was another POC 
BG recorded between 16 and 4 hours prior to it to ensure maximal number of patients included in the analysis.  
 
Model Inputs: Medications were filtered to the 500 most commonly administered out of the total list of 5,267 
medications. To ensure inclusion of common anti-hyperglycemic medications in the model, all subcutaneous 
(SQ) insulins (lispro, regular, glargine and NPH/Regular 70-30), intravenous (IV) regular insulin and all dosage 
forms of commonly prescribed oral anti-hyperglycemic medications (sitagliptin, glimepiride, glipizide, glipizide 
XR, glyburide and pioglitazone, nateglinide) were added to the top 500 if they had not already been included in 
the top 500 list. Total parenteral nutrition (TPN) was also added to the list of medications. All irrigation, flush, 
and iohexol orders were excluded due to inconsistency in recording of administered doses. This resulted in 
516 unique medications. POC BG and creatinine were selected as input labs as they were recorded reliably 
during lookback windows and are shown to be predictive of BG alterations9,23. Past medical history and 
admission diagnoses were filtered for co-morbidities previously described to be predictive of BG variability28–31. 
Past medical history was obtained from international classification of diseases, tenth revision (ICD-10) codes, 
which were obtained from all available sources in the EHR (e.g., physician billing, problem list). Table 1 lists all 
static and time-dependent variables selected for downstream analysis.  
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Data Pre-processing: Missing data was dealt with in one of two ways. Lab values and medication doses that 
were missing in the dataset were removed. Categorical variables that were recorded as declined, missing or 
unknown were retained and re-coded as missing. Medications that were not administered during a lookback 
window were assigned a zero value. These five parent datasets (medications, laboratory, demographics, social 
history, and past medical history) were merged on shared unique patient encounter numbers, resulting in 
87,256 encounters (49,095 patients) using a 48-hour lookback, 78,001 encounters (45,819 patients) using a 
24-hour lookback, and 53,576 encounters (35,459 patients) using a 12-hour lookback. 
 
Categorical variables were dichotomized. The sum of all doses for each medication was calculated during the 
lookback window and were used as inputs to the model. Mean, minimum, maximum and last value of POC BG 
and mean of creatinine were calculated over each lookback window and used as inputs to the models. 
 
Statistical Analysis: Feature selection was performed due to lack of convergence of the LMM when attempting 

to use all features. Eighty percent of the encounters were used for training and the remaining 20% for testing.  

Feature selection was performed using the 80% training set, which was further split into 80% train and 20% 

validation sets to avoid data leak into the test set during feature selection. Lasso regression, a linear model 

with a regularization term, was selected to perform feature selection since we expected that out of the many 

predictors to the model, only a subset of predictors had a non-zero effect. The regularization parameter of 

Lasso drives less informative variables to have coefficients of zero and helps identify features most predictive 

of the outcome27. Lasso models were constructed using input variables collected over lookback windows of 

12h, 24h, and 48h. Lasso 5-fold cross-validation determined the best regularization parameter (alpha) among 

one hundred alpha values between 0.0001 to 10,000 based on the lowest mean squared error (MSE) mean 

over each fold. Using this best alpha, the trained model was then used to predict BG in the validation set and 

performance was evaluated by comparing the predicted BG with the true value using R2 (coefficient of 

determination) and root mean squared error (RMSE).   

Figure 1. Project Overview. (A) Collection of model inputs (baseline characteristics, medications, and 

labs) and output POC BG variables over course of patient admission. (B) Data analysis pipeline 

demonstrating extraction of most important variables through Lasso, assessment of statistical significance 

using LMM and evaluation of novelty of medication-induced BG variability using Micromedex.  
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To ensure robustness and reproducibility in coefficient ranking, the Lasso model with the optimized alpha was 

run using repeated k-fold cross-validation with 5 splits, 5 repeats and a maximum iteration limit of 10,000 on 

the training data. The mean absolute value of the extracted coefficients (25 total coefficients per variable) was 

then calculated for each variable and sorted to identify the 50 variables with the highest mean absolute 

coefficient values.  

