Genetic risk score-informed re-evaluation of spirometry quality control to maximise power in epidemiological studies of lung function

Jing Chen**, Nick Shrine*, Abril G Izquierdo*, Anna Guyatt*, Henry Völzke*
Hall⁴, Frank Dudbridge¹, SpiroMeta Consortium, CHARGE Consortium, Lou
Tobin^{1,5}, Catherine John^{*1,5}
¹Department of Population Health Scien , Stephanie London"
iise V Wain^{1,5}, Martii
ster, UK
swald, Germany
ss, National Institute
k, NC, USA \int
 \int

 1 Department of Population Health Sciences, University of Leicester, Leicester, UK

2

Hall"
Tobi
¹Dep
²lnsti
³Epic
Heal'
⁴Divi , Frank Dudbridge⁺
n^{1,5}, Catherine Johr
artment of Populai
itute for Communit
demiology Branch,
th, Department of
sion of Respiratory , SpiroMeta Consortium, CHARGE Consortium, Louise V Wain⁴⁷⁵, Martin D
1^{*1,5}
tion Health Sciences, University of Leicester, Leicester, UK
ty Medicine, University Medicine Greifswald, Greifswald, Germany
National Institu Tobin^{4,5}, Catherine John*^{1,5}
¹Department of Population
²Institute for Community M
³Epidemiology Branch, Nati
Health, Department of Heal
⁴Division of Respiratory Me
Nottingham, Nottingham, U Institute for Community Medicine, University Medicine Greifswald, Greifswald, G
Epidemiology Branch, National Institute of Environmental Health Sciences, Natio
Health, Department of Health and Human Services, Research Tria ³Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of

 4 Division of Respiratory Medicine and NIHR Nottingham Biomedical Research Centre, University of

Institute for Community Medicine, Material, Medicine, Temetricine, Temetricine, Temetricine, Temetricia, Bepar
Institute for Medicine and NIHR Nottingham Biomedical Research Centre, University Medicine and NIHR Nottingham realth, Department of Health and Human Services, Research Triangle Park, NC, USA
Division of Respiratory Medicine and NIHR Nottingham Biomedical Research Centre, University of
Joitingham, Nottingham, UK
National Institute 4Division of Respiratory Medicine and NIHR Nottingham Biomedical Research Centre
Nottingham, Nottingham, UK
⁵National Institute for Health Research, Leicester Respiratory Biomedical Research Co
of Leicester, Leicester, U Division of Respiratory Medicine and NIHR Nottingham Biomedical Research Centre, University of Leicester, Leicester, UK
National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, University o ⁵National Institute for Health I
of Leicester, Leicester, UK
*Joint corresponding authors:
John)
Abstract
Background and aim ⁵National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, University

Mational Institute for Alector Mathematical Institute for Heicester, Leicester, Leicester, Leicester, UK
1901 National Institute for Health Research, Leicester Research Respiratory Biomedical Research Centre, 1991
1991 Nac of Leicester, Leicester, Lei
*Joint corresponding authition
John)
Abstract
Background and aim
Epidemiological studies of

Abstract

Background and aim

 $\begin{array}{l} \text{John)} \\ \text{Abstract} \end{array}$
Background and aim
Epidemiological studies of lung function may discard one-third to one-half of participants due
spirometry measures deemed "low quality" using criteria adapted from clinical p Abs
Backg
Epider
spiron
to derepider Epidemiological studies of lung function may alter the lung for lung function particle. We aimed
to define new spirometry quality control (QC) criteria that optimise the signal-to-noise ratio in
epidemiological studies of

Material and methods

spirometry measures deemed with quality intitial and provide the signal-to-noise ratio in
the define new spirometry quality control (QC) criteria that optimise the signal-to-noise ratio in
epidemiological studies of lung f to define the spirometry quality control (QC) control that spirits that signal-to-noise ratio in
epidemiological studies of lung function.
We proposed a genetic risk score (GRS) informed strategy to categorize spirometer b Material and methods
We proposed a genetic risk score (GRS) is
to quality criteria. We constructed three
volume in 1 second (FEV₁), forced vital
individuals from non-UK Biobank cohorts
In the UK Biobank, we applied a ste to quality criteria. We constructed three GRSs comprised of SNPs associated with forced expiratory
volume in 1 second (FEV₁), forced vital capacity (FVC) and the ratio of FEV₁ to FVC (FEV₁/FVC) in
individuals from n volume in 1 second (FEV₁), forced vital capacity (FVC) and the ratio of FEV₁ to FVC (FEV₁/FVC) in
individuals from non-UK Biobank cohorts included in prior genome-wide association studies (GWAS).
In the UK Biobank, volume in 1 second (FEV1), the ratio of prior, (FCP) and the ratio of FEV1 to FCP1), individuals from non-UK Biobank cohorts included in prior genome-wide association studies (GWAS).
In the UK Biobank, we applied a step-wi In the UK Biobank, we applied a step-wise testing of the GRS association across groups of spirometry
blows stratified by acceptability flags to rank the blow quality. To reassess the QC criteria, we
compared the genetic as In the UK Biobana strained by acceptability flags to rank the blow quality. To reassess the QC criteria, we compared the genetic association results between analyses including different acceptability flags and applying dif blows strategies and applying different repeatability thresholds for spirometry measurements to determine the trade-off between sample size and measurement error.
Results
We found that including blows previously excluded f

Results

Empared the general acceptability thresholds for spirometry measurements to determine the trade-off between sample size and measurement error.
 Results

We found that including blows previously excluded for cough, hesita and applying different repeatability interesting for spiritually interest in the determine the statistical power
Results
We found that including blows previously excluded for cough, hesitation, excessive time to peak
flow, Results
We found that including blows previously excluded fo
flow, or inadequate terminal plateau, and applying
maximise the statistical power for GWAS and retain a
approach allowed the inclusion of 29% more partic
guideli We flow, or inadequate terminal plateau, and applying a repeatability threshold of 250ml, would
maximise the statistical power for GWAS and retain acceptable precision in the UK Biobank. This
approach allowed the inclusion flow, or industry and application, and applying a repeatable precision in the UK Biobank. This
maximise the statistical power for GWAS and retain acceptable precision in the UK Biobank. This
approach allowed the inclusion manimum and retail power for CMAS and retain acceptable precision in the UK Biobank that
approach allowed the inclusion of 29% more participants compared to the strictest ATS/ERS
guidelines.
Conclusion
Our findings demonst

Conclusion

guidelines.

Conclusion

Our findings demonstrate the utility of GRS-informed QC to maximise the power of epidemiological

studies for lung function traits.

1

TE: This preprint reports new research that has not been cert Conclusion
Conclusion
Our finding
studies for
TE: This prepr Our findings for lung function traits.

This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practic

This preprint reports new research that has not been c

Introduction

Including chronic obstructive pulmonary disease (COPD), but also predicts mortality in the general
population[1]. Genome-wide association studies (GWAS) have proven to be an effective tool for
identifying genetic variants population[1]. Genome-wide association studies (GWAS) have proven to be an effective tool for
identifying genetic variants that are associated with complex diseases and traits, providing valuable
insights into disease bio population is a trait of elastic variants that are associated with complex diseases and traits, providing valuable
insights into disease biology and informing development of diagnostic tools and potential
treatments[2]. Fo insights into disease biology and informing development of diagnostic tools and potential
treatments[2]. For lung function, the most recent GWAS identified associated genetic variants
explaining 33% of the heritability of

insights into disease biology and informally development of diagnostic tools and potential
treatments[2]. For lung function, the most recent GWAS identified associated genetic variants
explaining 33% of the heritability o explaining 33% of the heritability of FEV₁/FVC (less for FEV₁ and FVC)[3], indicating that additional
associations could be found in more powerful studies.
However, GWAS of lung function may discard one-third to one-ha explaining 33% of the heritability of FEV1/FVC (CEP1/FUC) and FEV1/FUC) massing that analysing
associations could be found in more powerful studies.
However, GWAS of lung function may discard one-third to one-half of parti However, GWAS of lung function may discard one-thirm
measures deemed "low quality", substantially limiti
measures the flow and volume of air over time, typi
vigorous, complete exhalation following maximal in
parameters. Sp However, CHME of low quality", substantially limiting the potential sample size[4]. Spirometry
measures the flow and volume of air over time, typically in a forced expiratory manoeuvre, i.e. a
vigorous, complete exhalation measures the flow and volume of air over time, typically in a forced expiratory manoeuvre, i.e. a vigorous, complete exhalation following maximal inhalation. **Figure 1** illustrates key spirometric parameters. Spirometry is measures the flow and visitation following maximal inhalation. Figure 1 illustrates key spirometric
parameters. Spirometry is effort and technique-dependent, and thorough quality control (QC) is
considered essential to ens vigorous, complete exhalation following maximal immatation. Figure 1 mastrates key spirometric
parameters. Spirometry is effort and technique-dependent, and thorough quality control (QC) is
considered essential to ensure m parameters. Spirometry is there and technique dependent, and thorough quality centre (χ) is
considered essential to ensure measurements are unaffected by inadequate technique or artefacts
(such as a cough). However, it (such as a cough). However, it has been suggested that "Pulmonary function standards are not static.
They should be questioned. There is always room for improvement in any set of pulmonary function
standards"[5, 6]. Moreov They should be questioned. There is always room for improvement in any set of pulmonary function
standards"[5, 6]. Moreover, QC for epidemiological studies may not require the same level of
stringency as clinical practice, standards"[5, 6]. Moreover, QC for epidemiological studies may not require the same level of
stringency as clinical practice, where results are used for diagnosis and management of individual
patients. Hankinson *et al.* h stringency as clinical practice, where results are used for diagnosis and management of individual
patients. Hankinson *et al.* have previously suggested visual inspection of blow curves by human
reviewers in addition to c patients. Hankinson *et al.* have previously suggested visual inspection of blow curves by human
reviewers in addition to computer assessment to avoid unnecessary rejection of valid data[7]. While
this approach could enhan

patients. Hankinson et al. have previously suggested visual inspection of blow curves by human
reviewers in addition to computer assessment to avoid unnecessary rejection of valid data[7]. While
this approach could enhance reviewers in addition to computer accordance to direct anti-computer projection of the subsection of the subject to bias.

