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Abstract
Precision medicine promises significant health benefits but faces challenges such as the need
for complex data management and analytics, interdisciplinary collaboration, and education of
researchers, healthcare professionals, and participants. Addressing these needs requires the
integration of computational experts, engineers, designers, and healthcare professionals to
develop user-friendly systems and shared terminologies. The widespread adoption of large
language models (LLMs) like GPT-4 and Claude 3 highlights the importance of making complex
data accessible to non-specialists. The Stanford Data Ocean (SDO) strives to mitigate these
challenges through a scalable, cloud-based platform that supports data management for various
data types, advanced research, and personalized learning in precision medicine. SDO provides
AI tutors and AI-powered data visualization tools to enhance educational and research
outcomes and make data analysis accessible for users from diverse educational backgrounds.
By extending engagement and cutting-edge research capabilities globally, SDO particularly
benefits economically disadvantaged and historically marginalized communities, fostering
interdisciplinary biomedical research and bridging the gap between education and practical
application in the biomedical field.
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Artificial Intelligence, Large Language Model Data Visualization, Precision Medicine,
Personalized Learning, Multi-Omics, Wearables, Ethics
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Main
Precision medicine utilizes comprehensive health data to facilitate individualized disease
prevention, diagnosis, and treatment by accounting for distinct biological, lifestyle, and
environmental differences1. The process of extracting valuable insights from health data
necessitates bioinformatics expertise, access to low-latency systems for secure and scalable
data collection, and efficient processing and storage of vast volumes of multi-modal data.
However, the high costs of acquiring such expertise and computing resources confine precision
medicine advancements to well-funded institutions in high-income countries (HICs), thereby
perpetuating the disparity in biomedical research, disease diagnosis, and treatment in low- and
middle-income countries (LMICs)2,3.

Training precision medicine professionals in underserved and underprivileged communities not
only fosters inter-regional research collaborations that pool diverse expertise and financial
resources but crucially enhances local healthcare outcomes. By empowering these communities
with skilled professionals, more tailored and effective health interventions will be enabled,
directly addressing their unique health challenges. This approach not only generates significant
amounts of data and leads to high-impact publications4, but more importantly, it translates into
tangible improvements in personal health, ensuring that the primary goal of such training is to
enhance the well-being of the community members.

By incorporating diverse data and facilitating extensive knowledge exchange, noteworthy
collaborations have proven to accelerate biomedical discoveries, such as the Encyclopedia of
DNA Elements (ENCODE)5, the Human Microbiome Project6, the International Cancer Genome
Consortium (ICGC)7, the Human Heredity and Health in Africa (H3Africa) Initiative8, and the
Global Alliance for Genomics and Health (GA4GH)9. By equipping professionals in
underrepresented communities with precision medicine training, we hope to better serve them
as well as directly address local data deficits and ethical challenges, thereby enhancing health
outcomes. Moreover, the study of underrepresented groups is expected to generate new
knowledge. For example, the H3Africa Initiative revealed more than 3 million new genetic
variants relevant to viral immunity, DNA repair, and metabolism from data of 426 people across
50 African ethnolinguistic groups10. Since only 2% of data in genome-wide association studies
(GWAS) were from African populations, few research discoveries are specific to these
populations11. For American Indian/Alaska Native communities, the data deficit is partially due to
the mistrust from research misconduct83,84. However, prioritizing the communities’ needs and
incorporating tribal governance in the research process have led to recent successful research
collaborations12.

In addition, the growing bioinformatics and engineering demand in precision medicine calls for
effective training of non-life science professionals to contribute to large-scale initiatives, such as
the Molecular Transducers of Physical Activity Consortium (MoTrPAC)13, Human BioMolecular
Atlas Program (HuBMAP)14, Human Tumor Atlas Network (HTAN)15, Bridge to Artificial
Intelligence (Bridge2AI)16, Human Microbiome Project (HMP)17, and Genotype-Tissue
Expression (GTEx) project18. Large language models (LLMs) have the potential to become the
propeller to deliver personalized education at scale, and to enable patients to gain actionable

3

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 1, 2024. ; https://doi.org/10.1101/2024.07.31.24311182doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.31.24311182


insights from healthcare data19-22. Studies23-27 have shown that personalized learning can
significantly increase student engagement and satisfaction, leading to improved learning
outcomes.

In order to enable economically disadvantaged and historically marginalized communities to
become active contributors to precision medicine research and improve community health, we
designed and implemented the Stanford Data Ocean (SDO) as a cloud-based, serverless,
LLMs-powered platform for researchers and learners to seamlessly access and analyze large
biomedical datasets, including public datasets—such as multi-omics and wearables. SDO also
offers precision medicine certificate training.

Results
Stanford Data Ocean Overview
SDO was designed to achieve three primary objectives: 1) robust data management that
enables ease of access to diverse multi-omics and wearable data, ranging from fully open
access (e.g., COVID19 wearable datasets42,70) to partially restricted (Integrated Personal Omics
Profiling project datasets71,77); 2) personalized education through the use of large-scale datasets
and LLMs; and 3) cutting-edge research analytics that capitalizes on AI-driven visualization.
Additionally, by transforming scientific papers into standalone learning modules—comprising
datasets, code, and exercises—SDO accelerates research innovation while promoting
reproducibility and collaborative knowledge sharing.