The top 50 ranked predictors of BG from Lasso were inputted to a multivariate LMM to assess their statistical 
significance.22 Due to repeated encounters present per patient, we used LMM to predict an output BG. The 
random effects’ covariance structure was the variance component’s structure, where each group has its own 
random intercept. Variables with a Benjamini-Hochberg (B-H) adjusted p value <0.05 were considered to have 
statistically significant associations with BG. While not feasible to include every potential interaction term, we 
re-fit the LMM with clinically relevant interaction terms including history of congestive heart failure, acute pain, 
and whether the patient was admitted to the peri-operative setting. Variables that retained statistical 
significance using 12, 24, and 48h lookback windows were compared to understand differences in medications 
predictive of BG over different lookback time courses. The ‘Adverse Effects In-Depth Answers’ section of 
Micromedex,  a comprehensive evidence-based resource used by clinicians32, was reviewed for 
documentation of BG alteration properties of statistically significant medications. In addition to adverse events 
reported in package inserts and clinical trials, Micromedex includes up to date post-marketing surveillance data 
and case studies. Statistical analysis was performed in Python version 3.9.12 using the following packages 
(versions): sklearn (1.4.2), statsmodels (0.13.5), scipy (1.11.4), and seaborn (0.12.2).  

Results:   

Descriptive Statistics. Figure 1A depicts the timeline over which the model input and output variables are 

collected during a patient admission. A POC BG was selected as the output for an encounter there was 

another POC BG recorded between 4 and 16h prior to it. Input variables that do not change over the course of 

the hospital stay (demographics, past medical history and social history) were collected at the time of 

admission. We then collected input variables that change during an admission (medications and labs) over 12, 

24, and 48h lookback windows ending 4 hours before the output BG was collected. Figure 1B demonstrates 

the data analysis pipeline, beginning with several hundred variables across datasets, the top 50 variables after 

Lasso, and finally only those with a B-H adjusted p-value less than 0.05 from the LMM. These variables were 

evaluated for prior documentation of affecting BG in Micromedex.  

 EHR Dataset Number of 
variables 

Model Variables 

 
 
 
 
Static  

Past Medical 
History (ICD-10 
code) 

12 Liver failure (K72), chronic kidney disease (N18), type 1 
diabetes mellitus (E10), type 2 diabetes mellitus (E11), 
malignancy (C80.1), anemia (D64.9), congestive heart failure 
(I50), hypothyroidism (E03.0), hyperthyroidism (E05), 
pregnancy (Z33.1), hypoglycemia (E16.2), pain (R52) 

Demographic  14 Ethnic group, sex, race, smoking tobacco last use status, 
intravenous drug last use status, alcohol last status, admission 
diagnoses:  congestive heart failure, sepsis, gastrointestinal 
bleed, nausea/vomiting, altered mental status, acute kidney 
injury, end stage renal disease +/- dialysis, pain 

Social History 4 Age, body mass index, hospital location upon admission 
(intensive care unit or operating room)  

Time-
dependent 

Laboratory 5 Mean POC BG, minimum POC BG, last POC BG, maximum 
POC BG, mean creatinine 

Inpatient 
Medications 

516 Top 500 most administered medications, commonly prescribed 
anti-hyperglycemic medications, TPN 

Table 1. EHR datasets, number of variables per dataset, and variables extracted from each dataset 

that were included in the study. The combination of numbers and letters in parentheses in the past 

medical history row are international classification of diseases, tenth revision (ICD-10) codes. 
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Baseline characteristics of the encounters from patients across three hospitals in a large urban health system 

collected over 8 years (2014 to 2022) used for model training and evaluation is summarized in Table 2. The 

median encounter age was 68.8 years, 63.3% were Caucasian, 18.8% Black or African American, and 

Hispanic ethnic group comprised 19.3% of encounters. 44.5% of all encounters were female and the median 

body mass index (BMI) was 27.0 kg/m2. Most encounters had diabetes; 10.3% had type 1 diabetes mellitus 

(T1DM) and 70.3% had T2DM. Nearly half of encounters had chronic kidney disease (CKD; 41.3%) and 8.8% 

had hypoglycemia listed as a past medical history prior to the encounter. The median and inter-quartile range 

(IQR) of the mean input POC BGs collected for each encounter during the 48h lookback window were 154.8 

mg/dL and 127.0-194.2 mg/dL, respectively. 7.6% of encounters were admitted to the ICU and 1.13% were 

admitted to perioperative setting.  