Genetic information can predict individual continuous traits such as lung function by tallying the
 the information could be subject to bias.

Genetic information can predict individual continuous traits such as lung function by tallying the

number of risk alleles for each individual to give a genetic risk score (GRS) (Senetic information can predict ind
number of risk alleles for each incomplygenic risk score, PRS, or polyge
millions of genetic variants and are
the trait of interest[8]. By checking con genetics and the actual measure number of risk alleles for each individual to give a genetic risk score (GRS) (sometimes called
polygenic risk score, PRS, or polygenic score, PGS, **Figure 2**) [8]. These may include hundreds to
millions of genetic variant polygenic risk score, PRS, or polygenic score, PGS, Figure 2) [8]. These may include hundreds to millions of genetic variants and are typically weighted by the size of association of each allele with the trait of interest[polygenic risk score, PRS, or polygenic score, PGS, Figure 2) [8]. These may include hundreds to
millions of genetic variants and are typically weighted by the size of association of each allele with
the trait of interest[the trait of interest[8]. By checking concordance between the predicted lung function values based
on genetics and the actual measured lung function traits, we can reassess the value of spirometer
blows that were previousl on genetics and the actual measured lung function traits, we can reassess the value of spirometer
blows that were previously deemed as "low quality". In this study, we aimed to establish new
spirometry QC criteria informed on generate and the actual measured lung function traits, the function of shows that were previously deemed as "low quality". In this study, we aimed to establish new spirometry QC criteria informed by GRS to optimise the below that were previously deemed as "low quality". In this study, we annual to establish new spirometry QC criteria informed by GRS to optimise the signal-to-noise ratio in epidemiological studies.
 Methods

We undertoo

Methods

Spirometry quality control

studies.
Spirometry quality control
We undertook analyses in the UK Biobank European population [9]. In UK Biobank, each individual
We undertook analyses in the UK Biobank European population [9]. In UK Biobank, each indiv Meth
Meth
Spiron
_{Was aske}
6800). T Was asked to perform up to three blows on a Vitalograph spirometer (Vitalograph Pneumotrac
6800). These blows were used to derive measures of lung function, including the forced expiratory
volume in 1 second (FEV₁), for 6800). These blows were used to derive measures of lung function, including the forced expirat
volume in 1 second (FEV₁), forced vital capacity (FVC) and the ratio of FEV₁ to FVC (FEV₁/FVC), fi
spirogram (volume-tim blow in 1 second (FEV₁), forced vital capacity (FVC) and the ratio of FEV₁ to FVC (FEV₁/FVC), from spirogram (volume-time curve) recorded by the Vitalograph software.
A blow received an automated error code from the

volume time curve) recorded by the Vitalograph software.

A blow received an automated error code from the spirometry software if: (1) there was hesitation

(excessive extrapolated volume[10] at the start of the blow, code A blow received an automated error code from the spirometry softw
(excessive extrapolated volume[10] at the start of the blow, coded "
2 (excessive extrapolated volume[10] at the start of the blow, coded "START"); (2) the time to peak
2 (extrapolated value) $\frac{1}{2}$ at the start of the blow, $\frac{1}{2}$ ($\frac{1}{2}$) at time to peak

there was not an adequate plateau at the end of the blow ("END") (see **Table 1** for additional detail).
It was also possible for the spirometer operator to explicitly reject the blow ("REJECT"). In previous
GWAS of lung fu It was also possible for the spirometer operator to explicitly reject the blow ("REJECT"). In previous
GWAS of lung function, blows were deemed unacceptable and excluded from analysis if they had
any of the above error cod GWAS of lung function, blows were deemed unacceptable and excluded from analysis if they had
any of the above error codes[4]. Additionally, as in previous GWAS[3, 4], we checked each blow for
inappropriate negative values any of the above error codes[4]. Additionally, as in previous GWAS[3, 4], we checked each blow for
inappropriate negative values which indicate a problem with the blow (for any of: forced expiratory
flow at 25% of FVC; fo inappropriate negative values which indicate a problem with the blow (for any of: forced expiratory
flow at 25% of FVC; forced expiratory flow at 75% of FVC; average forced expiratory flow between
25% and 75% of the FVC; Find 25% of FVC; forced expiratory flow at 75% of FVC; average forced expiratory flow between
25% and 75% of the FVC; peak flow; extrapolated volume; volume at forced expiratory time) (coded
"NEGATIVE"), the start of the 25% and 75% of the FVC; peak flow; extrapolated volume; volume at forced expiratory time) (coded "NEGATIVE"), the start of the blow underwent a further check for hesitation ("START2"), and consistency (<5% difference) was "NEGATIVE"), the start of the blow underwent a further check for hesitation ("START2"), and
consistency (<5% difference) was checked between the FEV₁ and FVC output from the spirometer
and that rederived from the spirog consistency (<5% difference) was checked between the FEV₁ and FVC output from the spirometer
and that rederived from the spirogram ("CONSISTENCY"). In this study, we identified blows that
would previously have failed QC consistency (CH) and that rederived from the spirogram ("CONSISTENCY"). In this study, we identified blows that
would previously have failed QC due to any of the above error codes or additional QC steps, and
labelled these and that rederived from the spirogram ("CONSISTENCY"), the studies and the distribution
would previously have failed QC due to any of the above error codes or additional QC steps, and
labelled these with corresponding "acc

Testing the association between GRSs and lung function traits derived from spirometer blow measurements

Habelled these with corresponding "acceptability flags" (Table 1).
Testing the association between GRSs and lung function traits derived from
spirometer blow measurements
We calculated the GRSs for European-ancestry indivi labelled these with corresponding "acceptability flags" (**Table 1**).
Testing the association between GRSs and lung fu
spirometer blow measurements
We calculated the GRSs for European-ancestry individuals in L
weights train weights trained from Shrine *et al.* [3] (**Supplementary Methods**). In the UK Biobank European population, we then conducted iterative testing of the GRS association within groups of spirometry blows stratified by acceptab weights trained from Shime et al. [3] (Supplementary Methods). In the OK Biobank European
population, we then conducted iterative testing of the GRS association within groups of spirometry
blows stratified by acceptability population, we then conducted iterative statified by acceptability flags, to identify and rank the flags most likely to cause failure of spirometry blow quality (Figure 3). For each lung function trait, we first stratified blow quality (Figure 3). For each lung function trait, we first stratified all the blows by acceptability flag (Figure 3, step I, Supplementary Methods). Where lung function measures within a stratum showed no significant spirometry blow quality (Figure 3). For each lung function trait, we first stratified all the blows by acceptability flag (Figure 3, step I, Supplementary Methods). Where lung function measures within a stratum showed no s a stratum showed no significant association with the GRS (P>0.05), we considered that the corresponding acceptability flag to indicate unacceptable blow quality and thus a reason for exclusion. For the remaining blows, we corresponding acceptability flag to indicate unacceptable blow quality and thus a reason for exclusion. For the remaining blows, we applied an iterative selection process to identify the acceptability flags that were most exclusion. For the remaining blows, we applied an iterative selection process to identify the
acceptability flags that were most likely to cause failure of spirometry blow quality as shown in
Figure 3 (Step II). Based on t exceptability flags that were most likely to cause failure of spirometry blow quality as shown in
Figure 3 (Step II). Based on the outcome of this, we ranked the remaining acceptability flags
according to their impact on t