The platform achieves scalability by simplifying the initial setup by eliminating the need for
extensive technical expertise and infrastructure maintenance. It also effectively enhances the
learning experience through the integration of containerization and virtual machines, ensuring
uninterrupted access to educational content. The microservice architecture and real-time
monitoring tools optimize performance and security, adhering to HIPAA standards. The platform
also standardizes modules to promote consistency and reproducibility in bioinformatics
research, supporting sustainable development in precision medicine. For more details, see
Methods.

Comprehensive Multi-Database Platform for Integrated Biomedical Data Analysis
SDO provides a multi-database platform designed to handle a wide variety of biomedical data
types, including wearables, genomics, epigenomics, microbiome, metabolomics, and
proteomics. This diversity allows researchers to create comprehensive, real-time cohorts by
integrating multiple data types, which can be pivotal for precision medicine research and
personalized healthcare interventions. Users can seamlessly access and analyze these
datasets through an integrated Jupyter notebook environment. The platform supports data from
107 iPOP subjects with 1416 visits in multiple longitudinal studies71,77,85, encompassing RNAseq,
lipidomics, microbiome (gut 16s, nares 16s), metabolites, cytokine, targeted assays, and clinical
test data (8637 datasets total). 107 genome sequences are also available. Additionally, SDO
includes de-identified data (sleep, heart rate, step) for two COVID studies: an early COVID-19
detection study of 5,300 participants (280 datasets and over 104 million data points)70 and a real
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time alerting study of 3,318 participants (4246 datasets and over 1.5 billion data points)42. These
datasets enable SDO to offer extensive research and educational activities.

A. A Sample Networked Curriculum
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B. The integrated network curriculum on the Stanford Data Ocean (SDO)

Figure 1. Comprehensive Networked Curriculum for Personalized Medicine Education on
Stanford Data Ocean. A. A Sample Networked Curriculum. A well-rounded curriculum in
personalized medicine education includes networked modules in all relevant disciplines. This
sample modular, networked curriculum consists of four major types of modules: 1) Fundamental
Learn Module: training material for understanding fundamental concepts around data (e.g.,
multi-omics), statistics and visualization (e.g., probabilities and distributions), programming and
technology (e.g., cloud computing), and Career Readiness (e.g., a series of modules designed
to equip students with essential professional skills and industry insights.) The career readiness
includes training in effective communication, teamwork, problem-solving, adaptability, and
research capabilities such as how to design a study, how to write a scholarly article, and how to
present a paper. It also covers career-specific skills such as data privacy ethics, project
management, and the use of AI tools in real-world scenarios. These modules aim to bridge the
gap between academic learning and the demands of the workplace, preparing students for
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successful careers in bioinformatics and related fields; 2) Advanced Learn Module: a mix of
multiple interdisciplinary concepts built on top of prerequisite fundamental modules (e.g.,
Processing large Variant Call Format (VCF) files needs the understanding of genetic mutation,
basics statistics such as allele frequency, and how to store and process large files on the cloud);
and 3) Research Module: a combination of advanced and fundamental modules and provide
more advanced information around a certain research topic (e.g., a research paper on
Advances and prospects for the Human BioMolecular Atlas Program (HuBMAP) needs
understanding of the HuBMAP dataset such as germline mutations and how to process large
VCF files on the cloud in a secure fashion). B. The Integrated Network Curriculum on the
Stanford Data Ocean (SDO). A sample network curriculum on SDO structured around 24 Learn
modules divided into six key thematic areas: Ethics, Programming, Statistics and Visualization,
Cloud Computing, Data (which includes Multi-omics and Wearables), and AI/ML. Each module
functions as an independent unit equipped with various educational artifacts such as videos,
interactive notebooks, exams, self-evaluations, and practical exercises. This design is intended
to cultivate a thorough understanding and proficient practical skills in each specific domain,
ensuring that learners gain both theoretical knowledge and hands-on experience relevant to the
field of bioinformatics and AI/ML.

Making Learning Precision Medicine Accessible
The curriculum, illustrated in Figures 1A and 1B, outlines Fundamental Learning Modules
covering foundational concepts such as Ethics, Programming, Statistics, Visualization, Cloud
Computing, and Data Analysis (Multi-omics and Wearables), as well as Advanced Learning
Modules that cover thematic areas like Artificial Intelligence (AI) and Machine Learning (ML)
techniques and applications in precision medicine. It integrates continuously updated content
based on the latest research findings29-32 and includes interactive educational content using
videos, guided Jupyter notebooks33, and exercises to support professional skill development.

The platform supports individuals with diverse educational backgrounds using a modular and
networked curriculum, simplifying access without requiring software installations. This
curriculum gradually introduces learners to bioinformatics, guiding them from basic concepts to
advanced interdisciplinary topics such as biology, computer science, and statistics. This
structured approach not only makes the field more accessible to beginners, but also
accommodates personalized learning pathways, enhancing module reusability and keeping
learners up-to-date with new developments28. Additionally, to help ensure accessibility to
students of all technical levels and socio-economic backgrounds, SDO’s AI-driven tutor and
visualization tools offer 24/7 assistance. The SDO’s modular course design enables educators
to leverage a customizable curriculum by reusing existing modules and creating new ones. The
train-the-trainer program provides educators with tools to implement instructional design best
practices to effectively help students develop career-ready skills (see Career Readiness in
Figure 1A).