Variable Summary statistics 
for all encounters 

Age (years) 68.8 (58.1-78.8) 

Race    

Caucasian 55,208 (63.3%) 

Black or African American 16,444 (18.8%) 

Asian 6,967 (8.0%) 

Native Hawaiian or Other Pacific Islander 290 (0.3%) 

American Indian or Alaska Native 259 (0.3%) 

Declined/Missing/Unknown 8,088 (9.3%) 

Ethnic Group  

            Non-Hispanic 68,741(78.8%) 

            Hispanic 16,823 (19.3%) 

            Declined/Missing/Unknown 1,692 (1.9%) 

Sex  

Female 38,854 (44.5%) 

Male 48,351 (55.4%) 

Missing/Unknown 51 (0.06%) 

BMI (kg/m2) 27.0 (23.2-31.7) 

Past Medical History  

Type 2 diabetes mellitus 61,373 (70.3%) 

Type 1 diabetes mellitus 8,981 (10.3%) 

Chronic kidney disease 36,057 (41.3%) 

History hypoglycemia 7,674 (8.8%) 

Liver failure 3,160 (3.6%) 

Labs (during 48h lookback)  

             Mean input BG (mg/dL) 154.8 (127.0-194.2) 

             Mean creatinine (mg/dL) 1.1 (0.8-1.8) 

Admission location  

Non-Intensive Care Unit 80,584 (92.4%) 

Intensive Care Unit 6,672 (7.6%) 

The top 10 administered medications out of the filtered 516 medications are displayed in Figure 2A. Three out 

of the ten medications were antihyperglycemics (insulin lispro SQ, insulin glargine SQ and insulin regular IV). 

Overlayed distributions of the input and output BGs are shown in Figure 2B with a Spearman correlation 

coefficient of 0.58, indicating that prior recorded BGs are correlated with the next BG. 

Table 2. Summary statistics across patient encounters. Continuous variables are shown as median 

and IQR. Categorical variables are shown as counts and percent. 
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Lasso-based feature selection. Performance for the Lasso model with a 48h lookback window was highest 
(R2=0.352) compared to 12h (R2=0.325) and 24h (R2=0.344) windows, and thus was used for the primary 
analysis presented. The 80% set (69,804 encounters) from the original dataset was further split to 80% training 
(55,843 encounters) and 20% validation sets (13,961 encounters). Lasso 5-fold cross-validation on the training 
set was used to fit a Lasso model. This model was then used to predict on the validation set, yielding R2 score 
0.352 and RMSE 53. The alpha with the lowest mean MSE over the five folds using the training set was 0.36 
(Figure 3A). Actual validation vs predicted output BG were linearly correlated (Figure 3B). Lasso L1 
regularization prioritized the most informative features while setting the coefficients of less important predictors 
to zero (Figure 3C). To ensure reproducibility in selection of top ranked coefficients, the Lasso model with the 
optimized alpha was run using repeated k-fold cross validation where the data was split into 5 folds and the 
process was repeated 5 times on the training data. Distribution of coefficient values calculated across 
folds/spits for the top 25 variables were stable (Figure 3D). The full list of 50 selected variables and their mean 
absolute value coefficient scores are shown in STable 1. The intercept of the Lasso model is the output value 
when all input variables are zero; the mean intercept across all folds was 52. 

LMM and Micromedex. To address potential confounders, control for variability between each patient, and 

assess statistical significance of coefficients, a LMM was employed that expressed the output BG as a linear 

function of the 50 Lasso-selected input variables with a random intercept for each patient. The LMM was used 

to predict on the held-out 20% test set (i.e., not used for feature selection) with resultant performance metrics 

R2 0.342 and RMSE 53. The variance of the random intercepts, a representation of the between-group 

variability in output BG, was 57.6 (mg/dL)2. B-H adjusted p-values, coefficient, standard error, and 95% 

confidence interval (CI) for the 50 variables, intercept and group variable are shown in STable 2. Twenty-one 

variables that had been ranked in the top 50 variables by Lasso predictive of output BG did not meet the B-H 

adjusted p-value cut off 0.05. Of the remaining 29 variables (Table 3), 24 were medications and 5 were a 

combination of labs, demographics, and past medical history. More than half of the medications were 

documented in Micromedex as having a direct effect on BG, including insulins, glucocorticoids, lactulose, 

lisinopril, rosuvastatin and pioglitazone. All glucocorticoids, dexamethasone, methylprednisolone, and 

prednisone, were positively correlated with BG, as expected. The coefficient indicates the change in the output 

BG for a one unit increase in the input assuming all other factors influencing BG remain constant. For example, 

a coefficient of 0.78 for prednisone 5mg tablet indicates that, on average, taking an additional dose of 

prednisone is associated with an increase in BG by 3.9 mg/dL. Insulin lispro, aspart and regular SQ were 

positively correlated with a predicted BG measured at 4h while insulin glargine was negatively correlated with 

output BG.  Mean input BG was positively correlated and had a stronger effect compared to last prior input BG.  