Re-evaluating spirometry QC criteria for association study

Figure 3 (Step II). Based on the outcome of this, we ranked the remaining acceptability flags according to their impact on the spirometer blows in our new approach (see Results for details).
Re-evaluating spirometry QC cr Figure 3 (Step II). Based on the outcome of this, we ranked the remaining acceptability riags
according to their impact on the spirometer blows in our new approach (see Results for details).
Re-evaluating spirometry QC cri Re-evaluating spirometry QC criteria for association study
Based on the grouping of blows above, we then aimed to identify which acceptability
repeatability criteria would maximise the association of the lung function meas Frepeatability criteria would maximise the association of the lung function measures with GRS as
measured by the level of statistical significance (Z-score for the association) (Figure 3, Step III). We
varied our acceptabi measured by the level of statistical significance (Z-score for the association) (**Figure 3, Step III**). We varied our acceptability criteria by including blows with acceptability flags in order of the ranking generated in measured by the level of statistical significance (Z-score for the association) (Figure 3, Step III). We
varied our acceptability criteria by including blows with acceptability flags in order of the ranking
generated in th varied in the previous step, in addition to blows previously considered acceptable. We also
varied our repeatability threshold (from 150ml to 400ml in 50ml increments). Repeatability was
based on the difference from any ot

generate in the presention of the previously considered in the previously varied our repeatability threshold (from 150ml to 400ml in 50ml increments). Repeatability was based on the difference from any other blow, even if based on the difference from any other blow, even if that blow was not accepted. Using these different criteria, we tested the association with the GRS.
To ensure that effect size estimates retained acceptable precision w different criteria, we tested the association with the GRS.
To ensure that effect size estimates retained acceptable precision whilst maximising statistical
significance, we then tested genetic associations with the sentin To ensure that effect size estimates retained acceptal
significance, we then tested genetic associations with the
lung function[3], using the different acceptability criter
above, and examined the effect sizes and P-values significance, we then tested genetic associations with the sentinel SNPs known to be associated with
lung function[3], using the different acceptability criteria and repeatability thresholds described
above, and examined showe, and examined the effect sizes and P-values for sentinels of lung function signals using these
above, and examined the effect sizes and P-values for sentinels of lung function signals using these
different QC criter above, and examined the effect sizes and P-values for sentinels of lung function signals using these different QC criteria. All lung function traits were untransformed, adjusting for age, age², height, smoking status, a different QC criteria. All lung function traits were untransformed, adjusting for age, age², height,
smoking status, and relatedness (mixed models in BOLT-LMM[11]).
3 different QC criteria. All lung function traits were untransformed, adjusting for age, age²
smoking status, and relatedness (mixed models in BOLT-LMM[11]).
3 , here $\frac{1}{2}$ $s_{\rm obs}$ status, and relations (mixed models in BOLT-LMM $_{\rm 1--}$).

Assessing the credibility of GWAS findings

conducted a GWAS in the UK Biobank European population as an example to compare GWAS
findings with those found using the previous QC criteria. Credibility of newly identified signals was
assessed using a Bayesian framewor findings with those found using the previous QC criteria. Credibility of newly identified signals was
assessed using a Bayesian framework previously described by Okbay *et al* [12]and Turley *et al* [13]
(**Supplementary m**

Results

findings with these found using the previously described by Okbay *et al* [12] and Turley *et al* [13]
assessed using a Bayesian framework previously described by Okbay *et al* [12] and Turley *et al* [13]
ReSUItS
In UK **Supplementary methods**).
 ReSUItS

In UK Biobank, 445,541 individuals had at least two measures of FEV₁ and FVC, along with complete

information for age, sex, standing height and derived smoking status (smoking stat (Supplementary methods).

Results

In UK Biobank, 445,541 indi

information for age, sex, st

Shrine *et al.* 2019[4]. Of th

measurements (UK Bioban

measurements (UK Bioban Information for age, sex, standing height and derived smoking status (smoking status derived by Shrine *et al.* 2019[4]. Of these individuals, 406,474 were assigned as European ancestry using k-
means clustering and ADMIX Shrine *et al.* 2019[4]. Of these individuals, 406,474 were assigned as European ancestry using k-
means clustering and ADMIXTURE v1.3.0[14] as described in Shrine *et al*[4]. We used FEV₁ and FVC
measurements (UK Bioba Shrine et al. 2019[4]. Of these individuals, 400,474 were assigned as European ancestry using K-
means clustering and ADMIXTURE v1.3.0[14] as described in Shrine *et al*[4]. We used FEV₁ and FVC
measurements (UK Biobank means clustering and ADMIXTORE V1.3.0[14] as described in Shiffle et al[4]. We used TEV1 and TVC
measurements (UK Biobank Field ID 20031) and the Vitalograph spirometer blow quality metrics (UK
Biobank Field ID 20031).
Eva

Evaluating spirometer blows quality with different acceptability flags

measurements (UK Biobank Field ID 20031) and the Vitalograph spirometer blow quality metrics (UK
Biobank Field ID 20031).
Evaluating spirometer blows quality with different acceptability flags
Using the previous, more str Biobank Field ID 20031).
Evaluating spirometer blows quality with different acceptability flags
Using the previous, more stringent approach to spirometry QC, we identified 713,885 spirometer
blows as "accepted" for 354,74 Evaluating spirome
Using the previous, mor
blows as "accepted" for
"accepted" blows for the
95% CI [0.243, 0.249], P<
From the association of

blows as "accepted" for 354,746 European individuals. The best measures of FEV₁/FVC derived from
"accepted" blows for these individuals were strongly associated with the GRS ($\beta_{SD_change_of_GRS}$ =0.246,
95% CI [0.243, 0.249], Fracepted" blows for these individuals were strongly associated with the GRS ($\beta_{SD_change_of_GRS}$ =0.246,
95% CI [0.243, 0.249], P<1.00E-300) (**Figure 4a**).
From the association of GRS with the FEV₁/FVC derived from blows in ea 95% CI [0.243, 0.249], P<1.00E-300) (Figure 4a).

From the association of GRS with the FEV₁/FVC derived from blows in each of our acceptability flag

strata, blows with acceptability flags "CONSISTENCY", "NEGATIVE" or " From the association of GRS with the FEV₁/FVC
strata, blows with acceptability flags "CONSISTE
with the GRS (Figure 4a), indicating that these a
blow quality ($\beta_{SD_change_of_GRS}$ =-0.022, 95% CI [-0.1
the remaining acceptabil From the associated with acceptability flags "CONSISTENCY", "NEGATIVE" or "REJECT" were not associated
with the GRS (Figure 4a), indicating that these acceptability flags represent unacceptable spirometry
blow quality ($\$ strata, and the GRS (Figure 4a), indicating that these acceptability flags represent unacceptable spirometry
blow quality ($\beta_{SD_change_of_GRS} = -0.022$, 95% CI [-0.049, 0.006], p=0.1292, Figure 4c, Group 3). To rank
the remainin blow quality ($\beta_{SD_change_of_GRS} = -0.022$, 95% CI [-0.049, 0.006], p=0.1292, **Figure 4c, Group 3**). To rank
the remaining acceptability flags that cause failure of the spirometry blow quality in descending
order of severity, we the remaining acceptability flags that cause failure of the spirometry blow quality in descending
order of severity, we conducted an iterative selection process (**Figure 4b**). In the first round of
selection (round 1), we the remaining acceptancies, magnitude content cause (Figure 4b). In the first round of selection (round 1), we identified excessive time to peak flow ("EXPFLOW") as the next most likely cause of failure of spirometry quali order of severity, we conducted an iterative selection process (rigure 4b). In the first round or
selection (round 1), we identified excessive time to peak flow ("EXPFLOW") as the next most likely
cause of failure of spiro cause of failure of spirometry quality. This was based on the observation that additionally removing
blows with "EXPFLOW" flag led to an increase in the magnitude of the effect size estimate in the
association results in blows with "EXPFLOW" flag led to an increase in the magnitude of the effect size estimate in the association results in all the remaining strata. Similarly, we identified an inadequate terminal plateau ("END", round 2) an blows with the flags excluded in previous steps. For the remaining flags relating to hastociation results in all the remaining strata. Similarly, we identified an inadequate terminal plateau ("END", round 2) and cough ("C ("END", round 2) and cough ("COUGH", round 3) as the next most likely to cause failure of
spirometry quality in the subsequent rounds of selection. Collectively, blows from groups
"EXPFLOW", "END" and "COUGH" were associa spirometry quality in the subsequent rounds of selection. Collectively, blows from groups

"EXPFLOW", "END" and "COUGH" were associated with GRS but with a smaller effect size than

previously accepted blows ($\beta_{SD_change_of_GRS$ "EXPFLOW", "END" and "COUGH" were associated with GRS but with a smaller effect size than
previously accepted blows ($\beta_{SD_change_of_GRS}$ =0.149, 95% CI [0.145, 0.153], p<1.00E-300, **Figure 4c,**
Group 2), after removing blows previously accepted blows ($\beta_{SD_change_of_GRS}$ =0.149, 95% CI [0.145, 0.153], p<1.00E-300, **Figure 4c,**
 Group 2), after removing blows with the flags excluded in previous steps. For the remaining flags

relating to hesitatio previously accepted blows ($p_{SD_change_of_GRS} = 0.149$, $p_{S1_O14} = 0.143$, $p_{S1_OOL} = 0.06$, righte 4c, Group 2), after removing blows with the flags excluded in previous steps. For the remaining flags relating to hesitation (Group 2), after removing blows with the flags excluded in previous steps. For the remaining riags
relating to hesitation ("START" and "START2"), the magnitude of the effect size of GRS association in
the corresponding str