The SDO educational platform is offered as a certificate program. Within a year since its
inception in June 2023, SDO's precision medicine programs enrolled 637 students, offering free
access to those earning under $70,000. As of June 2024, 95.5% of scholarship applicants
received free access in all the 50 U.S. states and 44 countries. Women take up 49%, projecting
a positive long-term impact on their household education, healthcare, and income45,46

(Supplementary Table 1).
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Learning Outcome and Satisfaction
We evaluated students' learning outcomes and programs satisfaction by measuring certificate
completion rate, students’ self-efficacy, and perceived program impact. 

The overall SDO programs completion rate is 34.69%, and for structured cohort program, it is
85.71%, both exceeding the Massive Open Online Courses (MOOCs) at 7%-10%47-49. In
addition, certified students are required to achieve above 80% answer accuracy on formative
assessment in quiz format following each learning module and 75% accuracy on the certificate
exam following completing all learning modules.

We measure self-efficacy by comparing students' 1-5 Likert scale confidence ratings before and
after each learning module on how much they agree they can achieve the module’s learning
goals (see Supplementary Table 3). A significant growth in confidence ratings is observed
across all learning modules, especially in Cloud Computing and Bioinformatics. Ratings of
moderately confident and above increased by 56.65% to 93.81% for Cloud Computing and
57.21% to 91.15% for Bioinformatics (Figure 2). High academic self-efficacy in Science,
Technology, Engineering, and Mathematics (STEM) is strongly associated with forming a
science identity, taking more science courses, pursuing a science career, and predicting
academic achievements50-53.

Aligning with high self-efficacy’s career impact described in literature50-53, a survey of 72 certified
respondents demonstrated high satisfaction. 97.5% reported the program’s positive impact,
including 22.8% securing internships or jobs, 27.8% developing interest to continue pursuing
precision medicine, and 46.9% gaining confidence to apply for academic or professional
opportunities. 93.8% wanted continued SDO involvement, either taking another course or
teaching/ mentoring others. 84.7% recommended the program to others.
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Figure 2. Enhanced Student Confidence in Precision Medicine through the Bioinformatics
Certificate Program. Students' confidence levels were reported in surveys before and after
learning modules completion for 191 students who graduated from the Bioinformatics certificate
program. The SDO’s Bioinformatics certificate program improves students’ confidence in
interdisciplinary topics in precision medicine. The figure shows increased self-reported
confidence after completing learning modules in Research Ethics, Programming, Data Analysis,
Cloud Computing, and Bioinformatics. By comparing the number of students who rated “3:
Moderately confident”, “4: Very confident”, and “5: Extremely confident” before and after the
learning modules, we observed notable self-reported confidence gains, particularly in Cloud
Computing and Bioinformatics. 56.65% more students rated “3: Moderately confident” or above
to the Cloud Computing learning goals after completing the learning module. 57.21% more
students rated “3: Moderately confident” or above to the Bioinformatics learning goals after
completing the Bioinformatics learning modules. Among 191 certified students, the number of
students who feel moderately confident to highly confident in coding with Python, R, and
Pandas rose by 39.28%, and in Statistics and Data Visualization by 26.99% after the learning
modules.

AI Tutor
We built an LLMs-powered AI Tutor on SDO that democratizes private tutoring for students who
cannot afford or allocate time for traditional methods, benefiting economically disadvantaged
and underrepresented groups by providing an accessible and high-quality educational support.
This AI Tutor (see Supplementary Fig. 1B) specializes in questions pertinent to bioinformatics.
It receives student inquiries, applies embedding techniques to identify the most relevant content
within SDO, and uses prompt engineering to generate pertinent responses. Every interaction is
scrutinized under multiple layers of guardrails to ensure the accuracy of the information, prevent
the generation of erroneous or misleading content (hallucinations), and maintain relevance to
the field of bioinformatics.
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Evaluating AI Tutor’s Performance
We evaluated the AI Tutor's performance in three key areas: 1) Response Accuracy, based on
its answers to 246 bioinformatics questions created by the SDO team; 2) Guardrails
Performance, assessed through 2081 student-submitted questions; and 3) AI Tutor’s Use
Cases and Perceived Usefulness.

Response Accuracy
We compared 10 LLMs’ responses to 246 SDO-team-constructed bioinformatics multiple-choice
questions with our answer keys. Figure 3 shows the performance of different LLMs: Anthropic
Claude 254, Anthropic Anthropic's Claude 3 Haiku55, Anthropic's Claude 3 Opus56,
Anthropic's Claude 3 Sonnet57, Gemini 1.5 pro58, GPT-3.559, GPT-4, GPT-4 Turbo60,
GPT4o61, Meta Llama262. Initially, there were 298 questions, but 20 ambiguous questions
flagged by the majority of the LLMs were removed.

In our study, we grouped general questions into three categories: Programming and Technology,
Statistics (including Visualization and AI/ML), and Data (covering Multi-omics and Wearables),
as depicted in Fig. 1.A. We conducted a detailed analysis of various LLMs' performances
across these categories, as shown in Fig. 3.A-D, evaluating them on general and
domain-specific multiple-choice questions. To evaluate the risk of LLMs giving erroneous
answers without sufficient context, we compared the LLMs’ accuracy of 32 questions (i.e.,
context-aware questions) that refer to specific information inaccessible to the LLMs, such as an
image, a code block, or a research study (Fig. 3E). In healthcare applications, when a model
attempts to interpret missing data that a physician failed to provide without acknowledging it
(i.e., hallucinating), the LLM-generated information could lead to significant health and financial
cost. We also examined the models' differential responses to Python and R programming
questions, noting a tendency in some LLMs to favor Python, which often leads to mistakes in R
contexts (Fig. 3.F). This bias was further analyzed in Figures 3.G and 3.H, comparing the
performance of models like GPT-4, GPT-3.5-turbo, and Claude 2 over two periods, November
2023 and June 2024.