Mean creatinine was negatively correlated with BG. History of T2DM had a strong positive association with BG 

and was associated with an increase in BG by 10.66 mg/dL given all other variables are held constant.  

Figure 2. Overview of medications and BG data. (A) Top 10 most commonly administered medications. 

(B) Linear relationship between mean input BG over 48hr lookback window and output BG. 
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Black/African American race was strongly negatively correlated, and was associated with a decrease in BG by 

3.37mg/dL. Ten variables met the adjusted p-value cut-off of <0.05 and were not recorded as causing 

alterations in BG in Micromedex. Of those ten, medications negatively correlated with BG included magnesium 

sulfate, sennosides, loperamide and bisacodyl. Positively correlated were metoclopramide, lidocaine, 

hydromorphone, morphine, amlodipine, and furosemide.  

 

 

Figure 3. Overview of Lasso model optimization and feature selection results using 48h lookback 

window. (A) MSE vs log10(alpha) for each of 5 Lasso cross validation folds. (B) Actual validation vs 

Lasso-predicted output BG. (C) Variable coefficients assigned by Lasso. (D) Mean absolute coefficient 

score of top 25 Lasso variables. 
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Dataset Micromedex Medication Class Variable 
Adjusted 

p-value 
Coefficient 

95% CI  

(Lower,Upper) 

 
 

 Intercept 0 51.40 (49.93,52.87) 
 

 
 Group Variable 1.57E-11 57.62  

Laboratory 
  Mean Input Glucose* 0 0.46 (0.45, 0.47) 

  Last Input Glucose* 3.87E-206 0.15 (0.14, 0.16) 

  Mean Creatinine* 0.00072 -0.38 (-0.58, -0.18) 

Demographic   Black or African American* 2.72E-09 -3.37 (-4.43, -2.30) 

Past Medical 

History 
  

Type 2 Diabetes Mellitus* 1.27E-105 10.66 (9.70, 11.62) 

Medication 

Yes Antidiabetic Insulin Lispro 100units/ml SQ 6.87E-37 0.16 (0.14, 0.18) 

Yes Antidiabetic Insulin Apart 100units/ml SQ* 4.64E-16 0.44 (0.34, 0.54) 

Yes 
Glucocorticoid 

Dexamethasone Sodium Phosphate 
4mg/ml Inj* 5.25E-12 0.35 (0.26, 0.45) 

Yes Antidiabetic Insulin Regular 100units/ml SQ 1.87E-09 0.15 (0.10, 0.19) 

Yes 
Glucocorticoid 

Methylprednisolone Sodium Succinate 
40mg/ml Inj* 4.65E-09 0.064 (0.044, 0.085) 

Yes Glucocorticoid Prednisone 5mg PO Tabs* 8.97E-09 0.78 (0.52, 1.033) 

Yes Antidiabetic Insulin Glargine 100units/ml SQ 1.16E-08 -0.071 (-0.094, -0.047) 

Yes Laxative Lactulose 20g/30ml PO Soln* 7.37E-08 0.07 (0.045, 0.094) 

Yes Glucocorticoid Prednisone 20mg PO Tabs* 8.48E-05 0.098 (0.053, 0.14) 

Yes Glucocorticoid Dexamethasone 4mg PO Tabs* 0.0013 0.34 (0.15, 0.53) 

Yes Glucocorticoid Prednisone 10mg PO Tabs* 0.0052 0.19 (0.069, 0.32) 

Yes Antihypertensive Lisinopril 5mg PO Tabs 0.0076 0.53 (0.17, 0.88) 

Yes Statin Rosuvastatin 5mg PO Tabs 0.041 0.284 (0.038, 0.531) 

Yes Antidiabetic Pioglitazone 30mg PO Tabs 0.043 -0.24 (-0.45, -0.029) 