The corresponding strata ($\beta_{SD_change_of_GRS}$ =0.262, 95% CI [0.240, 0.284], P=1.14E-118, Figure 4c, Group
1) was similar to that from the acceptable blows ($\beta_{SD_change_of_GRS}$ =0.246, 95% CI [0.243, 0.249],
P<1.00E-300, Figure 4c, A the corresponding strata (psp_change_of_GRS=0.262, 95% CI [0.244, 0.264], 1 = 1.14E-118, Figure 4c, Group

1) was similar to that from the acceptable blows (β_{SD_change_of_GRS}=0.246, 95% CI [0.243, 0.249],

P<1.00E-300, 1) Was similar to that from the acceptable blows (PSD_change_of_GRS=0.246, 35% Cr [0.243, 0.243],
P<1.00E-300, **Figure 4c, Accepted blows**), after removing blows with all the other acceptability flags.
For FEV₁ and FVC, For FEV₁ and FVC, we observed similar results to those for FEV₁/FVC above in ranking the spirometer
blow quality but with the "COUGH" flag showing a similar effect size to accepted blows
(**Supplementary Figure 1 and S** For FEV1 and FVC and FVC, we based our subsequent analyses on FEV₁/FVC.

(Supplementary Figure 1 and Supplementary Figure 2). For FVC, "END" had a larger impact than

"EXPFLOW". Since the results suggest acceptability f **Supplementary Figure 1 and Supplementary Figure 2**). For FVC, "END" had a larger impact than "EXPFLOW". Since the results suggest acceptability flags have greater impact on the measurements of FEV1/FVC than FEV1 and FVC, (Supplementary Figure 1 and Supplementary Figure 2). For FVC, END Thad a larger impact than

"EXPFLOW". Since the results suggest acceptability flags have greater impact on the measurements

of FEV1/FVC than FEV1 and FVC, of FEV1/FVC than FEV1 and FVC, we based our subsequent analyses on FEV₁/FVC.
4 $\begin{align} \mathbf{q} \end{align}$

Re-evaluating spirometry QC criteria for association studies

inclusion criteria for spirometry QC. To do this, we included blows with varying acceptability flags
with their inclusion ordered according to the findings above, and applied different repeatability
thresholds to assess th including inclusion ordered according to the findings above, and applied different repeatability
thresholds to assess their impact on the association between GRS and FEV₁/FVC. We found that
including blows previously exc thresholds to assess their impact on the association between GRS and FEV₁/FVC. We found that
including blows previously excluded for cough (COUGH), hesitation (START/START2), excessive time
to peak flow (EXPFLOW) or lack including blows previously excluded for cough (COUGH), hesitation (START/START2), excessive time
to peak flow (EXPFLOW) or lack of terminal plateau (END) in addition to accepted blows and applying
a repeatability threshold to peak flow (EXPFLOW) or lack of terminal plateau (END) in addition to accepted blows and applying
a repeatability threshold of 350ml reached the maximum statistical significance in the association
between GRS and FEV₁

to peak flow (EXPTLOM) or lack of 350ml reached the maximum statistical significance in the association
between GRS and FEV₁/FVC. However, as expected, the effect size in the association results
attenuated toward zero as between GRS and FEV₁/FVC. However, as expected, the effect size in the association results
attenuated toward zero as QC criteria were successively relaxed (**Table 2**).
To balance accuracy of effect size estimation versus between The Tank Ferry Contentation, and Tapperten, the Entertainment Term and Terms can
attenuated toward zero as QC criteria were successively relaxed (Table 2).
To balance accuracy of effect size estimation versus maxim attenuated toward zero as QC criteria were successively relaxed (Table 2).
To balance accuracy of effect size estimation versus maximising statistica
genome-wide association studies, we examined the changes in the effect
s genome-wide association studies, we examined the changes in the effect sizes and P values of the sentinels of FEV₁/FVC signals identified by Shrine *et al*[3]. We found that additionally including blows previously exclu gentinels of FEV₁/FVC signals identified by Shrine *et al*[3]. We found that additionally including blows
previously excluded for cough (COUGH), hesitation (START/START2), excessive time to peak flow
(EXPFLOW) or lack o sentifiels of FEV1/FVC signals identified by Shrine et al[3]. We found that additionally including blows
previously excluded for cough (COUGH), hesitation (START/START2), excessive time to peak flow
(EXPFLOW) or lack of te (EXPFLOW) or lack of terminal plateau (END), and applying a repeatability threshold of 250 ml
optimized the signal-to-noise ratio in genetic association testing (Figure 5). Based on this finding, we
proposed a new spiromet optimized the signal-to-noise ratio in genetic association testing (Figure 5). Based on this finding, we
proposed a new spirometry QC strategy for epidemiological studies, which retained 29% more
participants using stricte proposed a new spiral-to-noise ratio in genetic association testing (Figure 5). Based on this finding, we
proposed a new spirometry QC strategy for epidemiological studies, which retained 29% more
participants using stric

Illustrate the gain in power using newly defined QC criteria

participants using strictest ATS/ERS guidelines and increased the sample size from 275,084 to 356,053 individuals.
Illustrate the gain in power using newly defined QC criteria
Using the newly defined spirometry QC criteri Barticipants using stricted QC criteria

Using the newly defined spirometry QC criteria, the UK Biobank sample size increased from 320,591

in the most recent GWAS of lung function to 356,053, an 11% gain in sample size, Illustrate the gain
Using the newly definithe most recent G
statistic (i.e. squared
1.29, leading to 15 a
on the most signifi in the most recent GWAS of lung function to 356,053, an 11% gain in sample size, and the mean χ^2
statistic (i.e. squared z scores for SNP and FEV₁/FVC association) from GWAS increased from 1.27 to
1.29, leading to 1 in the most recent GWAS of lung function to 356,053, an 11% gain in sample size, and the mean χ ⁻
statistic (i.e. squared z scores for SNP and FEV₁/FVC association) from GWAS increased from 1.27 to
1.29, leading to in the most recent GWAS of lung function to 356,053, an 11% gain in sample size, and the mean χ^2
statistic (i.e. squared z scores for SNP and FEV₁/FVC association) from GWAS increased from 1.27 to 1.29, leading to 15 additional sentinel SNPs associated with FEV₁/FVC (selected 2 Mb regions centred
on the most significant variant for all regions containing a variant with $P < 5 \times 10^{-9}$, additional
compared with ana on the most significant variant for all regions containing a variant with P $\langle 5 \times 10^{-9} \rangle$ additional
compared with analysis of UK Biobank alone using previous QC criteria[3]) (**Supplementary Table 2**).
Of these, 7 were on the most significant variant for all regions containing a variant with P <5×10⁻, additional
compared with analysis of UK Biobank alone using previous QC criteria[3]) (**Supplementary Table 2**).
Of these, 7 were not id compared with analysis of ok biobank alone dsing previous Qc criteria[3]) (supplementary Table 2).
Of these, 7 were not identified in the largest GWAS of lung function to date. Examining the nearest
genes to the sentinel S These, 7 were noted SNPs, we found two novel genes in addition to 13 genes reported either in the
most recent GWAS[3] or the EMBL-EBI GWAS Catalog. One of the novel genes, *FPR3*, encodes the
formyl peptide receptor 3, a p genes of the novel genes, *FPR3*, encodes the formyl peptide receptor 3, a paralog of formyl peptide receptor 1. The functional role of *FPR3* is not fully understood. However, it is expressed in a range of immune cells, i most recent GWAS[3] or the EMBL-EBI GWAS catalog. One of the nover genes, FPR3, encodes the
formyl peptide receptor 3, a paralog of formyl peptide receptor 1. The functional role of *FPR3* is not
fully understood. However, fully understood. However, it is expressed in a range of immune cells, including macrophages and
eosinophils, but not neutrophils, so has been hypothesized to play a role in allergic disease[15], and
has also been associat eosinophils, but not neutrophils, so has been hypothesized to play a role in allergic disease[15], and
has also been associated with asthma and white blood cell counts in GWAS. We also found that
enrichment of a previousl

eontinophility in the metallic play of the second that the blood cell counts in GWAS. We also found that enrichment of a previously implicated pathway[3], ESC pluripotency pathway, was strengthened by the newly identified has also been associated with a state and with a state of the newly identified gene *WNT16*.
For the newly identified hits, we followed procedures previously described by Okbay *et al.*[12] to
calculate the posterior proba the newly identified gene *WNT16*.