The findings from our figures indicate that overall, the GPT-4 family generally outperforms other
models across most question categories (Fig. 3.A-D). GPT-4o achieved the highest accuracy in
General questions as well as Programming and Technology questions (Fig. 3.A, B), whereas
GPT-4-turbo excelled in Statistics and Visualization questions, as well as Research Ethics,
Multi-omics, and Wearable Data questions (Fig. 3.C, D). The Claude-3 family also performed
strongly, particularly Claude-3 (Opus), which shows high accuracy in multiple categories.
However, GPT-3.5-turbo performed poorly on context-specific questions (Fig. 3.E), indicating
significant limitations in handling queries that require specific contextual understanding. The
comparison of Python vs. R responses (Fig. 3.F) reveals a notable bias towards Python, with
some models performing significantly better in Python than in R. Furthermore, the radar charts
(Fig. 3.G and 3.H) illustrate the improvements or regressions in model performance over time,
with Claude-2 showing notable improvements in handling guardrail scenarios in June 2024
compared to November 2023.
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A. Accuracy to General questions (n=246,
excluding ambiguous and context-specific

questions)

B. Accuracy to Programming and Technology
questions (n=49, excluding ambiguous and

context-specific questions)

C. Accuracy to Statistics and Visualization
questions (n=129, excluding ambiguous and

context-specific questions)

D. Accuracy to Research Ethics, Multi-omics, and
Wearable Data (n=68, excluding ambiguous and

context-specific questions)

E. Context-specific questions (n=32) F. Python (n=12) vs. R (n=12)

11

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 1, 2024. ; https://doi.org/10.1101/2024.07.31.24311182doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.31.24311182


G. Python (Nov. 2023 vs. June 2024) H. R (Nov. 2023 vs. June 2024)

Figure 3. Performance of Different LLMs for 298 Bioinformatics Questions. A. Shows the
performance on 246 general questions after removing 20 ambiguous questions and 32
context-aware questions. B. Displays the performance of LLMs for programming (R, Python,
Pandas) and cloud computing questions (49 questions). C. Illustrates the performance of LLMs
for statistics and visualization questions (129 questions). D. Depicts the performance of LLMs in
answering questions related to research ethics, multi-omics, and wearable data questions (68
questions). E. Presents the performance of LLMs for context-aware questions (32 questions);
the model was expected to either request additional context or indicate that it lacked the
necessary context to respond accurately. Responses that failed to acknowledge the need for
context were considered incorrect. F. comparing the performance of different models for Python
(12 questions) vs. R (12 questions), showing some models are biased toward Python and
cannot identify the R context well. G and H. Performance Comparison of GPT-3.5-turbo, GPT-4,
and Claude 2 for Python (12 questions) and R (12 questions): November 2023 vs. June 2024
(with and without guardrail). Unlike in Fig. 3. A-F, where we used the bare LLM (Execution
Engine), for G and H, we employed the AI Chatbot (see Supplementary Figure 1. B). Both the
Execution Engine and the Guardrail utilized the same LLM. There are variations in performance
in how these models differentiate between Python and R coding questions. Claude 2 showed
significant improvement in handling R/Python questions. Similar findings are reported in recent
studies63. Another observation concerns guardrails: GPT-3.5 flagged 5 out of 12 Python
questions and 4 out of 12 R questions as irrelevant. It is important to consider while designing
guardrails—none of the questions were flagged by GPT-4 as irrelevant in 2023 or 2024 (see
Supplementary Table 4). The closed-source nature of some LLMs raises concerns about
predictability and interpretability, particularly in critical fields like medicine, where
decision-making is paramount.

Evaluating AI Tutor’s Guardrail Performance
We implemented the AI Tutor using GPT-4 in production as the default LLM, although learners
can switch to other LLMs via the user interface. To ensure the AI Tutor responds only to
questions related to the educational content in SDO, we built several guardrails (see
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Supplementary Fig. 1.B). Given LLMs’ constant development, which could result in
unpredictable responses, we set constrained guardrails to mitigate risks while ensuring the AI
Tutor can effectively support learning activities.

The performance of the 2082 AI Tutor responses to students' questions demonstrated its ability
to adhere to the guardrails (Supplementary Table 2). The guardrail’s precision was calculated
at 100%, indicating no false positives among the predicted positives. Recall, or sensitivity, was
93.4%, reflecting that most positive cases were correctly identified. Specificity was 100%,
meaning all true negatives were accurately recognized. Additionally, the F1 score, the harmonic
mean of precision and recall, was 96.6%, providing a balanced measure of the model's
accuracy in identifying both classes. Notably, there were 126 false negatives, indicating missed
SDO-content-related questions. These metrics indicate AI Tutor is capable of providing correct
and relevant answers to students, cultivating trustworthy interactions with students.