Medication 

No Electrolyte Magnesium Sulfate D5W 1g/100ml IV* 3.7E-05 -0.68 (-0.975, -0.37) 

No Laxative Sennosides 8.6mg PO Tabs 0.00079 -0.061 (-0.094, -0.028) 

          No Anesthetic Lidocaine PF 10mg/ml Inj* 0.0023 0.21 (0.086, 0.34) 

No Analgesic Hydromorphone D5W 50mg/250ml IV 0.0029 0.13 (0.052, 0.20) 

No Analgesic Morphine 4mg/ml IV  0.0035 0.38 (0.14, 0.61) 

No Antihypertensive Amlodipine 5mg PO Tabs* 0.0064 0.16 (0.055, 0.27) 

No Diuretic Furosemide 20mg PO Tabs 0.019 0.058 (0.014, 0.10) 

No Antiemetic Metoclopramide HCl 5mg PO Tabs 0.019 0.41 (0.099, 0.72) 

No Antidiarrheal Loperamide 2mg PO Caps 0.027 -0.66 (-1.181, -0.13) 

No Laxative Bisacodyl 5mg PO EC Tabs* 0.030 -0.23 (-0.413, -0.042) 

The LMM was fit with the same 50 variables plus the inclusion of interaction terms to differentiate the effects of 

the underlying disease processes known to cause dysglycemia from the medication. Interactions assessed 

were known risk factors for hyperglycemia, including: (1) acute pain3 with morphine and hydromorphone, (2) 

history of congestive heart failure34 with furosemide, and (3) surgery35 with bisacodyl, lidocaine, loperamide, 

metoclopramide, and sennosides. No interaction term had an adjusted p-value less than 0.05, and each 

medication alone retained significance after inclusion of the eight interaction terms in the model. This indicates 

presence of the potential confounding factor did not differentiate the effect of the medication on the outcome 

(STable 3). SFigure 1 allows visualization of the relationship between mean medication doses over the 48-

hour lookback window and output BG across patient encounters. 

Lastly, we observed differences in variables that were statistically significant based on the length of lookback 

window used (Figure 4). Adjusted p-value, coefficient, standard error, and 95% CI for 12h lookback window 

(STable 4) and 24h lookback window (STable 5) are presented in supplementary summary tables. Eleven 

variables of the significant variables using the 12h lookback window were unique to that window, five were 

unique to the 24h lookback window, and five were unique to the 48h lookback window. Trends were observed 

in varying statistical significance based on duration over which mean medication doses were collected. For 

Table 3. Twenty-nine variables with an adjusted p-value <0.05 according to LMM. EHR dataset, 

whether the medication was documented in Micromedex as having an effect on BG, the drug class, B-H 

adjusted p-value, coefficient, and 95% CI are listed. *denotes variable was significant across 12h, 24h, and 

48h lookback windows.  
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example, pioglitazone, an antihyperglycemic with a half-life of 3-7 hours36, was significant only when a 48h 

lookback window was used while nateglinide, an antihyperglycemic with a half-life of 1.5h37, was significant 

only when a 12h lookback window was used. 

 

 

Discussion: 

To our knowledge, this is the first study that identifies medication predictors of BG alterations using a large 

EHR dataset. Mean and last input BG were positively correlated with output BG, and retained significance 

across lookback windows. Studies show that prior BG is important in predicting future BG38. Additionally, 

history of T2DM was strongly positively correlated with output BG across all three lookback windows. We found 

that Black/African American race was also strongly negatively correlated with output BG. Similar trends in BG 

among races have been demonstrated; after a glucose tolerance test, African Americans had a lower glucose 

area under the curve compared to Caucasians39. Several diabetes medications were statistically significant 

according to the LMM. We also observed several other non-diabetes medications well established to affect BG, 

including statins, carvedilol, dextrose 50% IV and TPN20. Interestingly, short and medium-acting insulins 

(regular SQ, insulin lispro, insulin aspart) were positively correlated with BG. These medications are often 

given prior to meals in response to elevated BG and have a peak response within 30-90 minutes40, duration of 

3-4 hours41 and elimination half-life of approximately 1 hour42, so their BG lowering effect may be diminished at 

the four hour mark.  