For the newly identified hits, we followed procedures previously described by Okbay *et al.*[12] to

calculate the posterior probability of true association, which exceeded 99% for all 1 the newly identified hits, we
calculate the posterior probability
for any assumption about the prio
sentinel SNPs for replication, we
(excluding participants from UK Bit
the limited statistical power for r For the newly identified hits, we followed procedures previously described by Okbay et u_1 [12] to calculate the posterior probability of true association, which exceeded 99% for all 15 additional loci for any assumption For any assumption about the prior probability of non-null SNPs in the range 1% to 99%. To test the sentinel SNPs for replication, we used meta-analysis results from 42 European ancestry cohorts (excluding participants fr sentinel SNPs for replication, we used meta-analysis results from 42 European ancestry cohorts
(excluding participants from UK Biobank) of 249,114 individuals generated by Shrine *et al*[3]. Due to
the limited statistical (excluding participants from UK Biobank) of 249,114 individuals generated by Shrine *et al*[3]. Due to the limited statistical power for replication of genome-wide significant association with a smaller sample size, we ap (excluding participants from OK Biobank) of 249,114 individuals generated by Shrine et al[3]. Due to
the limited statistical power for replication of genome-wide significant association with a smaller
sample size, we appl sample size, we applied methods to assess the replication of the effect size of sentinel SNPs. For the set of 13 newly identified sentinel SNPs for FEV_1/FVC available in the meta-analysis results, we 5 set of 13 newly identified sentinel SNPs for FEV_1/FVC available in the meta-analysis results, we $\frac{5}{100}$ set of 13 new letters of 13 new letters in the meta-analysis results, we have 5

intercept constrained to be zero, after correcting the UK Biobank effect size estimates for winner's
curse bias using the method described in Turley *et al*[13]. The regression slope was 0.75 (standard
error = 0.1376), be curse bias using the method described in Turley *et al*[13]. The regression slope was 0.75 (standard
error = 0.1376), being statistically significantly greater than zero (one-sided P=1.474×10⁻⁴) but not
statistically di curse bias using the method described in Turley et al_[13]. The regression slope was 0.75 (standard
error = 0.1376), being statistically significantly greater than zero (one-sided P=1.474×10⁻⁴) but not
statistically dis

Discussion

error = 0.1376), being statistically significantly greater than zero (one-sided P=1.474×10⁻) but not
statistically distinguishable from one (one-sided P=0.0943), suggesting that the newly identified
sentinel SNPs were re sentinel SNPs were replicated in independent datasets.

Discussion

QC of spirometric measurements involves a range of metrics and criteria which are designed to

ensure that clinical decision-making is based on accurate a **SHAMP WATER WEREN MARRETS.**

Discussion

QC of spirometric measurements involves a range of

ensure that clinical decision-making is based on

Spirometry is also widely used in epidemiological res

Leading experts in spir Let be premium interest in the spirometric measurements.

Spirometry is also widely used in epidemiological research, including genetic association studies.

Leading experts in spirometry and its QC have previously noted t Spirometry is also widely used in epidemiological research, including genetic association studies.
Leading experts in spirometry and its QC have previously noted that, "it is unclear when quality is
insufficient for accept Frequision spirometry and its QC have previously noted that, "it is unclear when quality is
insufficient for acceptance of results into research studies", and in particular have noted that end-of-
test criteria may be appl Leading enpertually and the Calculary previously interds into quality its distinct in sufficient for acceptance of results into research studies", and in particular have noted that end-of-
test criteria may be applied too were not identified in the largest GWAS of lung function to date, and two implicated novel genes spirometry curves is not feasible in large-scale association studies, and in this context unnecessary
exclusions may impact on power for novel discovery. We propose a new GRS-based method to
define a QC strategy which maxi presumently curves interact transmit image center acceptance in any manufalled method to define a QC strategy which maximizes power whilst maintaining acceptable precision, enabling an 29% increase in sample size using str extinct the power of power that the second in the prepare of normalism and the angle is a QC strategy which maximizes power whilst maintaining acceptable precision, enabling an 29% increase in sample size using strictest A 29% increase in sample size using strictest ATS/ERS guidelines in UK Biobank. This identified 15
additional genetic loci not found in analysis of UK Biobank using the previous QC criteria, of which 7
were not identified in additional genetic loci not found in analysis of UK Biobank using the previous QC criteria, of which 7
were not identified in the largest GWAS of lung function to date, and two implicated novel genes
highlighting new biolo

additional general differential and the material and the properties and two implicated novel genes highlighting new biology of interest. Eight were already identified in the largest consortium GWAS of lung function to date highlighting new biology of interest. Eight were already identified in the largest consortium GWAS of
lung function to date [3], but demonstrate that these discoveries could have been made earlier.
In this study, we introd highlighting new biology of the largest and the largest could have been made earlier.
In this study, we introduce an iterative selection process to rank acceptability flags in descending
order of their impact on spirometer In this study, we introduce an iterative selection process to rank acceptability flags in descervator of their impact on spirometer blow quality failure. We then included blows with variacceptability flags and repeatabilit order of their impact on spirometer blow quality failure. We then included blows with varying
acceptability flags and repeatability threshold to refine the spirometry QC criteria for GWAS, with
the aim to optimize the sign acceptability flags and repeatability threshold to refine the spirometry QC criteria for GWAS, with
the aim to optimize the signal-to-noise ratio. Through the application of this strategy to lung
function traits in UK Biob the aim to optimize the signal-to-noise ratio. Through the application of this strategy to lung
function traits in UK Biobank, we demonstrated that the statistical power of GWAS can be increased
by employing more inclusive function traits in UK Biobank, we demonstrated that the statistical power of GWAS can be increased
by employing more inclusive spirometry QC criteria, as evidenced by substantial improvements in
sample size, mean chi-squa by employing more inclusive spirometry QC criteria, as evidenced by substantial improvements in
sample size, mean chi-square statistics and the identification of additional genetic association
signals. These signals implic

by sample size, mean chi-square statistics and the identification of additional genetic association
signals. These signals implicated two novel genes for lung function, one of which (*FPR3*) plays a role
in innate immunity signals. These signals implicated two novel genes for lung function, one of which (*FPR3*) plays a role
in innate immunity and has been implicated in asthma and allergic disease.
To date, although 1020 genetics signals hav signals. These signals implicated two novel genes for lung function, one of which (FPR3) plays a role
in innate immunity and has been implicated in asthma and allergic disease.
To date, although 1020 genetics signals have To date, although 1020 genetics signals have been discovered for lung fur
genetic contribution to lung function remains unexplained[3]. The problen
could explained by undetected common variant associations and rare
approac genetic contribution to lung function remains unexplained[3]. The problem of "missing heritability" could explained by undetected common variant associations and rare variant associations. The approach we outline here will general extintion to lung function to lung function remains the protection remains could explained by undetected common variant associations and rare variant associations. The approach we outline here will boost power for approach we outline here will boost power for GWAS of common/ rare variants such as those now
available through the whole genome sequencing of UK Biobank [16], structural genomic variants as
long read sequencing data becom available through the whole genome sequencing of UK Biobank [16], structural genomic variants as
long read sequencing data become available. While the QC criteria established in UK Biobank may
not be directly transferable long read sequencing data become available. While the QC criteria established in UK Biobank may
not be directly transferable to other studies, the same methodology can be applied. Our approach
will be especially relevant w Final sequencing and become available. The criteria established in the Control of the directly transferable to other studies, the same methodology can be applied. Our approach will be especially relevant where sample sizes not be especially relevant where sample sizes are limited, such as in under-represented ancestries in genomic studies[17]. Furthermore, whilst genetic data are used to inform the spirometry QC, the increase in sample size where sepection, the therm where sample sizes are matters, such a new the increase in sample size and power from our approach is could be applicable to a wide range of epidemiological research questions, such as assessing genomic standard connect general arms and power from our approach is could be applicable to a wide range of epidemiological research questions, such as assessing lung function associations with environmental factors or bio increase in sample size and power from our approach is could be approach is a mini-vinger epidemiological research questions, such as assessing lung function associations with environmental factors or biomarker levels. Bio epidemiological research questions, such as a such as assessing lung functions or biomarker levels. Biomarker measures are becoming more available as biotechnology
6 factors or biomarker measures are becoming more available as biotechnology
 $\overline{6}$

requiring intricate QC steps.
One limitation of our study is that we were not able to assess all ATS/ERS spirometry QC criteria. To
fully meet 2019 ATS/ERS QC criteria, blows must also be free from glottic closure and from requiring intricate QC steps.
One limitation of our study if
fully meet 2019 ATS/ERS QC
of technical issues (faulty ze
automated spirometer outp
which would be expected to
In summary, our study higl fully meet 2019 ATS/ERS QC criteria, blows must also be free from glottic closure and from evidence
of technical issues (faulty zero-flow setting, leak or obstruction). These are not generally included in
automated spirome

Fully meet 2019 ATS/ERS (faulty zero-flow setting, leak or obstruction). These are not generally included in
automated spirometer output. Additionally, the analysis could benefit from a more powerful PRS,
which would be ex of technical isotopic technical is understanded spirometer output. Additionally, the analysis could benefit from a more powerful PRS, which would be expected to yield superior prediction performance.
In summary, our study and the world be expected to yield superior prediction performance.