Evaluating AI Tutor’s Use Cases and Perceived Usefulness
SDO's blended learning model effectively combines self-paced modules with interactive
AI-facilitated learning activities, significantly enhancing educational engagement and outcomes.
Students utilizing this hybrid approach not only benefit from the flexibility of independent study
but also gain substantial support through structured digital interactions, as shown by multiple
studies64,65. This methodology particularly benefits underprivileged students, offering frequent
opportunities to interact with AI tools, which is critical for developing AI literacy. Regular use of
AI applications like GPT-4, which has demonstrated creativity surpassing 99% of people in
terms of originality and fluency, and GitHub Copilot, which speeds up coding tasks by 55.8%,
empowers students to enhance their creativity and productivity. This proficiency in AI tools not
only boosts their project and career prospects in precision medicine but also enables
participants to become efficient collaborators in research and reduces training periods in
professional settings66-68.

Figure 4A shows that 46.7% of the most queried topics include Programming and Cloud
Computing, while 21.2% cover Statistics, Visualization, AI/ML, and 20.3% relate to
Bioinformatics/Omics-data. As for the types of questions, Figure 4B indicates that 39.5% of the
inquiries involve clarifying or troubleshooting code, 18.2% ask about a quiz or exam, 13.8% are
statistics questions, and 11.8% are bioinformatics questions.

A quantitative evaluation of the AI Tutor's impact shows high student satisfaction and perceived
effectiveness. On the platform, 76.56% of responses were positively rated, and 66.7% of
students on a six-point Likert scale strongly agreed that the AI Tutor enhanced their
understanding of precision medicine (see Supplementary Table 3). Additionally, 23.4%
moderately agreed, and only 9.4% slightly agreed. The AI Tutor excelled in programming and
bioinformatics—key areas of precision medicine—with particularly high agreement in
technology-related modules like statistics and cloud computing. These results highlight the AI
Tutor’s effectiveness in supporting student learning and identify potential areas for further
improvement to optimize user experience.
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A. Learners’ Questions Categorized by Learning Modules Topics

B. Learners’ Questions Categorized by Goals

Figure 4. Learner Engagement Analysis with AI Tutor. A. 2,082 learners’ questions (from
156 learners) categorized by learning modules topics. 43.9% of the questions are about
Programmings, followed by 16.1% Statistics. a(ii) 47.3% of the questions labeled “Irrelevant” are
questions about Stanford Data Ocean. 19.3% are questions that lack context to identify
students’ intentions; B. 2,082 questions are categorized by the goal students are trying to
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accomplish by using AI Tutor. 20.2% are about clarifying programming and technology
concepts, and 19.3% are about writing or troubleshooting code). We gave the AI Tutor a
persona and described what it is and what it can do (e.g., "You are a helpful assistant
well-versed in bioinformatics and related technologies. Please answer questions with all the
needed context related to the Fundamental Modules content multi-omics, statistics, R, Python,
etc. If a question pertains to a different topic, politely refuse to answer.")

LLM-based Research Data Visualization
AI Tutor for Data Visualization: Fostering Algorithmic Thinking
Analysis of learner queries in Figure 4.B reveals that 39.5% of learners concentrate their
questions on aspects of programming, such as interpreting and troubleshooting code. This
observation prompts a new research question emerging directly from the data: Is extensive
programming knowledge essential for completing precision medicine tasks? The frequency of
programming-related inquiries and the effectiveness of the AI Tutor by learners underscores the
need to reevaluate and enhance how educational models integrate programming skills with
domain-specific scientific training.

Programming fosters critical thinking and problem-solving skills69 (e.g., through
Divide-and-Conquer, Dynamic Programming, Greedy Algorithms, Graph Algorithms,
Probabilistic and Analysis, and Randomized Algorithms). However the time dedicated to error
handling, while potentially enhancing resilience by building persistence and adaptability, is
time-consuming and detracts from valuable research hours that could be used to unlock
biological mechanisms.

The SDO’s platform enables users to import their own biomedical datasets for research
analysis. This is accomplished through the data visualization tool which supports multi-modal
analysis, accommodates a broader array of data formats, and incorporates automatic error
handling, all while being compatible with both Python and R. For more details on this innovative
approach, see Methods. The visualization component operates under the assumption of two
primary user groups:

1) Non-technical Users: Users with no programming experience or data familiarity. Here, the
platform first summarizes the dataset and leverages LLMs to generate an explanation of the
data and potential visualization goals; users can then select their desired goal, prompting the
system to utilize the LLM output and summary to automatically generate visualization code and
produce the corresponding plots. This multi-step process (e.g., data summarization, goal
generation, and elaboration, reading user-generated prompt, code creation, error handling, and
plot generation) is further detailed in Supplementary Fig. 1C. Users can further explore the
data by posing questions, with the platform assisting in code generation and visualization based
on the provided query. Fig. 5 illustrates the capability of SDO AI-facilitated visualization for
autonomous interpretation and visualization of multi-omics and wearable sensor data.
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Figure 5. Autonomous Interpretation and Visualization of Multi-Omics and Wearable Data
through Language Model Integration. A. Heart Rate Variability Over Time (Wearable data):
Box plot showing weekly heart rate variability across different weeks, providing insights into
changes in heart rate dynamics over time. B. Dominant Bacterial Genera (Gut 16S data): Bar
graph illustrating the relative abundance of the top five most abundant bacterial genera in the
dataset, highlighting key players in the microbial community. C. White Blood Cell Count
Distribution (Clinical data): Histogram showing the frequency distribution of white blood cell
counts, crucial for identifying abnormal immune response patterns. D. Chromosomal Variant
Distribution (Genomics data): Bar chart representing the frequency distribution of genetic
variants across different chromosomes, useful for identifying potential chromosomal hotspots of
variability. E. Protein Interaction in Immune Response (Proteomics data): Correlation matrix
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displaying relationships among protein expression levels involved in the complement system,
aiding in understanding their collective roles in immune response. F. Metabolite Intensity
Correlations (Metabolomics data): Heatmap showing correlations between spectral intensity
measurements of metabolites, revealing interactions and dependencies crucial for metabolic
studies. G. Gene Expression Correlations (Transcriptomics data): Correlation matrix and
heatmap analyzing pairwise relationships between gene expression levels across the genome,
providing insights into potential regulatory and co-regulatory networks. H. Immune Cell
Distribution (snRNA data): UMAP representation of snRNA immune cells colored by cell type,
illustrating the relationship between cell types and their positions in the UMAP harmony space.
Users can fine-tune the visualization by providing feedback, such as changing the x-axis title.
The data used in this demonstration were sourced from four independent studies: Mishra et al.70