Several drugs involved in gastrointestinal (GI) motility, including sennosides, metoclopramide, loperamide, 

bisacodyl, lactulose and opioids, were statistically significant. The effect of gastric emptying on glycemic 

control is poorly understood. Colonic motility is slowed in the majority of individuals with diabetes,43 and 

retention of GI contents has been associated with hyperglycemia44–46. Studies indicate an initial hypoglycemia 

due to delayed carbohydrate delivery to the small intestine, followed by hyperglycemia;44 two hours after a 

meal, T1DM individuals with slowed gastric emptying had lower insulin requirements47, and use of a prokinetic 

agent led to increased insulin requirements48. We found that metoclopramide (a prokinetic agent) was 

associated with a higher BG at 4 hours while sennosides and bisacodyl were associated with a lower BG. 

Sennosides A, the active ingredient in sennosides, demonstrated the ability to stimulate intestinal cells to 

secrete GLP-1 and alter the gut microbiota49, leading to improved insulin sensitivity in mice50,51. Sennosides A 

was also shown to have similar potency as acarbose in alpha-glucoamylase inhibition.52 We found loperamide, 

which slows GI transit, to also lower BG. Loperamide may lower BG in insulin-deficient rats through increase of 

glucose transporter 4 (GLUT-4) expression and inhibition of hepatic gluconeogenesis53. Activation of mu-

receptors by loperamide has also been linked to reduction of IL-6 induced insulin resistance54 and increase in 

insulin secretion by countering forkhead box protein O1 inhibition55. Lastly, we found morphine and 

hydromorphone to be associated with increases in BG.  Opioids increase BG via direct effects on insulin 

secretion through opioid receptors in the pancreas and centrally, and activation of the sympathetic nervous 

system56. Opioids additionally reduce colonic transit time and lead to dysregulation of GI motility by binding the 

Figure 4. Significant variables that are unique to each lookback window. ^ denotes medication was 

not recorded in Micromedex as having the potential to affect BG.  
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mu receptor and toll-like receptors in the GI tract.57 Overall, GI transit plays a large role in glycemic control, and 

we identified several digestive process regulating agents to be statistically important in predicting BG.  

There was strong evidence in support of IV magnesium and diuretics. Magnesium intake has been shown to 

be inversely associated with T2DM risk58,59. Intravenous magnesium sulfate administration during surgery led 

to significantly lower BG and insulin requirements 60,61. A potential mechanism for improvement of insulin 

sensitivity is upregulation of GUT-4 gene expression, leading to increase in glucose utilization in peripheral 

tissues62–64. There is also strong evidence linking diuretics to insulin resistance with an association 

independent of confounders65.  

Strengths of our study included an unbiased, rigorously test approach in finding medication predictors of BG. 

Rather than hand-picking known BG predictors, we allowed the Lasso model to perform feature selection. 

Training data was used for feature selection to avoid test leak, and LMM performance was evaluated on a 

held-out test set. We also included both critically and non-critically ill patients as well as all types of insulin. We 

used a mixed effects model, which can handle repeated measures by accounting for the correlation between 

encounters of the same patient. Our model had comparable performance to a linear model that used a 24 hour 

moving average of inpatient BG measurements collected from EHRs to predict the next BG; R2 was 0.45 using 

all observations, and performance varied based on glycemic variability category (very high glycemic variability 

R2=0.14 to low glycemic variability R2=0.65)38. The focus of our study was to identify potentially undiscovered 

medication predictors of BG, rather development of a high-performing clinical model. 

Limitations of our study included inability to control for the many confounders that may affect a patient’s BG. 

We did not include drug interactions that may be causing an alteration in BG. EHR data has several limitations, 

including missing data, erroneous entries, and lack of documentation of relevant variables. Diet and tube feed 

orders were not used due to lack of consistent recording, however TPN was included. There was a possibility 

for encounters from a single patient to be split across training and test sets. The dataset is large so even 

predictors that have small effect can be statistically significant. The linear regression method employed did not 

use time series data. However, a study using linear, cubist, random forest and K-nearest neighbors models to 

predict the next BG using previous BGs over various moving average and rolling regression windows found no 

difference in performance (R2 CI’s overlapped)38. Future directions include inclusion of more patient 

encounters to the model and assessment of its generalizability.   

 
Code Availability: All JupyterLab notebooks can be found at xomicsdatascience/Medication-BG-alteration 
(github.com). 
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