In summary, our study highlights a useful application of GRS in epidemiological studies of lung

function. GRS-informed QC boosts sample size and power f In summary, our study highlights a useful application of GRS in function. GRS-informed QC boosts sample size and power for epide
by our discovery of new genetic associations for lung function. R sare available from https:/ Function. GRS-informed QC boosts sample size and power for epidemiological studies, as illustrated
by our discovery of new genetic associations for lung function. R scripts implementing this analysis
are available from <u>h</u> function. GRS-information. GRS-information. GRS-informed QC.
by our discovery of new genetic associations for lung function. R scripts implementing this analysis
are available from <u>https://github.com/legenepi/GRS informed</u> by the metric cyclin associations for discovery of new stripts informed and scripts implementing this analysis
are available from <u>https://github.com/legenepi/GRS_informed_QC</u>. are available from https://gitt.up/default.org/
are available from the community of the co
community of the community of the community of the community of

 \overline{d} ind in the spirogram was greater than 5%.
the spirogram was greater than 5%.
Panalysis for this study, a repeatability. the spirogram was greater than 5 study, a repeatability of this study, a repeatability of the set of the set of the spirogram of the spir In previous lung function GMAS applied.

In our baseline and in the study, and is a repeated of the st of 250ml was applied.

Table 2: The GRS association with FEV₁/FVC derived from blows with varying inclusion criteria and repeatability threshold.

or standard dev

EXP

The Second e of FEV₁/FVC per SD change of GRS
Analysis of GRS
400 3935 1683545 169.49 393545
400 393545 169.49 393545 169.49 393545
400 394.49 394.49 394.49 394.49 394.49 394.49 394.49 394.49 394.49 394.49 394.49 394.49 394.49 394. * stands for standard deviation (SD) change of FEV1/FVC per SD change of GRS

Figure 1: Volume-time curve. The curve plots the total volume of air expired by time, from full inspiration until full expiration. Normal blow shows rapid increase in volume of air expired initiation curve forms a plateau; inspiration until the inputation is that all the increase in the computation. Then curve forms a plateau; Obstructive blow shows prolonged increase but ends the same point;
Restrictive blow shows rapid increase as normal, then curve forms a plateau; Obstructive forms a plateau much some point;
Restrictive blow shows rapid increase as normal, but curve forms a plateau much sooner. Restrictive blow shows rapid increase as normal, but curve forms a plateau much sooner.

Utilising hundreds to millions of genetic variants to construct weighted GRS/PRS

Figure 2: Basic principle of constructing GRS/PRS. Schematic showing the principles of constructing
a GRS. Top section (a) shows a theoretical example of an unweighted risk score is calculated at three
SNPs, assuming an ad SNPs, assuming an additive model; middle section (b) shows a weighted risk score for the same
alleles, whereby the score for each allele is weighted according to its association with lung function;
bottom section (c) shows alleles, whereby the score for each allele is weighted according to its association with lung funct
bottom section (c) shows a normal distribution of individual scores for a GRS/PRS using hundrec
millions of genetic varian bottom section (c) shows a normal distribution of individual scores for a GRS/PRS using hundreds to
millions of genetic variants, where the score at each variant is weighted according to its association
with the trait of i bottom section (c) shows a normal distribution of the state of individual scores in the section of genetic variants, where the score at each variant is weighted according to its association with the trait of interest (lung millions of generations, with the trait of interest (lung function), ideally in an independent population. with the trait of interest (lung function), ideally in an independent population.

rigure 3: Flowchart for evaluating spirometer blow quality and spirometry QC criteria. Definitions
of acceptability flags ("COUGH", "EXPFLOW", "END", "START", "START2", "CONSISTENCY",
"NEGATIVE", "REJECT") were given in Ta "NEGATIVE", "REJECT") were given in Table 1.
"NEGATIVE", "REJECT") were given in Table 1. WEGATIVE", "REJECT") were given in Table 1.

FEV₁/FVC derived from spirometer blows stratified by acceptability flags shown as the s.d. change in FEV₁/FVC per s.d. increase in GRS. N.B. A blow could be included in multiple acceptability flag strata if it carries FEV₁/FVC per s.d. increase in GRS. N.B. A blow could be included in multiple acceptability flag strata
if it carries multiple acceptability flags. **b**, Iterative selection process. **c**, GRS association with
FEV₁/FVC de If it carries multiple acceptability flags. **b**, Iterative selection process. **c**, GRS association with FEV₁/FVC derived from grouped spirometer blows shown as the s.d. change in FEV₁/FVC per s.d. increase in GRS. Gro if it carries multiple acceptability flags. **b**, Iterative selection process. **c**, GRS association with FEV₁/FVC derived from grouped spirometer blows shown as the s.d. change in FEV₁/FVC per s.d. increase in GRS. Grou FEVI/FITE INTERT IS COMPLIF PRESENT INTERTATION INTERTATION INTERTS IN THE SERVIES IN GRIS. Group 1 represents blows with hesitation flags only ("START" or "START2"). Group 2 represents blows with cough, end-of-blow or tim increase in Group 1 represents blows with cough, end-of-blow or time to peak flow flags ("COUGH", "END" or "RESPFLOW") but without flags of "REJECT", "CONSISTENCY" or "NEGATIVE". Group 3 represents blows with acceptability "EXPFLOW") but without flags of "REJECT", "CONSISTENCY" or "NEGATIVE". Group 3 represents
blows with acceptability flags of "REJECT", "CONSISTENCY" or "NEGATIVE". The height of the bars
shows the point estimate of the effe blows with acceptability flags of "REJECT", "CONSISTENCY" or "NEGATIVE". The height of the bars
shows the point estimate of the effect and whiskers show the 95% Cl.
Shows the point estimate of the effect and whiskers show blows the point estimate of the effect and whiskers show the 95% CI.

Shows the point estimate of the effect and whiskers show the 95% CI. shows the point estimate of the effect and whiskers show the 95% CI.

Figure 5: Examine the genetic association results of FEV₁/FVC signals estimated from relaxed blow
inclusive criteria at varying repeatability threshold of 250 ml, 300 ml and 350 ml. a, compare the inclusive criteria at varying repeatability direshold of 250 ml, 500 ml and 350 ml. a, compare the
effect sizes of FEV₁/FVC signals using relaxed spirometry QC (New effect size, including blows
previously only excluded f previously only excluded for cough, hesitation, excessive time to peak flow or lack of terminal
plateau ("START", "START2", "COUGH", "END", "EXPFLOW") in addition to accepted blows) to
result obtained from previous spirome plateau ("START", "START2", "COUGH", "END", "EXPFLOW") in addition to accepted blows) to
result obtained from previous spirometry QC (Previous effect size, only including accepted blo
compare the p values of FEV₁/FVC sig positive that independent obtained from previous spirometry QC (Previous effect size, only including accepted blows).
compare the p values of FEV₁/FVC signals using relaxed spirometry QC (New -log(P)) to the result
obta result obtained from previous spirometry QC (Frevious effect size, only including accepted blows). b,
compare the p values of FEV₁/FVC signals using relaxed spirometry QC (New -log(P)) to the result
obtained from previou obtained from previous spirometry QC (Previous -log(P)) to the results of α obtained from previous spirometry QC (Previous -log(P)).

- 1. Youn
 lung

p. 61

2. Vissc

Amer

3. Shrin
 gene
-
- 1. Young, R.P., R. Hopkins, and T.E. Eaton, Forced expiratory volume in one second: not just a
lung function test but a marker of premature death from all causes. Eur Respir J, 2007. 30(4
p. 616-22.
2. Visscher, P.M., et a rang function test but a marker of premature death from an causes. Eur Respir 3, 2007. 30(4).
p. 616-22.
Visscher, P.M., et al., 10 Years of GWAS Discovery: Biology, Function, and Translation. The
American Journal of Human *Fisscher, P*
Visscher, P
American J
Shrine, N.,
*genes and
risk.* Natur_i
S1(3): p. 48 2. Vissencr, P.M., et al., 10 Years of GWAS Discovery: Biology, Panction, and Translation. The
American Journal of Human Genetics, 2017. 101(1): p. 5-22.
3. Shrine, N., et al., *Multi-ancestry genome-wide association analy* American Journal of Human Genetics, 2017. 101(1): p. 5-22.
Shrine, N., et al., *Multi-ancestry genome-wide association an*
genes and pathways influencing lung function and chronic of
risk. Nature Genetics, 2023. 55(3): p. genes and pathways influencing lung function and chronic obstructive pulmonary disease
risk. Nature Genetics, 2023. **55**(3): p. 410-422.
- 3. Shrine, N., et al., *Multi-ancestry genome-wide association analyses improve resolution of*
genes and pathways influencing lung function and chronic obstructive pulmonary disease
risk. Nature Genetics, 2023. 55(3): p. 4 risk. Nature Genetics, 2023. **33**(3): p. 410-422.
Shrine, N., et al., *New genetic signals for lung f*
obstructive pulmonary disease associations acr
51(3): p. 481-493.
Graham, B.L., *Pulmonary function standards: a*
119
-
- 4. Shrine, N., et al., New genetic signals for lang function miginight pathways and chronic

obstructive pulmonary disease associations across multiple ancestries. Nat Genet, 2015

51(3): p. 481-493.