(Participant ID: A0NVTRV for Figure 5A), Zhou et al.71 (Participant ID: ZOZOW1T for Figures
5B, 5C, 5E, 5F, 5G), the 1000 Genomes Project72 annotated by the COSMIC68 dataset73 for
Figure 5D, and snRNA immune cells processed data from Fig. 4.C in Hickey et al.74.

2) Technical Users: Users with an understanding of data analysis but want to save time from
low-level programming challenges like syntax, library management, debugging, and API
updates (e.g., physicians, geneticists, or biologists). These users simply input the desired
algorithm (see Supplementary Figure 1.C), prompting the system to generate the code and
corresponding visualization. It is crucial to note that problem definition and algorithmic
thinking—defined as the ability to break down problems into a series of logical steps—are
essential elements of this process. Proper problem definition and algorithmic thinking are vital
because they guide the AI in generating accurate and relevant code; without these, users may
encounter incorrect or inefficient solutions. The AI Tutor supports users by helping them better
define their problems and develop algorithmic thinking skills, ensuring the system produces the
most appropriate code and visualizations. We showcase the versatility of the SDO platform in
addressing various research questions posed by technical users (Fig. 6). Figures 6A through
6E demonstrate the robustness and versatility of automated code generation for replicating and
interpreting complex visualizations across diverse research domains.

Reproducibility Feature: Reproducing plots can be challenging due to authors potentially
neglecting key parameters such as unclear naming conventions, data/plot inconsistencies, and
inadequate data type specifications. Incomplete or unclear documentation on how to install and
run code can pose a significant challenge to replication, especially for researchers who may not
be well-versed in the necessary tools and package managers78,79. These inconsistencies
significantly complicate reproducibility through conventional programming methods. To address
this challenge, we have integrated an additional feature within the toolset. Users can provide the
target figure and corresponding dataset, prompting the system to leverage LLMs and error
handling to reproduce the plot. While successful in many cases, instances of author-specific
assumptions (Unclear and inconsistent documentation) have rendered figure reproduction
nearly impossible despite repeated LLM attempts. Consequently, users must intervene and
provide feedback to the LLMs, nudging them to address these issues.
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Figure 6. Automated Code Generation and Execution from Natural Language Inputs for
Data Visualization in Multi-Omics and Wearables Research. A. Protein Marker Correlation
Analysis: Heatmap displaying pairwise correlation coefficients for protein markers involved in
pathological complete response (pCR) analysis. This figure replicates and expands upon the
heatmap from Figure 2.c in McNamara et al.75, highlighting potential biomarker interactions in
cancer pathways. B. Heart Rate Analysis for COVID-19 Detection: Line graph depicting daily
average resting heart rates from March 22 to May 17th, identifying significant trends that could
indicate physiological responses to COVID-19. This visualization is inspired by the NightSignal
algorithm and replicates the scenario depicted in Figure 1.b in Alavi et al.42, illustrating variations
in resting heart rate during the pandemic. C. Differential Protein Expression in Oral Cancer:
Volcano plot contrasting protein expression profiles between bacteria-positive and -negative
regions in oral squamous cell carcinoma. Adapted from Figure 2 in Galeano Niño et al.76, this
plot aids in understanding micro-niche level variations within tumor environments. D. ASCVD
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Risk Score Distribution Analysis: Combined violin and box plot of atherosclerotic
cardiovascular disease (ASCVD) risk scores, comparing standard and adjusted scores across a
sample. Based on Figure 4a in Schössler-Fiorenza Rose et al.77, it facilitates risk assessment
and stratification in clinical research. E. Variance Analysis in Multi-Omics Data: Boxplot
showing the intra-class correlation coefficients for various biomedical categories, indicating
variance levels attributed to participant structure. This visualization is based on Figure 2.a in
Zhou et al.71, which is crucial for evaluating consistency across multi-omic datasets. F.
scRNA-seq Data Visualization via UMAP: UMAP plot derived from scRNA-seq data files
(barcodes.tsv, genes.tsv, matrix.mtx), visualizing gene expression patterns across different cell
types. The AI visualization component summarizes all input files and iteratively generates the
plot. While the output UMAP in Fig F.S2 is not exactly the same as F.S1, by adding the right set
of steps, the SDO AI visualization component successfully captured the clusters in F.S2. The
prompt is “Filter the cells in the Seurat object to include only those with an RNA count of less
than 100,000. Normalize the data in the Seurat object using the "LogNormalize" method, with a
scale factor of 10,000. Identify the top 2,000 variable features (genes) in the dataset using the
"vst" (variance-stabilizing transformation) method.” F.S4 was built on top of F.S2 and a metadata
file. The pipeline in each step provides code and documentation of the thought process it went
through to generate the visual. The user can use the documentation to guide the model, where
necessary, to achieve the desired outcome (image). This process is iterative.

Fig. 6F represents an application of single-cell RNA sequencing data visualization. It employs a
UMAP technique to visualize data clusters based on the raw files from Wu et al.80. Despite
inherent variations due to different computational tools and the stochastic nature of UMAP, SDO
effectively captures and displays the main clusters, highlighting its adaptability and accuracy in
handling complex genomic data. The platform handles new data types and complex multimodal
visualizations.

We propose a potential solution to enhance reproducibility: encouraging authors to provide
prompts for future plot generation. This practice could incentivize the explicit communication of
implicit assumptions during the visualization process, significantly improving reproducibility.

Discussion
Our results with SDO demonstrate that a serverless platform leveraging cloud computing can
effectively address challenges in bioinformatics, providing improved access to data and
computational resources, particularly for economically disadvantaged and historically
marginalized populations. Furthermore, we recognize the challenges associated with extensive
time spent on debugging and synchronization for non-programmers, alongside the lengthy
upskilling/reskilling required for scientific professionals in non-programming fields. Our platform
demonstrates how solutions like SDO can bypass the programming aspect, allowing users to
focus on the algorithmic core of the problem. By prioritizing algorithmic thinking over syntax and
error handling, we aim to improve problem-solving and critical thinking skills in life sciences
education. Our self-paced, personalized learning modules with AI assistance further contribute
to the development of domain knowledge.
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The emergence of LLMs presents a new set of challenges. The potential for plagiarism through
copy-pasting generated content using LLMs necessitates the development of robust
anti-cheating measures. While solutions like CodeHelp81 utilize guardrails specifically designed
to prevent the direct revelation of solutions, thereby aiding students in resolving their issues
ethically, there remains the challenge of students accessing LLMs without such guardrails. We
hypothesize that incorporating context-specific questions could further mitigate the risk of
cheating by reducing the accessibility of inappropriate assistance. This approach ensures that
the AI support remains aligned with educational goals and maintains academic integrity.
Furthermore, standardization and reproducibility issues persist, impeding the achievement of
consistent, reliable results essential for validating findings and ensuring trustworthy scientific
advancements. One potential solution involves encouraging authors to create, test, and submit
their prompts alongside published manuscripts.

Conclusion
SDO is a comprehensive platform that seamlessly integrates data management, analytics, and
educational resources. It stores a wide range of data types including clinical, omics, and
wearables data, with the majority being open access. The platform enables robust
computational analytics, allowing users to upload and analyze their own datasets. Additionally,
SDO offers a variety of educational activities focused on cloud computing and the handling of
complex data types. Through these offerings, users develop essential skills in computing and
bioinformatics, equipping them for advanced careers in data science. Notably, 22.8% of certified
students reported secure positions within the STEM field.

Methods
Scalable, Secure, and Sustainable Platform
SDO leverages containerization and virtual machines (VMs) to enhance the learning
experience. Containers create a stateless environment that facilitates quick setup and disposal,
whereas VMs support a stateful environment necessary for continuous operations and complex
computations. Together, these technologies guarantee uninterrupted access to educational and
research content, even amid system changes (see Supplementary Fig. 1A). Additionally, the
platform's microservice architecture enhances scalability and security while reducing
management overhead. A front-end cluster manages user access and coordinates the operation
of VMs and containers, and a back-end cluster safeguards sensitive data and hosts
applications. Furthermore, real-time monitoring tools ensure the performance remains optimal
and compliant with HIPAA standards for privacy and security34,35.

Further fortifying our platform, SDO deploys within secure environments like Amazon
Bedrock36, Azure OpenAI Service37, or GCP Vertex AI38 for pre-trained models, with AWS
Bedrock serving as the primary environment (see Supplementary Fig. 1B and 1C). This setup
gives organizations control over their data and infrastructure within a monitored environment.
Using third-party models under stringent data privacy agreements offers an additional layer of
protection against data exposure risks—for example, OpenAI approved our request to not use
SDO content to train their models. Moreover, sharing data summaries rather than complete
datasets minimizes the risk of sensitive information leakage, a technique SDO utilizes in its AI
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visualization tool.

Security models designed for LLMs incorporate secure deployment environments, data access
controls, and test-time defenses39, to safeguard data integrity and protection. Collectively, these
strategies, along with robust test-time defenses that analyze user prompts, monitor LLM
outputs, and post-process responses to ensure safety and appropriateness, establish a robust
security framework, enabling organizations to confidently utilize LLMs while upholding the
highest standards of data protection39-41.

Moreover, SDO also standardizes modules like notebooks and datasets to enhance accessibility
and integration for researchers and learners from diverse educational backgrounds. This
standardization promotes consistency and reproducibility in scientific research while
continuously updating resources to keep pace with technological advances, supporting the
sustainable development of bioinformatics education. SDO, designed as a comprehensive
platform, adheres to FAIR principles—ensuring data is findable, accessible, interoperable, and
reusable—thus improving resource efficiency and impact82. It also facilitates environmental
sustainability in precision medicine through shared data resources. By integrating scientific
papers as research modules, such as the NightSignal algorithm42, into its ecosystem, SDO
lowers entry barriers and simplifies learning for beginners while emphasizing the critical,
resource-intensive task of curating and cleaning datasets essential for personalized medicine.