Graham, B.L., Pulmona obstructive pulmonary alsease associations across multiple ancestries. Nat Genet, 2015.
51(3): p. 481-493.
Graham, B.L., *Pulmonary function standards: a work in progress.* Respir Care, 2012. 57(7
1199-200.
Haynes, J.M. an **S1(3): p. 481-493.**
Graham, B.L., *Puln*
1199-200.
Haynes, J.M. and E
Society Acceptabili
Care, 2015. **60(5):**
Hankinson, J.L., et
quality criteria for
Choi, S.W., T.S. Ma 5. Graham, B.L., Palmonary Janction standards: a work in progress. Respir care, 2012. 57(7): p.

1199-200.

Haynes, J.M. and D.A. Kaminsky, The American Thoracic Society/European Respiratory

Society Acceptability Criteria ----
Haynes, J.M
Society Acc
Care, 2015
Hankinson
quality crit
Choi, S.W.,
analyses. N
Sudlow, C._, 6. Haynes, J.M. and D.A. Kaminisky, The American Thoracic Society/European Respiratory

Society Acceptability Criteria for Spirometry: Asking Too Much or Not Enough? Respirat

Care, 2015. 60(5): p. e113-e114.

Hankinson, J
- Society Acceptability Criteria for Spirometry: Asking Too Midel or Not Enough? Respiratory
Care, 2015. 60(5): p. e113-e114.
Hankinson, J.L., et al., Use of forced vital capacity and forced expiratory volume in 1 second
qua Care, 2015. **00**(5): p. e113-e114.
Hankinson, J.L., et al., *Use of forc*
quality criteria for determining a
Choi, S.W., T.S. Mak, and P.F. O'F
analyses. Nat Protoc, 2020. **15**(9)
Sudlow, C., et al., *UK biobank: an*
r
-
- 7. Hankinson, J.L., et al., Ose of foreed vital capacity and forced expiratory volume in 1 second
quality criteria for determining a valid test. Eur Respir J, 2015. 45(5): p. 1283-92.
8. Choi, S.W., T.S. Mak, and P.F. O'Re quality criteria for determining a valid test. Eur Respir 3, 2013. 43(3): p. 1203-92.
Choi, S.W., T.S. Mak, and P.F. O'Reilly, *Tutorial: a guide to performing polygenic r*
analyses. Nat Protoc, 2020. **15**(9): p. 2759-2772 8. Choi, S.W., T.S. Mak, and P.F. O'Reilly, Tutorial: a guide to performing polygenic risk score
analyses. Nat Protoc, 2020. **15**(9): p. 2759-2772.
9. Sudlow, C., et al., *UK biobank: an open access resource for identifyin*
-
-
- analyses. Nat Protoc, 2020. 13(9): p. 2759-2772.
Sudlow, C., et al., *UK biobank: an open access res*
range of complex diseases of middle and old age.
Miller, M.R., et al., *Standardisation of spirometry*
p. 319-338.
Loh, 9. Sudlow, C., et al., *C. Biobank: an open access resource for identifying the causes of a wide*

range of complex diseases of middle and old age. PLoS Med, 2015. 12(3): p. e1001779.

10. Miller, M.R., et al., *Standardis* range of complex diseases of middle and old age. PLOS Med, 2013. 12(3): p. e1001773.
Miller, M.R., et al., *Standardisation of spirometry.* European Respiratory Journal, 2005.
p. 319-338.
Loh, P.-R., et al., *Efficient Bay* 10. Miller, M.R., et al., *standardisation of spirometry.* European Respiratory Journal, 2003. 20(2):

11. Loh, P.-R., et al., *Efficient Bayesian mixed-model analysis increases association power in large*

cohorts. Nature P. - B. - Cohorts.
Loh, P.-R., e
cohorts. Nat
Okbay, A., e
symptoms, e
48(6): p. 624
Turley, P., e
MTAG. Natu
Alexander, I 11. Evin, P. R., et al., Efficient Bayesian mixed model analysis increases association power in large

cohorts. Nature Genetics, 2015. 47(3): p. 284-290.

12. Okbay, A., et al., Genetic variants associated with subjective conorts. Nature Genetics, 2013. 47(3): p. 264-250.
Okbay, A., et al., *Genetic variants associated with s*
symptoms, and neuroticism identified through gene
48(6): p. 624-33.
Turley, P., et al., *Multi-trait analysis of* 12. Okbay, A., et al., Genetic variants associated with subjective well-being, depressive
symptoms, and neuroticism identified through genome-wide analyses. Nat Genet, 2
48(6): p. 624-33.
13. Turley, P., et al., Multi-trai
-
-
- symptoms, and neuroticism identified through genome wide analyses. Nat Genet, 2016.
48(6): p. 624-33.
Turley, P., et al., *Multi-trait analysis of genome-wide association summary statistics usin*
MTAG. Nature Genetics, 201 48(6): p. 624-33.
Turley, P., et al., *I*
MTAG. Nature Ge
Alexander, D.H., .
unrelated individ
Dorward, D.A., et
governing neutro
1172-84.
Li, S., et al., *Whol* 13. Turley, P., et al., Multi-trait analysis of genome-wide association summary statistics using

MTAG. Nature Genetics, 2018. 50(2): p. 229-237.

14. Alexander, D.H., J. Novembre, and K. Lange, *Fast model-based estimatio* MTAG. Nature Genetics, 2018. **30**(2): p. 223-237.
Alexander, D.H., J. Novembre, and K. Lange, *Fast i*
unrelated individuals. Genome Res, 2009. **19**(9): p
Dorward, D.A., et al., *The role of formylated pepti*
governing neu 14. Alexander, D.H., J. Novembre, and K. Lange, Past moder based estimation by antestry in

15. Dorward, D.A., et al., The role of formylated peptides and formyl peptide receptor 1 in

15. Dorward, D.A., et al., The role o unrelated malviduals. Genome Res, 2009. 19(9): p. 1033-64.
Dorward, D.A., et al., *The role of formylated peptides and for*
governing neutrophil function during acute inflammation. An
1172-84.
Li, S., et al., *Whole-genome* 15. Borward, D.A., et al., *The role of formylated peptides and formyr peptide receptor 1 in*
governing neutrophil function during acute inflammation. Am J Pathol, 2015. **185**(5): p
1172-84.
Li, S., et al., *Whole-genome s*
- governing neutrophil function during acute inflammation. Am J Pathol, 2015. 185(5): p.
1172-84.
Li, S., et al., Whole-genome sequencing of half-a-million UK Biobank participants. medR:
2023: p. 2023.12.06.23299426.
Fatumo, Li, S., et a
2023: p. 2
Fatumo, S
p. 243-25
- 16. Li, S., et al., Whole-genome sequencing of half-a-million of Biobank participants. meditary,
2023: p. 2023.12.06.23299426.
17. Fatumo, S., et al., *A roadmap to increase diversity in genomic studies*. Nat Med, 2022. **2** Fatumo, S., et al., *A roadmap to*
p. 243-250.
. 17. Fatumo, S., et al., A roadmap to increase diversity in genomic studies. Nat Med, 2022. 28(2):
p. 243-250. p. 243-250.

Supplementary Data for the manuscript entitled "Genetic risk score-informed re-evaluation of spirometry quality control to maximise power in epidemiological studies of lung function".

Table of Contents

Supplementary Methods

Constructing GRS and testing its association with lung function traits

215, 372 and 442 autosomal signals (genome-wide significant threshold of $P < 5 \times 10^{-9}$) associated
with each trait respectively, using weights estimated from a multi-ancestry meta-regression in
244,472 individuals across 425, 372 and 442 autosomal signals (genome-wide significant threshold of $P < 5 \times 10^{-9}$) associated
with each trait respectively, using weights estimated from a multi-ancestry meta-regression in
244,472 individuals across 244,472 individuals across 42 cohorts (**Supplementary Table 1**) that are independent from the UK
Biobank[3]. We calculated the GRSs for 406,474 European-ancestry individuals in UK Biobank The
associations between GRSs and

 $244,472$ individuals across 42 conorts (**Supplementary Table 1**) that are independent from the OK
Biobank[3]. We calculated the GRSs for 406,474 European-ancestry individuals in UK Biobank The
associations between GRSs a associations between GRSs and lung function traits were tested using a linear model, adjusted for
age, age squared, sex, height, smoking status and ten principal components.
For the first step of GRS association with lung age, age squared, sex, height, smoking status and ten principal components.