AI Tutor
Our LLM-powered AI Tutor developed on the SDO platform, democratizes private tutoring for
students who cannot afford or allocate time for traditional methods. This AI Tutor (see
Supplementary Fig. 1B) is specialized in questions pertinent to bioinformatics. It operates by
receiving student inquiries, applying embedding techniques to identify the most relevant content
within SDO, and using prompt engineering to generate pertinent responses.

LLM-based Data Visualization
As LLMs continue to evolve, automatic data visualization is becoming increasingly prevalent.
Systems like LIDA43 and Amazon Q44 exemplify a multi-stage generation approach, showcasing
how well-orchestrated pipelines that include LLMs effectively address various challenges.
However, its generalizability suffers from restricted data intake formats, often limited to common
spreadsheet file types and not suitable for multi-omics datasets.

To address these shortcomings, we leveraged some of LIDA’s capabilities such as UI and goal
generation and introduced a novel grammar-agnostic data visualization component within the
SDO framework (Supplementary Fig. 1C). Our component transcends the limitations of prior
systems by incorporating robust mechanisms for: 1) Multi-modal analysis: It seamlessly
integrates insights from diverse datasets, enabling comprehensive data exploration; 2)
Enhanced data format support: It ingests a broader range of data formats beyond
conventional spreadsheets (e.g., .xls, .csv) to include geospatial information (maps),
compressed archives (zips), and even image data; 3) Automatic error handling: Our system
proactively identifies and addresses potential issues during the visualization generation process.
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This includes situations like exceeding model capacity due to large context size or when the
LLM fails to produce valid executable code. This expanded data intake empowers researchers
to conduct richer analyses and unlock hidden patterns across a broader spectrum of information
sources, including not just traditional tabular data but also spatial relationships, archived
content, and potentially valuable visual information; and 4) Supporting both Python and R:
Our platform not only supports Python but also R, thereby catering to a broader range of
bioinformatics workflows and user preferences. For example, many researchers use R's Seurat
package for single-cell RNA-seq data analysis, while others prefer Python's Scanpy for similar
tasks.

The initial step involves extracting metadata from uploaded datasets, which includes critical
details like column names, data types, and record counts. Following metadata extraction, a
representative sample of the dataset is taken to facilitate quick data analysis. Summarization
then generates concise descriptions, including statistical summaries and key pattern
identifications. Semantic typing categorizes the data into meaningful types, which is essential for
selecting appropriate visualization techniques. The selection and instantiation of prompt
templates guide the LLM in generating necessary codes or descriptions for creating
visualizations. Mechanisms are in place to handle errors, and the process includes steps to
iterate through the inference process, maintaining memory and context to complete the output.
In scenarios involving multi-modal contexts, the pipeline accommodates the complexity of
handling multiple datasets, ensuring the visualizations are based on relevant and accurate data.
This structured approach to data visualization enhances the effectiveness of data analysis,
making complex information more accessible and actionable.

Software Availability
The software platform supporting the findings of this study is available at
https://dataocean.stanford.edu/. Access to the platform can be granted upon request. Interested
parties should visit the website to initiate a request for platform access.

Data Availability
The datasets supporting the findings of Figures 5 and 6 are publicly accessible, as detailed in
the "Data Availability" sections of the respective source papers. For the Stanford Data Ocean's
(SDO) learners' pre- and post-surveys, as well as the AI Tutor questions, all personally
identifiable information has been removed to ensure privacy and confidentiality. This includes
the deletion of email addresses, first and last names, and any other information that could be
used to identify individual participants.
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A. Architecture of the Platform (Data, VMs/Containers, and Workflows)

B. AI Tutor as a Chatbot

C. AI Tutor for Data Visualization

Supplementary Figure 1: Stanford Data Ocean Architecture
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Supplementary Table 1. Summary of Challenges Faced by Scholarship Applicants (June
2024)

Challenge
Category

Application
Percentage

Application
Quantity Affected Demographics/Regions

Financial
Constraints 62.7% 276

Low-income families, immigrants,
international students residing in

developed nations, and residents in
countries facing economic crises or

sanctions (e.g., Nigeria, Turkey, Iran)

Lack of
Interdisciplinary

Medical
Education

18% 79
Residents in nations with early Precision
Medicine development, rural areas, or

politically unstable regions (e.g., Ukraine)

Limited Time
Due to

Responsibilities
5.2% 23

PhD/MD students with busy schedules,
individuals with multiple jobs or caring

duties

Supplementary Table 2. AI Tutor Performance Metrics

Category Definition Value

True Negatives (TN) The AI Tutor correctly identifies and ignores questions that
are not related to SDO content.

170

True Positives (TP) The AI Tutor accurately identifies and appropriately
responds to SDO-content-related questions.

1,785

False Positives (FP) The AI Tutor incorrectly responds to
non-SDO-content-related questions.

0

False Negatives (FN) The AI Tutor fails to recognize or incorrectly answers
SDO-content-related questions.

126

29

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 1, 2024. ; https://doi.org/10.1101/2024.07.31.24311182doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.31.24311182