For the first step of GRS association with lung function traits stratified all the blows by acceptability

flag, a blow could be included in mult For the first step of GRS association with lung function traits stratified all th
flag, a blow could be included in multiple strata if it had multiple accepta
acceptability flag stratum, we identified the best lung functi For the first step of GRS association with lung function training and the first strategies. Within each acceptability flag stratum, we identified the best lung function measures (i.e. the best measure was defined as the h acceptability flag stratum, we identified the best lung function measures (i.e. the best measure was defined as the highest measure for FEV₁ and FVC, whilst FEV₁/FVC was derived from the selected FEV₁ and FVC) for e defined as the highest measure for FEV₁ and FVC, whilst FEV₁/FVC was derived from the selected
FEV₁ and FVC) for each participant and tested the association of the GRS with the measured lung
function trait to identi

Bayesian framework to assess the credibility of GWAS findings

defined as the highest measure for FEV₁ and FFEV₁ and FVC) for each participant and tested the association of the GRS with the measured lung function trait to identify which strata were significantly associated with t Function trait to identify which strata were significantly associated with the GRS.
Bayesian framework to assess the credibility of GWAS findings
For genome-wide association testing under an additive model using BOLT-LMM[Function training interaction testing under an additive model using BOLT-
For genome-wide association testing under an additive model using BOLT-
untransformed residuals from linear regression of lung function traits agai For genome-wide association testing and the contrast of lung function traits against age, age², sex, height,
smoking status. To assess the credibility of our findings from the genetic association study using the
relaxed relaxed spirometry QC criteria, we used a standard Bayesian framework previously described by
Okbay *et al*[12] and Turley *et al*[13]. Briefly, we used maximum likelihood to fit the SNP effect from
the GWAS result using Okbay *et al*[12] and Turley *et al*[13]. Briefly, we used maximum likelihood to fit the SNP effect from
the GWAS result using a mixture of a Gaussian prior with a point mass at zero. The prior for effect
size correspondi Okbay et al₁12] and Turley et al₁13]. Briefly, we used maximum likelihood to it the SNP effect rom
the GWAS result using a mixture of a Gaussian prior with a point mass at zero. The prior for effect
size corresponding

$$
\beta_j \sim \begin{cases} N(0, \tau^2) & \text{with probability } \pi \\ 0 & \text{otherwise} \end{cases}
$$

the CONTREST and SUP is
size corresponding to any given SNP j is
 $\beta_j \sim \begin{cases} N(0, \tau^2) & with \ probability \pi \ 0 & otherwise \end{cases}$
where τ^2 is the prior belief of the variance of effect size of non-null SNPs and π is the prior belief of
the f $\beta_j \sim \begin{cases} N(\beta) \end{cases}$
where τ^2 is the prior belief of the variation of non-null SNPs. For each
likelihood estimates of parameters to cats
its estimated effect size and given that 。
。
. where τ^2
the fracti
likelihood
its estima
independ is the prior belief of the variance of effect size of non-null SNPs and *h* is the prior belief of
on of non-null SNPs. For each assumed prior π from 1% to 99%, we used the maximum
lestimates of parameters to calculate the fraction of non-null SNPs. For each assumed prior *h* from 1% to 99%, we used the maximum
likelihood estimates of parameters to calculate the posterior probability that a SNP is non-null given
its estimated effect siz its estimated effect size and given that it is significant. To assess the replication of the effect size in
independent study, the effect size for each SNP is corrected for winner's curse by
 $\hat{\beta}_{adj,j} = (1 - \pi_{posterior,j}) \frac{\hat{\tau}^2}{$

$$
\hat{\beta}_{adj,j} = (1 - \pi_{posterior,j}) \frac{\hat{\tau}^2}{\hat{\tau}^2 + \hat{\sigma}_j^2} \hat{\beta}_j
$$

independent study, the effect size for each SNP is corrected for winner's curse by
 $\hat{\beta}_{adj,j} = (1 - \pi_{posterior,j}) \frac{\hat{\tau}^2}{\hat{\tau}^2 + \hat{\sigma}_j^2} \hat{\beta}_j$

where $\pi_{posterior,j}$ is the posterior probability of the SNP *j* being non-null and $\$ $\hat{\beta}_{adj,j} = (1 - \pi_{posterior,j}) \frac{\hat{\tau}^2}{\hat{\tau}^2 + \hat{\sigma}_j^2} \hat{\beta}_j$
where $\pi_{posterior,j}$ is the posterior probability of the SNP j being non-null and
standard error of the GWAS estimates for SNP j . β
where $\pi_{posterior,j}$ is the
standard error of the GW, $\frac{1}{2}$ where n_{post}
standard erro $\eta_{\text{prior},j}$ is the posterior probability of the SNP j being non-null and o_j
in of the GWAS estimates for SNP j. is the squared standard error of the GWAS estimates for SNP j.

Supplementary Figures

Supplementary Figure 1: Ranking the impact of acceptability flags on spirometer blows. **a,** GRS association with FEV₁ derived from spirometer blows stratified by
acceptability flags shown as the s.d. change in FEV₁ per s.d. increase in GRS. N.B. A blow could be
included in multiple acc acceptability flags stranged in multiple acceptability flags stranged in multiple acceptability flags. **b**, Iterative selection process. **c**, GRS association with FEV₁ derived from grouped spirometer blows shown as the included in multiple acceptability ring strata in it carries multiple acceptability rings. b, iterative
selection process. c, GRS association with FEV₁ derived from grouped spirometer blows shown as
the s.d. change in FE selection process. c, GRS association with FEV1 derived from grouped spirometer blows shown as
the s.d. change in FEV₁ per s.d. increase in GRS. Group 1 represents blows with hesitation flags only
("START" or "START2"). ("START" or "START2"). Group 2 represents blows with cough, end-of-blow or time to peak flow flags
("COUGH", "END" or "EXPFLOW") but without flags of "REJECT", "CONSISTENCY" or "NEGATIVE".
Group 3 represents blows with acc ("COUGH", "END" or "EXPFLOW") but without flags of "REJECT", "CONSISTENCY" or "NEGATIVE".
Group 3 represents blows with acceptability flags of "REJECT", "CONSISTENCY" or "NEGATIVE". The
height of the bars shows the point e ("COUGH") and the United Handle Hags of "REJECT", "CONSISTENCY" or "NEGATIVE". The
Group 3 represents blows with acceptability flags of "REJECT", "CONSISTENCY" or "NEGATIVE". The
height of the bars shows the point estimate Group 3 represents blows the point estimate of the effect and whiskers show the 95% Cl
height of the bars shows the point estimate of the effect and whiskers show the 95% Cl height of the bars shows the point estimate of the effect and whiskers show the 95% CI

 Supplementary Figure 2: Ranking the impact of acceptability flags on spirometer blows. **a**, GRS association with FVC derived from spirometer blows stratified by acceptability flags shown as the s.d. change in FVC per s.d. increase in GRS. N.B. A blow could be included in multiple acceptabil included in multiple acceptability flag strata if it carries multiple acceptability flags. **b**, Iterative selection process. **c**, GRS association with FVC derived from grouped spirometer blows shown as the s.d. change in F included in multiple acceptability ring strata in it carries multiple acceptability rings. b, iterative
selection process. c, GRS association with FVC derived from grouped spirometer blows shown as
the s.d. change in FVC p selection process. c, GRS association with FVC derived from grouped spirometer blows shown as
the s.d. change in FVC per s.d. increase in GRS. Group 1 represents blows with hesitation flags only
("START" or "START2"). Grou ("START" or "START2"). Group 2 represents blows with cough, end-of-blow or time to peak flow flags
("COUGH", "END" or "EXPFLOW") but without flags of "REJECT", "CONSISTENCY" or "NEGATIVE".
Group 3 represents blows with acc ("COUGH", "END" or "EXPFLOW") but without flags of "REJECT", "CONSISTENCY" or "NEGATIVE".
Group 3 represents blows with acceptability flags of "REJECT", "CONSISTENCY" or "NEGATIVE". The
height of the bars shows the point e ("COUGH") and the United Handle Hags of "REJECT", "CONSISTENCY" or "NEGATIVE". The
Group 3 represents blows with acceptability flags of "REJECT", "CONSISTENCY" or "NEGATIVE". The
height of the bars shows the point estimate Group 3 represents blows the point estimate of the effect and whiskers show the 95% Cl
height of the bars shows the point estimate of the effect and whiskers show the 95% Cl height of the bars shows the point estimate of the effect and whiskers show the effect and whiskers show the 9
Similar shows the 95% City of the 95% City of the 95% City of the 95% City of the 95% City
Similar show the 95%

Supplementary Tables

Supplementary Table 1: Sample size in 42 non-UKB cohorts

Supplementary Table 2: Additional signals for FEV₁/FVC using relaxed spirometry QC criteria

*It was defined as novel if the sentinel SNP was not within 1 MB distance to the sentinels reported in Shrine et al. 2023 or if the sentinel SNP was not in LD with the sentinels reported in Shrine et al. 2023 $(R^2<0.2)$

**This column indicates whether the nearest gene of the sentinel SNP was reported either in Shrine et al. 2023 or other studies in GWAS Catalog